
Task Factorization in Curriculum Learning

Reuth Mirsky * 1 2 Shahaf S. Shperberg * 2 Yulin Zhang 2 Zifan Xu 2 Yuqian Jiang 2 Jiaxun Cui 2

Peter Stone 2 3

Abstract
A common challenge for learning when applied
to a complex “target” task is that learning that
task all at once can be too difficult due to inef-
ficient exploration given a sparse reward signal.
Curriculum Learning addresses this challenge by
sequencing training tasks for a learner to facili-
tate gradual learning. One of the crucial steps in
finding a suitable curriculum learning approach
is to understand the dimensions along which the
domain can be factorized. In this paper, we iden-
tify different types of factorizations common in
the literature of curriculum learning for reinforce-
ment learning tasks: factorizations that involve
the agent, the environment, or the mission. For
each factorization category, we identify the rele-
vant algorithms and techniques that leverage that
factorization and present several case studies to
showcase how leveraging an appropriate factoriza-
tion can boost learning using a simple curriculum.

1. Introduction
Curriculum learning (CL) is a research area that deals with
the challenge of generating and sequencing training tasks for
a learner to facilitate gradual learning (Bengio et al., 2009).
The desired outcome of this challenge can be a sequence of
source tasks for the learner to train on which improve the
learner’s performance on a target task or a distribution of
target tasks. The performance of a learner can be evaluated
with respect to different objectives, such as the time required
to reach a certain average return, or the asymptotic return
achieved by the learner after converging to a policy. The
set of source tasks selected for the construction of the cur-
riculum is key for the success of the learning process, and

*Equal contribution 1Department of Computer Science, Bar
Ilan University, Israel 2Department of Computer Science, The Uni-
versity of Texas at Austin, USA 3Sony AI, USA. Correspondence
to: Reuth Mirsky <mirskyr@cs.biu.ac.il>, Shahaf S. Shpergerg
<shperbsh@post.bgu.ac.il>.

Decision Awareness in Reinforcement Learning Workshop at the
39th International Conference on Machine Learning (ICML), Bal-
timore, Maryland, USA, 2022. Copyright 2022 by the author(s).

the learner should be able to learn from these source tasks
if sequenced properly. Within the context of reinforcement
learning (RL), Narvekar et al. (2020) recently presented a
framework for CL in RL, and used it to survey and classify
existing CL methods in terms of their assumptions, capabil-
ities, and goals. In this survey, we introduce an additional
perspective that can inform CL practitioners when seeking
a CL approach that will suit their problem domains: the
factors that can be changed in the target task in order to
generate and select appropriate source tasks. In particular,
the factors which define a task are the agent, the environ-
ment, and the mission. We call the process of generating
source tasks by altering a factor as factorization, thus each
of the above factors induces a different factorization type.

By way of example, consider a piano teacher whose goal is
to teach a student a new, complex piece. While playing the
piece slowly is clearly easier than playing it up to tempo,
typically the teacher does not tell the student to start by
playing the whole piece slowly. Speed is not the most
relevant factor for a curriculum. Instead, the teacher may
ask the student to focus on a particularly difficult passage
(trimming the task into a sequence of subtasks) or new
technique that is needed to play the piece (acquiring an
abstract skill). In this case, the source tasks are generated by
changing the mission that the student needs to accomplish.
Alternatively, source tasks can be created by altering the
student’s abilities or the environment. An example for the
former is having the student train blindfolded to improve
muscle memory, while an example for the latter is a piano
with colored stickers on the keys, which makes the state of
the environment easier for new learners to process.

In this paper, we posit that each possible CL approach lever-
ages one or more factorization types. If a target task is too
simple along one of these dimensions, then a factorization
along that dimension won’t generate source tasks that im-
prove learning. On the other hand, if a curriculum works,
then some factorization was leveraged and identifying it
explicitly might help researchers provide an even better cur-
riculum. With this conjecture in mind, the main contribution
of this paper is a set of factorization types, describing how
a task can be factorized to enable the construction of an in-
sightful curriculum. For each factorization type, we provide
an overview of the relevant approaches that can be used



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

to construct a curriculum. In addition, each factorization
type is illustrated using test cases from experiments in two
CL domains: ReachNinja (Ghonasgi et al., 2021) and
GridWorld (Chevalier-Boisvert et al., 2018).

2. Definitions
A target task can be represented using three factors: the
environment in which the task is executed, the agent that
acts in the environment, and the mission to accomplish.

Definition 2.1 (Task). A task T is a 3-tuple ⟨a, e,m⟩ com-
posed of an agent a, an environment e, and a mission m.

