
Real-Time Vision on a Mobile Robot Platform

Mohan Sridharan and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, TX, 78731

Under review - not for citation

Abstract

Computer vision is a broad and significant ongoing re-
search challenge, even when performed on an individ-
ual image or on streaming video from a high-quality sta-
tionary camera with abundant computational resources.
When faced with streaming video from a lower-quality,
rapidly, jerkily-moving camera and limited computational
resources, the challenge only increases. In this paper we
present our implementation of a real-time vision system on
a mobile robot platform that uses a camera image as the
primary sensory input. The constraints imposed on the
problem as a result of having to perform all processing, in-
cluding segmentation and object detection, in real-time on-
board the robot eliminate the possibility of using some state-
of-the-art methods that otherwise might apply. We present
the methods that we developed to achieve a practical vi-
sion system within these constraints. Our approach is fully
implemented and tested on a team of Sony AIBO robots, en-
abling them to place among the top finishers at an annual
international robot soccer competition.

1. Motivation
Computer vision is a major area of research with applica-
tions in robotics and artificial intelligence. Though signif-
icant advances have been made in the use of vision sys-
tems on robots (and AI in general), one of the major draw-
backs has been the minimal use of these algorithms for
solving practical tasks. Most vision approaches have un-
derlying assumptions (such as large memory, high compu-
tation power and off-line processing) that prevent their use
in tasks with significant computational constraints. Our fo-
cus is on developing efficient algorithms for solving prob-
lems, in task-oriented scenarios. One such scenario is the
RoboCup Robot Soccer Legged League1 in which teams of
fully autonomous robotic dogs (Aibos [2]) manufactured by
SONY play a game of soccer on a� 3m� 4:5m field (see

1http://www.tzi.de/4legged

Figure 1: An Image of the Aibo and the field. The robot has a
limited field-of-view of56:9o (hor) and45:2o (ver).

Figure 1).
Like in real soccer, the robots’ goal is to direct a ball into

the opponents’ goal while preventing the ball from enter-
ing their own goal. The robot’s primary sensor is a CMOS
camera located in the robot’s nose with a field-of-view of56:9o (hor) and45:2o (ver), providing the robot with a lim-
ited view of its environment from which it has to extract
the information needed for decision-making. The images
are captured in theY CbCr format at a frame rate of30Hz
and image resolution of208 � 160 pixels. The robot has20 degrees-of-freedom (dof), three in each of its four legs,
three in its head, and a total of five in its tail, mouth, and
ears. It also has noisy touch sensors, IR sensors, and a
wireless LAN card for inter-robot communication. All pro-
cessing, for vision, localization, locomotion, and decision-
making (action-selection), is performed on board the robots,
using a 576MHz processor, and any lag in frame rate places
the robot at a severe disadvantage in terms of reaction time,
etc. Currently, games are played under constant and reason-
ably uniform lighting conditions, but the goal is to enable
the robots to play under varying illumination conditions.2

2The stated ultimate goal of the RoboCup initiative is to create a team
of humanoid robots that can beat the human soccer champions by the year2050 on a real, outdoor soccer field [15].

1



The vision problem that concerns us can be characterized
by the following set of inputs and outputs:

1. Inputs:� A 30Hz stream of208 � 160 limited-field-of-
view images in the YCbCr color space. The im-
age stream reflects rapid and non-linear changes
in the camera position due to the robots’ legged
(as opposed to wheeled) locomotion modality
and includes many defects such as noise and dis-
tortion. The images include many objects of in-
terest, but also many unpredictable elements.� The robots’ joint angles over time, particularly
the tilt, pan, roll of the camera.� The sensor inputs, especially the accelerometer
values that can be used to determine the body tilt
and roll.

2. Outputs:� Distances and angles (with associated probability
measures) to a fixed set (8 in our case) of color-
coded objects with known locations that can be
used tolocalizethe robot on the field.� Distance, angles and probability measures of a
varying set of mobile objects.

Our goal is to generate a reliable mapping from these inputs
to outputs with all processing performed on-board the robot,
ideally at frame rate, while leaving as much time as possi-
ble for localization, locomotion, and decision-making. An-
other constraint is the memory available on board the robot.
In order to proceed at frame rate, each complete cycle of
operation can take a maximum of33msec. Throughout the
paper, we provide timing data for our presented algorithms.

Though motivated by the robot soccer domain, this prob-
lem formulation is applicable to general vision-based mo-
bile robots. This paper therefore also serves as a case study
demonstrating the practical steps in the process of develop-
ing an effective real-time vision system for a mobile robot.
A primary distinguishing feature of our task is that the cam-
era image is the primary sensory input, unlike many other
mobile robots where the focus is mainly on laser/sonar sen-
sors [10]. The camera jerks around a lot due to the legged
(as opposed to wheeled) locomotion modality, and images
have a relatively low resolution and possess common de-
fects such as noise and distortion.

Our vision processing algorithm detailed in Section 2
proceeds in a series of stages — color segmentation, blob
formation, and object recognition — which, overall, con-
vert the sensory inputs into the desired outputs identified
above. Several popular techniques have been developed in
vision research for these (or similar) tasks. But given our
constraints we had to develop new algorithms or modify ex-
isting techniques to achieve the desired results. Throughout,

we provide numerical results that justify the trade-offs we
made to satisfy our constraints.

2. Approach
In this section, we present a step-by-step description of the
vision system that we developed for our legged robot plat-
form.

Figure 2 shows four representative images from the robot
soccer environment including shots of both goals, the ball,
and two of the four beacons. For the purposes of visualiza-
tion, we have converted them from their native YCbCr color
space to RGB. Throughout the paper we use these same im-
ages to illustrate the results of each stage of our vision sys-
tem (Figures 3–6).3

(a) (b)

(c) (d)

Figure 2: Sample Images in the RGB color space.

The vision module consists of four stages: Color cube
generation, described in Section 2.1, Blob formation (Sec-
tion 2.2), Marker detection (Section 2.3) and Line detection
(Section 2.4). We conclude this section with an extension of
our approach to variable lighting conditions (Section 2.5).

Sample videos showing the robot’s view as it attempts
to score on the yellow goal, both as raw footage and after
each stage of processing, are available on-line.4 The videos
show that the camera moves readily and jerkily as the robot
performs its task and that many irrelevant objects and colors
appear in the field of view.

2.1. Color Segmentation
The first step in our robot vision system is color segmenta-
tion. During the first pass over the image, the robot maps

3The images appear in color in the electronic version of the paper.
4http://www.cppreference.com/cvpr05-aibovision.html

2



each pixel in the raw YCbCr input image into a color class
label (mi). In our target domain, the robot needs to recog-
nize ten different colors (i 2 [0; 9℄). A complete mapping
identifies a label for each possible point in YCbCr space:8p; q; r 2 [0; 255℄ (1)fYp; Cbq ; Crrg 7! miji2[0;9℄

Segmentation is a well-researched field in computer
vision with several good algorithms, for example mean-
shift [6, 22]. But these involve more computation than
is feasible to perform on the robots given our constraints
(as described in Section 1). A variety of previous ap-
proaches have been implemented on the Aibo robots for
use in the RoboCup domain including the use of decision
trees [23] the creation of axis-parallel rectangles in the color
space [24]. Our baseline approach is motivated by the de-
sire to create fully general mappings from the YCbCr values
(ranging from0�255 in each dimension) to the color labels
(0� 9) [26].