Depending on the choice of representation for a task, some
of these factors might be coupled such that one of the factors
cannot be represented independently of the others. One
common example of this coupling is the state space of a
Markov Decision Process (MDP), which we formally define
and use as an example in the next section, as both the agent
and the environment are often represented using the same
state space using this model.

Definition 2.2 (Task Factorization). A factorization of a
task T = ⟨a, e,m⟩ is any modification of one or more of
the three task factors a, e, and m that leads to a new task
T

′
= ⟨a′

, e
′
,m

′⟩.

This paper surveys the different types of such modifica-
tions, and categorizes them into one of three factorization
types: factors that modify the abilities of the agent (a), the
complexity of the environment (e), or the structure of the
mission itself (m).

Definition 2.3 (CL Problem). A CL problem is a tuple
⟨L, T,O⟩ where L is a learner, T is a distribution of target
tasks that the learner needs to learn, and O is the objective
of the curriculum learning process.

The objective of the CL problem is different from the mis-
sion of a specific task. Consider a case in which the learner
L needs to learn how to navigate in a specific maze T . The
mission of T is reaching the end of the maze, while the
objective of the CL problem could be to teach the learner to
accomplish that mission optimally, or to reach an adequate
solution as quickly as possible, even if this solution is not
optimal. Different objectives have been discussed in the CL
literature. For example, Taylor & Stone (2009) provide an
extrinsic set of metrics to evaluate whether the objective
of the curriculum was achieved, such as asymptotic per-
formance or time-to-threshold. Alternatively, Romac et al.
(2021b) define the objective of their curriculum selection as
being to help learners to be able to generalize to multiple
tasks. Given these different objectives, the designer of a cur-
riculum should reason about the effects of different factors
of the target task on the learner. For example, if the objec-
tive O is to generate a curriculum that can help a learner

handle a variety of target tasks, then the source tasks of the
curriculum should focus on varying the environment. If O
is improving the asymptotic performance on some task, then
the source tasks should vary in terms of the tasks’ mission.

The output of a CL problem is either a curriculum, which
is a static sequence of source tasks, or a curriculum pol-
icy, which can dynamically change the sequence of source
tasks given observations of the student and its performance.
Identifying an effective curriculum (policy) requires the se-
lection of source tasks, which can be given beforehand with
a set of predefined tasks, or could be generated dynamically
(Narvekar et al., 2016). For brevity, we will use “curriculum”
in the paper also to describe a curriculum policy, unless ex-
plicitly mentioned otherwise.

The distribution of target tasks T might be a delta distri-
bution that contains only one task (e.g., a specific instance
of minesweeper) or it can represent a (possibly unknown)
distribution of potential target tasks (e.g., all possible board
setups of minesweeper with a fixed board size and num-
ber of mines, or varying instances of minesweeper using
different board sizes and number of mines).

With these definitions in hand, the aim of this paper is to
identify the modifiable factors of a target task that can
be used to generate source tasks for a curriculum for the
learner which achieves the objective of the CL problem.

3. Background and Related Work
CL for RL is a well-established research area, encompassing
a variety of challenges and perspectives. To enable a clear
discussion about the factors of a task, we use a Markov
Decision Process (MDP) as a representation that can be used
for a task, as often used in RL literature. These definitions
are then followed by a short review of papers which defined
these CL terms slightly differently than we do in Section 2,
or that explore other dimensions of the CL problem which
complement the factors presented in this paper.

3.1. Reinforcement Learning

An RL problem is a problem in which an agent acts in
the environment in order to optimize some accumulated
reward (Sutton, 2022). A learner in this context is the
“brain” of (or a separate decision maker for) the agent, and
a common way for a learner to model an RL problem is
as a Markov Decision Process (MDP), which is defined
as a tuple ⟨S,A, T,R, s0, g⟩, where S is the space of states
of the task, A are the actions that the learner can execute,
T : S×A×S → [0, 1] is a transition function that provides
the distribution of states the agent can reach when executing
action a in a specific state s, R : S × A × S → R is the
reward the agent can get from executing action a in a state
s and reaching state s′, s0 is an initial state of the MDP,



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

and g is an optional parameter used in episodic tasks and
represents the terminal state (or a set of terminal states).
Using this description, we focus on scenarios with a single
learning agent, though many of the conclusions may apply
to multi-agent learning as well, as discussed in Section 4.