We represent this mapping as acolor cubewhich is cre-
ated via an off-board training process. A set of images
are captured using the robot’s camera. These images are
then hand-labeled (painted) such that the robot learns the
range offY;Cb; Crg values that map to each desired color.
Each pixel that is painted in the training images represents
an individual instance of the mappingfYp; Cbq; Crrg 7!miji2[0;9℄ and is taken as ground truth. However, after
painting 20 images, only about3% of the color space is
labeled. Thus, in order to generalize from this hand-labeled
data, the color label assigned to each cell in the color cube
is modified to be the weighted average of the cells a certain
Manhattan distanceaway from the cell (a form ofNearest
Neighbor-NNr). This operation helps remove theholesand
smooths out the edge effects in the color cube. In the end,
we find significant overlap among the labelings of some
colors, such as yellow and orange, that could not be rep-
resented with axis-parallel labeling.

The painting and NNr computation are both done dur-
ing an off-board training phase. To reduce memory require-
ments, we subsample the color space to have values ranging
from 0–127 in each dimension. The resulting color cube,
taking� 2 Mbytes of memory, is then loaded on the robot
for use in segmenting its input images into the colors it has
been trained to recognize. The segmented image is the out-
put of this first stage of the vision processing system.

Though the YCbCr color space has been used for most
previous work in this domain, we noticed that the segmen-
tation was often sensitive to small changes in illumination,
for example leading to yellow being misclassified as orange
due to shadows. Previous research in rescue robotics has
suggested that a spherically distributed color space known
as LAB inherently provides some robustness/invariance to
illumination change [13, 18]. In order to take advantage

of LAB’s properties without incurring the overhead of on-
line conversion, we modified our color cube generation al-
gorithm as follows.

1. The initial painting is done in the LAB color space dur-
ing the off-board training phase. That is, each painted
pixel in the training image maps to a cell in the LAB
color cube.

2. Similarly, the NNr operation is computed in the LAB
color space.

3. Each cell in the output YCbCr color cube is labeled
based on the value in the corresponding cell in the LAB
color cube as determined by static (off-line) conver-
sion.

As such, on-line segmentation incurs no extra overhead over
the baseline approach. Whereas for a given illumination, it
is possible to tune the color cube in the YCbCr color space
such that the segmentation is almost the same as it is with
the cube in the LAB color space, we found that that us-
ing LAB as the underlying color space helped reduce the
amount of misclassification with minor changes in illumi-
nation, especially during competitions when there are sev-
eral objects around the field (e.g. clothing worn by the spec-
tators) that are similar to the colors the robots have been
trained to recognize.

Figure 3 shows the the result of segmentation, using the
new approach in the LAB color space, on the sample set of
images (as in Figure 2).

(a) (b)

(c) (d)

Figure 3: Sample Segmented Images.

From a computational perspective, the on-line pixel-
level segmentation process is reduced to that of a table
lookup and takes� 0:120msec per image.

3



2.2. Blob Formation
Once the input images have been successfully segmented,
the next step is to find contiguousblobs of constant col-
ors. That is, we need to extract useful information from the
color coded image byclusteringpixels of the same color
into meaningful groups. This again is a well-researched
area in computer vision [11, 14]. However making this pro-
cess happen both efficiently and accurately is particularly
challenging due to the fact that the reasoning is still at the
pixel-level. Computationally, this process is by far the most
expensive component of the vision system that the robot ex-
ecutes.

Our approach to blob formation is modeled closely after
previous approaches on the Aibo [26], though we add fea-
tures to optimize the process. As the pixels in the image are
being segmented (during the first pass over the image) they
are organized into run-lengths represented as the start point
and length in pixels of a contiguous color strip.5 Thus, af-
ter this process, we need to consider only a few run-lengths
instead of having to deal with the images at the pixel-level.
As an optimization, we only encode the run-lengths cor-
responding to colors that identify objects of interest in the
domain. In the robot soccer case, we also omit the colors of
the field (green) and the borders (white). Though these col-
ors are extremely useful in detecting the field borders and
lines, we achieve that by incorporating a separate and effi-
cient line-detection algorithm (Section 2.4).

To determine merged blobs from these run-lengths, we
utilize a procedure that is a variation of the Union-Find al-
gorithm [7]. We merge each run-length with another of the
same color as long as they are within a threshold distance
from each other. This region-merging operation results in
a set of blobs, each of constant color. During the process
of region-merging, we also progressively buildbounding
boxesaround the merged run-lengths. That is, we develop
a rectangular boundary around the regions. This abstrac-
tion enables the categorization of each region on the basis
of the four vertices of the bounding rectangle. At the end of
this stage, we end up with a set of bounding boxes, one for
each blob in the current image. In addition to the bound-
ing boxes, we also store a set of properties corresponding
to each candidate blob, such as the number of pixels (of the
blob color) and run-lengths it envelopes. These properties
are used in the object recognition phase (see Section 2.3).

Errors in the segmentation phase due to noise and/or ir-
relevant objects in the image can lead to the formation of
spurious blobs and make object recognition very challeng-
ing. In Figure 4 we show the results of blob formation on
the sample set of images and a couple of additional images
that lead to spurious blobs.

Our blob formation algorithm serves the dual objectives

5Further information on run-length encoding can be found in popular
image processing textbooks [12].

(a) (b)

(c) (d)

(e) (f)

Figure 4: Sample Blobs.

of incorporating a fast-region growing algorithm while at
the same time ensuring that the performance is not compro-
mised. An alternative to this procedure would be to pose
this as a pattern recognition problem and extract features
(in different feature spaces) corresponding to the desired
objects. The objects in the test images would then be de-
tected based on matching the same set of features extracted
from the test image. Though this process does provide good
performance, it involves computation that is not feasible on
our robots.

Even so, blob formation is the most expensive phase of
our visual processing system, which along with segmenta-
tion takes� 20msec per image.

2.3. Object Recognition
Once we have candidate blobs, the next step is to recog-
nize the relevant objects in the image. Object recognition
is a well-researched area in computer vision and numerous
algorithms have been developed to recognize objects in an
image, depending on the application domain [4, 21, 25].

Most of these approaches either involve extensive com-
putation of object features or large amounts of storage in

4



the form object templates corresponding to different views.
Further they are not very effective for rapidly changing
camera positions. Constraints on the computational re-
sources and memory render several of these approaches in-
feasible in our problem domain. We decided to determine
the objects of interest in the image from the blobs using
domain knowledge rather than trying to extract additional
features from the image. This saved a lot of additional com-
putation (and memory).

The objects of interest include the fixed markers which
the robot uses to localize itself and the moving objects that
the robot has to track. All the objects in the robot’s en-
vironment are color-coded and thus we can use the blobs
determined previously to recognize the objects. Even so,
the task is non-trivial as there are generally several objects
in and around the field that could be segmented as the same
color as the objects of interest – note for example, the peo-
ple, chairs, walls, and computers in our sample images.

To recognize objects we first eliminate blobs that do not
correspond to strict constraints of size, density and position
in the image, based on the knowledge of the environment.
Thus, we filter the blobs through a set of heuristics designed
to detect blobs that are too small to correspond to objects,
or that are notdenseenough (measured as the ratio of ap-
propriately colored pixels within the bounding box). For
example, all objects of interest to the robots are either on
the ground or a certain distance above the ground. Also, the
ball is mostly enveloped in a square bounding rectangle ex-
cept when it is partly occluded. All objects — ball, beacons
and goals — have bounding boxes with high densities. Due
to space constraints, we omit the details of these heuristics.
Full details are available in our team technical report [1].
These heuristics are easy to apply since the required prop-
erties were stored in the blob formation stage (Section 2.2).
Also note that the same properties, such as density and size,
are used to determine the probability of occurrence of each
object, once it is recognized.

Figure 5 shows the blobs detected as objects superim-
posed on the original (RGB) images.

As can be seen in the images, we have eliminated the
spurious blobs. This process ensures that we recognize all
the objects in an image while at the same time making the
object recognition phase highly efficient and computation-
ally inexpensive. The vision module, up to the object recog-
nition phase takes� 28msec per frame, enabling us to pro-
cess images at frame rate.