Consider the task of a robot navigating in a room. It is
conceptually easy to consider changes that affect only the
room (e.g., placing a chair in the middle of the room) or
only the agent (e.g., adding another set of wheels). However,
it is difficult to distinguish between the robot and the room
in an MDP, in which the agent and the environment are
strongly coupled. On the other hand, in an MDP the mission
of the target task is clear — it is represented using the
reward function R. The agent and the environment both use
S,A, T, s0 and g when it is given, and often they are both
represented using the same instance of an MDP.

In an attempt to decouple the agent and the environment
in an MDP, we refer to the state space S as a powerset of
state variables V = v1, . . . , vk. Then each state s ∈ S is an
instantiation of these variables, i.e. s = vs1 , . . . , vsk . We
then partition V into subsets of state variables, V = Va∪Ve,
such that Va corresponds to variables related to the learning
agent, whereas Ve corresponds to variables related to the
environment. For example, when considering a robot that
operates in a physical environment, the position of the robot
(e.g., the position of its joints, end effectors, etc.) is encoded
as part of Va, while the layout of the environment is captured
by Ve. In essence, Va is the part of the state that describes
the configuration of the agent, thus it changes when the
agent is reconfigured (e.g., putting a different robot in the
same room), while Ve is changed when the environment
changes (e.g., putting the same robot in a different room).
Similarly, the action space can be divided into actions of the
agents Aa and actions of the environment Ae, such that A =
Aa ∪Ae. The concept of actions of the environment is not
intuitive, as the environment has no agency and cannot act.
Yet, sometimes actions are used to encode environmental
rules instead of the actual agent’s capabilities. For example,
when playing a game of chess, the possible set of actions
is induced by the rules of the game rather than the agent’s
capabilities.

One of the factorization types in Section 4 pertains to
the perception of the agent, which is only relevant in
the Partially Observable variant of MDPs (POMDPs). A
POMDP is defined as a tuple M = ⟨S,A, T,R,Ω, O, g⟩,
in which the first four elements are the same as in an MDP
and g is still optional, Ω is the set of observations, and
O : S×A×Ω → R is a conditional observation probability
function. Ω and O capture the perception capabilities of
agents.

3.2. Curriculum Learning

While the term “teacher” is often used in related work, we
do not explicitly discuss the role of the teacher as part of the
CL problem of this paper, as the factorization of the task is
independent of the question of how the curriculum (or cur-
riculum policy) is learned and provided to the learner. Delib-
eration about different types of teachers is beyond the scope
of this work and can complement the categorization dis-
cussed here. Some examples of teachers are: teacher-student
(Matiisen et al., 2019; Torrey & Taylor, 2012; Willems et al.,
2020), self-paced learning (Jiang et al., 2015; Kumar et al.,
2010), or generative (Wang et al., 2019; Fang et al., 2020).

In addition, as mentioned above, a CL problem does not
assume any specific underlying representation for the target
tasks or the source tasks. Often in CL contexts the tasks
are represented as MDPs in which the learner acts with
the objective of maximizing its reward (Narvekar et al.,
2020). However, some CL tasks might also be solved using
classification (Soviany et al., 2021), generation (Graves
et al., 2017), or planning (Chrestien et al., 2021; Shah &
Srivastava, 2022) instead of optimizing a policy for an MDP,
and for a human learner those tasks might be skills that the
human is learning (Gentile, 1987; Ghonasgi et al., 2021).

In addition, it is challenging to predict the effect of a change
in a task on the difficulty of the problem, as linearly chang-
ing one of the task factors may not necessarily result in a
linear effect over the difficulty level. Consider an agent that
needs to learn to navigate in complex mazes (Florensa et al.,
2017b). Removing walls from the environment can make
navigation easier, as the agent is free to move directly to its
goal without obstacles, but adding walls might also result in
an easier task, as the obstacles will restrict the actions avail-
able to the agent. Moreover, some curricula include more
challenging tasks than the target tasks, when the objective
of the CL problem is to improve the learner’s asymptotic
performance on these target tasks (Romac et al., 2021b).

Lastly, some CL surveys proposed taxonomies and dimen-
sions to consider in CL, which are orthogonal to the di-
mensions presented in this work: Narvekar et al. (2020)
highlighted three sub-problems that comprise the CL prob-
lem (task generation, sequencing, and transfer learning).
However, that survey does not include an explicit discus-
sion about the dimensions of the target task which can be
modified for generating source tasks. Portelas et al. (2020)
identified that controlling the contents of a curriculum is
a key task when solving a CL problem (Section 4 of that
paper splits curriculum types into two: curricula for data
collection, and curricula for data exploitation). All the task
factorizations discussed in this paper fall under “curriculum
for data collection,” as they all focus on how a task can
be changed, which in turn determines the data collection
process. In addition, Portelas et al. (2020) maps different



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

CL techniques to modification of different components of
MDPs, but it is different from the factorizations presented
in this paper, which are more abstract.