This object recognition algorithm does not let us recog-
nize the lines in the environment which are a great source
of information. In the next section we shall describe the
algorithm that we use to detect the lines.

(a) (b)

(c) (d)

Figure 5: Sample Object Recognition.

2.4. Line/Line Intersection Detection

In addition to the objects that can be represented as fitting
in rectangular bounding boxes, lines with known locations
can be important sources of information for the robots. Par-
ticularly in the robot soccer domain, when the robots are in
the process of playing a game, the main focus is the ball
and other robots may occlude the beacons and goals. As a
result, lines on the field become crucial for localization.

Detecting lines/edges is a very heavily-researched field
in computer vision, with methods such as Hough Trans-
forms and edge detectors such as Canny, Sobel [12]. Most
popular methods determine the edge pixels by convolving
a suitable mask across the image, an operation that is too
time-consuming for our purposes.

Our line-detection method is motivated by a previous
approach in the RoboCup environment [19]. To find the
candidate edge pixels, we utilize environmental knowledge:
edges of interest on the Robot Soccer field involve a white-
green or green-white-green transition corresponding to the
borders and the field lines respectively. Given that informa-
tion, we could have determined the bounding boxes corre-
sponding to the white blobs and green field and then used
heuristics to determine the actual lines/edges. But, as men-
tioned in the section on blob formation (Section 2.2) we
do not even calculate the run-lengths much less store the
statistics corresponding to these two colors primarily in an
attempt to reduce the computation involved. Our approach
is still able to efficiently detect the edge pixels and thereby
the lines of interest in the image.

In our line-detection algorithm, we begin, as in [19], by
performing a series of vertical scans on the segmented im-

5



age with the scan lines spaced4 � 5 pixels apart. In addi-
tion to making the scan faster, this ensures that we incorpo-
rate noise filtering into the process and eventually consider
only the lines that extend beyond a few pixels–noisy lines
that extend only a few pixels across are automatically elim-
inated. When processing a scan line, the robot checks for
the occurrence of candidate edges pixels by looking for the
green-white and white-green transitions. Over this baseline
approach, we add features to suit our purposes. To bias the
scan procedure towards detecting edge pixels that are closer
to the robots, our scan lines proceed from the bottom of
the image to the top, i.e. the border edge pixels now cor-
respond to green-white transitions. Once an edge pixel is
detected along a scan line, we do not process the remainder
of the scan line and proceed directly to the next scan line.
Though this excludes the possibility of detecting, for exam-
ple, a border line above a field line, the procedure is based
on the assumption that the observation of lines closer to the
robot provides more reliable information. Candidate edge
pixels in the image plane are acceptediff they also have a
significant amount of green below the them.

Once we have a set of candidate edge pixels, we incor-
porate a set of heuristic filters whose parameters were deter-
mined experimentally. For example, we reject pixels that do
not project to a point (on the ground plane) within a thresh-
old distance in front of the robot [1]. Then, instead of us-
ing these pixels directly as localization inputs, as in [19],
we find the lines that these edge pixels represent. Given a
set of candidate edge pixels, wecluster them into lines in
the image plane using the Least Square Estimation proce-
dure [16]. This is an efficient line-fitting method that can
be performed incrementally, i.e. lines can be fit to the can-
didate edge pixels as they are found and new edge pixels
can be either merged with existing lines or they can be used
to generate new lines. We introduce filters for suppressing
noise and false positives — at the line detection level we
remove outliers (candidate edge pixels that are not close to
any of the known edges) and also consider linesiff they can
account for more than a threshold number of pixels.

Although line pixels (or lines) on the field provide use-
ful information, the intersection of lines are more meaning-
ful (and less noisy) since they involve much less ambiguity.
They are not unique because of the symmetry of the field,
but they can be very useful in localizing the robot on the
field – ambiguity can be resolved to some extent based on
the knowledge of the previous known position. To deter-
mine the line intersections we just consider a pair of lines at
a time. Line intersections are accepted only if the angles be-
tween the lines are within heuristic thresholds, determined
experimentally. For more information on how lines are used
in localization, see [1].

Figure 6 shows a set of images with the lines detected:
field lines are drawn in pink and are distinct from the border

lines which are red.

(a) (b)

(c) (d)

Figure 6: Sample Line Recognition.

In fact, we noticed a significant difference in our lo-
calization accuracy once we incorporated the information
regarding the lines/line intersections as inputs. Also, the
process is not computationally expensive and we are able
to perform the entire visual processing in� 31msec per
frame so that the robot is able to operate at frame-rate with� 2msec per frame to spare for other computations.

2.5. Illumination Invariance
To this point, the approach we have described has assumed
that the environmental lighting conditions are relatively
constant, particularly in the segmentation stage. Though
using the LAB color space enables robustness to small
changes, our eventual goal is to enable the robots to operate
in a broad range of, and changing, lighting conditions. In
this section we present evidence that our approach can be
adopted for this purpose.

Color constancy (illumination invariance) is currently a
major research focus in the field of computer vision. It
represents [5] the ability of a visual system to recognize
an object’s true color across a range of variations in fac-
tors extrinsic to the object (such as lighting conditions).
In the past, color constancy has been studied primarily on
static cameras with relatively loose computational limita-
tions [9, 8, 20]. Again, our focus is on efficiency. In par-
ticular, the overhead required to adjust to dynamic lighting
conditions should not impede performance under constant
lighting. Lenser and Veloso [17] presented a tree-based
state description/identification technique for this same plat-
form. They incorporate a time-series of average screen il-

6



luminance to distinguish between illumination conditions
using the absolute value distance metric to determine the
similarity between distributions. We explore an alternative
similarity measure based on color space distributions.

In our lab, the intensity on the field varies from thedark
(� 400lux with all lamps except the fluorescent ceiling
lamps turned off) to thebright (� 1500 lux with the addi-
tional lamps turned on). We have stage lighting equipment
arranged along the edges of the field that allows for grad-
ual variation in illumination between these two levels. Note
that given the quality of the camera and image resolution,
it is not feasible for the robot to work well at illuminations
lower than� 400lux.

The robot was trained to recognize and distinguish be-
tween three different illumination conditions:dark, interm
andbright – the interm illumination being in between the
extreme lighting conditions. As mentioned below, we found
that being able to work under these three conditions enabled
the robot to function under all conditions in between too.
The initial training phase equipped the robot with a color
cube and a set of training distributions (drawn from sample
images) for each of the three illumination conditions.

The color cube for each illumination was trained by
hand-segmenting a set of images captured by the robot un-
der each illumination. The training distributions were ob-
tained by allowing the robot to capture a set (� 20) of im-
ages under each illumination and generating histograms af-
ter transforming from the YCbCr space to the normalized
RGB (rgb) color space. This is inherently more robust to
minor illumination changes. Also, asr+g+b = 1, any two
of the three features are a sufficient statistic for the pixelval-
ues, thereby lowering the storage requirements. We there-
fore stored the distributions in the(r; g) space, quantized
into 64 bins along each dimension.

During the online testing phase, the robot generated the
distribution in the r-g space corresponding to the test im-
age. This distribution was compared to the previously saved
distributions and was assigned the illumination class of the
distribution that was most similar to the test distribution. As
a similarity measure, we useKL divergence: given two 2D(r; g) distributions A and B (withN = 64, the number of
bins along each dimension),KL(A;B) = �N�1Xi=0 N�1Xj=0 (Ai;j � lnBi;jAi;j ) (2)

The more similar two distributions are, the smaller is
the KL-divergence between them. Since the KL-divergence
measure is essentially a function of the log of the observed
color distributions, it is less sensitive to large peaks in the
observed color distributions in comparison to measures that
do not have a similar effect of flattening the peaks. Hence,
it is less affected by images with large amounts of a single

color. Using this measure the robot was able to correctly
classify the test distributions and hence was able to identify
and distinguish between the three illumination conditions.
The only restriction we had to impose, based on compu-
tational constraints, was to test for illumination change no
more than twice a second.