4. Factorization Types
In theory, any task can be used as a source task for curricu-
lum learning. Yet, there are infinitely many possible source
tasks, most of which would not help the agent to improve
its performance on the target task (or distribution of target
tasks), and in many cases transferring the policy learned
on a source task would even hurt the agent’s performance
on the target task (this phenomenon is commonly known
as negative transfer). For example, if the agent is trying to
solve a complex motion control problem, it is very unlikely
that the agent would benefit from training on playing chess.

We now analyze different ways of generating sets of source
tasks that can potentially be part of a successful curricu-
lum by factorizing the target task. We use the three main
categories of task factorization: agent capabilities, environ-
mental complexity, and mission structure. We review each
category and identify the properties that might be modified
in order to enable a factorization within that category.

We summarize the factorization types that are presented in
this section in Table 1, divided into Agent, Environment,
and Mission dimensions. We conjecture that in order for
a curriculum to help the learner achieve the task objective,
it should utilize one or more of the factorization types pre-
sented in this table. Even in cases where the curriculum
is constructed one source task at a time, as in the case of
reactive or adversarial teachers, that choice of task relies on
some factorization that helps the teacher choose it. We also
note that there are CL problems in which a factorization
using these strict categories will not be straightforward —
the identified categories are the dimensions in which fac-
torization can occur, but some factorizations might involve
more than one category. For example, learning to perform a
task represented as an MDP, in which the initial location of
the agent depends both on the morphology of the agent (Va)
and the environmental setup (Ve).

4.1. Agent capabilities

Agent capabilities refer to the perception and physical ca-
pabilities of the agent. For example, the set of capabilities
of a robot that interacts with an environment is induced by
its sensors, actuators, and morphology. This section covers
different ways of generating source tasks by modifying the
capabilities of agents in ways that affect their interaction
with the environment.

One common method for generating source tasks is to con-
trol the initial state from which the interaction between the
agent and the environment begins (corresponding to the val-

ues of the agent state-variables in an MDP, often denoted
Vs0a

) (Florensa et al., 2017a; Salimans & Chen, 2018;
Ivanovic et al., 2019; Chiu et al., 2021). This method can be
used to change the initial state of an agent, e.g., by changing
the position of its joints. In many problems, especially goal-
oriented tasks such as path finding, motion control, etc., the
initial state can dramatically affect the problem difficulty, for
example if provided with a promising start (Narvekar et al.,
2016). In these cases, a diverse set of source tasks can be
achieved by simply considering different initial state distri-
butions, which can be used to design curricula for achieving
a variety of objectives. A notable example for changing the
initial state of the agent was presented by (Takahashi et al.,
1996) and later by (Florensa et al., 2017a). In that work,
the agent’s objective is to put a disc on a peg. To achieve
that task, the authors relied on the fact that the task becomes
easier when the agent is positioned closer to the goal. Thus,
they considered a set of source tasks defined by the different
initial position of the agent and developed a curriculum in
which the agent starts close to the goal and moves further
away in each task until reaching the desired starting position
as defined in the target task.

Some methods for task generation rely on changing the
transition dynamics. Domain randomization (DR) (Tobin
et al., 2017) is such an approach, which is based on changing
elements in the task, including the transition dynamics. In
DR, an agent faces various perturbations of the target task
in order to learn robust policies, which in some cases can
even be successfully transferred from simulation to the real-
world (also known as sim2real transfer). Such perturbations
can be based on modifying the capabilities of the agent. For
example, some of the perturbations used in (OpenAI et al.,
2019) for evaluating the ability of a robotic hand to solve
a Rubik’s cube rely on changing the agent’s capabilities to
result in a different transition function. These perturbations
include controlling of the agent’s motor backlash, the noise
of actions, and the friction of the agent.

Task generation can also be accomplished by changing the
action space A. By limiting the available set of actions,
or by considering additional actions, it is possible to cre-
ate a diverse set of tasks with the potential of improving
learning. For example, in human motor learning, freezing
some degrees of freedom at the initial stages of acquiring
new skills was shown to simplify control (Guimarães et al.,
2020; Hodges et al., 2005). Similarly, an artificial agent’s
capabilities can be limited in different ways, e.g., by locking
some of the joints, setting limits on joint and tendon ranges,
or tying some of the fingers of a robotic arm using a rubber
band (OpenAI et al., 2019). This approach, often referred to
as Dynamic