We then tested the performance of the robot in illumi-
nation conditions in between the three illuminations it was
explicitly trained for. Experimental results showed that un-
der these illumination conditions for which the robot had
not been trained before, the robot picked the illumination
condition (among the three it was trained for) that wasclos-
est to the test condition (see [3] for full details). This was
good enough for the robot to efficiently play a game on
the field. For example, we designed afind-and-walk-to-ball
task where the robot starts from the center and has to find
and walk to the ball, which is placed a certain distance in
front of the yellow goal. With a single color cube, when
the illumination is drastically changed, it is unable to per-
form the task. Now with the three illumination models, it
is able to perform the task even for illuminations that it is
not explicitly trained for. During the experiments, the robot
started off in the bright illumination and a change in illumi-
nation was made� 1:5sec into the task. The robot waits for
several test frames before it accepts a change in illumina-
tion (a filtering procedure). Thus we would not expect the
robot to perform the task as quickly as in constant lighting.
Figure 7 shows the corresponding results, averaged over ten
trials.

The fact that Lighting Time (sec)

Bright-Constant 6.7(�0:6)
bet. bright and interm 12.27�0:5
bet. interm and dark 13.3�2:0

Figure 7: Time taken (in seconds) to
find-and-walk-to-ball

the robot is still
able to perform the
task demonstrates
that the switching
among color cubes
is working. The
first row in Figure 7
refers to the case where the robot performs the task in the
bright (normal) illumination and no change in illumination
occurs. The other two rows correspond to the case where a
change in illumination occurs after� 1:5sec.

Though this procedure is not required during the normal
game, it can still be performed in real-time on the robot.
Addition of this procedure causes just a slight decrease in
frame rate from30fps to� 25fps.

3. Summary and Conclusions

Significant advances have been made in the field of com-
puter vision algorithms leading to its increasing use in re-
lated fields such as AI and robotics. Still, the use of these
methods in practical tasks with computational constraints
has been minimal, primarily because it is not feasible to run

7



many algorithms in real-time with limited computational re-
sources. Our focus is on developing efficient algorithms.

In this paper, we have described the development of an
entire vision system on a mobile robot platform with a cam-
era as the primary sensor. As opposed to previous research
using other sensors such as lasers and sonar, the camera has
limited field-of-view and image resolution. Furthermore
our robots’ legged locomotion introduces dynamic changes
in camera position. In addition, all computation has to occur
on-board in real-time with limited computational resources.
These constraints, drawn from the RoboCup legged robot
domain and representative of current directions in mobile
robotics, enforce the need for efficient algorithms that run
at real-time. We have shown that with innovative algorithms
and modifications to existing ones it is possible to build an
efficient real-time vision system without compromising on
the desired quality of performance. In the process, we have
been able to efficiently tackle hard vision problems such as
segmentation, object recognition and color constancy.

Given the many-faceted task we have attempted to solve
during the development of our robot vision system, it is dif-
ficult to directly compare our end result with other vision
modules, even within the RoboCup community: the perfor-
mance of each complete system on the overall task is a re-
sult of localization, locomotion, and decision-making mod-
ules in addition to the vision processing. However anecdotal
comparisons have shown our vision system to be at least as
efficient and robust as those of other RoboCup teams and it
has allowed us to achieve good overall performance in the
soccer task, enabling our third place finish at the RoboCup
2004 US open and quarterfinals appearance at RoboCup
2004.

Though we have shown results in the robot soccer do-
main, the techniques developed here can be used in other
related robot vision tasks such as surveillance, rescue, and
human-machine interaction. The main contribution of this
paper is a case study of practical steps in the process of
developing an effective real-time vision system for a mo-
bile robot. Further details about all stages of our vision
processing algorithms are available in our technical [1]
and video steams illustrating the process are available from
http://www.cppreference.com/cvpr05-aibovision.html.

References

[1] Technical report.

[2] The Sony Aibo robots.http://www.us.aibo.com.

[3] I. M. Anonymous and M. Y. Coauthor. Conference paper.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts.Pattern Analysis
and Machine Intelligence, April 2002.

[5] D. H. Brainard and W. T. Freeman. Bayesian color con-
stancy.Journal of Optical Soceity of America A, 14(7):1393–
1411, 1997.

[6] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603–619, 2002.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (Second Edition). MIT Press,
September, 2001.

[8] G. Finlayson, S. Hordley, and P. Hubel. Color by correlation:
A simple, unifying framework for color constancy.In IEEE
Transactions on Pattern Analysis and Machine Intelligence,
23(11), November 2001.

[9] D. Forsyth. A novel algorithm for color constancy.In Inter-
national Journal of Computer Vision, 5(1):5–36, 1990.

[10] D. Fox. Adapting the sample size in particle filters through
kld-sampling. International Journal of Robotics Research,
2003.

[11] A. L. N. Fred and A. K. Jain. Robust data clustering. In
The International Conference of Computer Vision and Pat-
tern Recognition, pages 128–136, June 2003.

[12] Rafael C. Gonzalez and Richard E. Woods.Digital Image
Processing. Prentice Hall, 2002.

[13] Jeff Hyams, Mark W. Powell, and Robin R. Murphy. Coop-
erative navigation of micro-rovers using color segmentation.
In Journal of Autonomous Robots, 9(1):7–16, 2000.

[14] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data.
Prentice-Hall, 1988.

[15] Hiroaki Kitano, Minoru Asada, Itsuki Noda, and Hitoshi
Matsubara. Robocup: Robot world cup.IEEE Robotics and
Automation Magazine, 5(3):30–36, 1998.

[16] Least Square Principle for Line Fitting. At URL
http://mathworld.wolfram.com/LeastSquaresFitting.html.

[17] S. Lenser and M. Veloso. Automatic detection and response
to environmental change. InThe International Conference of
Robotics and Automation (ICRA), May 2003.

[18] B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire. Low-
order-complexity vision-based docking.IEEE Transactions
on Robotics and Automation, 17(6):922–930, 2001.

[19] T. Rofer and M. Jungel. Vision-based fast and reactive
monte-carlo localization. InThe IEEE International Con-
ference on Robotics and Automation, pages 856–861, Taipei,
Taiwan, 2003.

[20] C. Rosenberg, M. Hebert, and S. Thrun. Color constancy
using kl-divergence. InIn IEEE International Conference
on Computer Vision, 2001.

[21] A. Selinger and R. C. Nelson. A perceptual grouping hi-
erarchy for appearance-based 3d object recognition.Com-
puter Vision and Image Understanding, 76(1):83–92, Octo-
ber 1999.

[22] B. Sumengen, B. S. Manjunath, and C. Kenney. Image
segmentation using multi-region stability and edge strength.
In The IEEE International Conference on Image Processing
(ICIP), September 2003.

8



[23] The UNSW Robocup 2001 Sony Legged League Team.
RoboCup-2001: The Fifth RoboCup Competitions and Con-
ferences. Springer Verlag, Berlin, 2002.

[24] The UPennalizers Robocup 2003 Sony Legged League
Team. RoboCup-2003: The Fifth RoboCup Competitions
and Conferences. Springer Verlag, Berlin, 2004.

[25] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
In The IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), Washington D.C., 2004.

[26] William Uther, Scott Lenser, James Bruce, Martin Hock,and
Manuela Veloso. Cm-pack’01: Fast legged robot walking,
robust localization, and team behaviors. InThe Fifth Inter-
national RoboCup Symposium, Seattle, USA, 2001.

9


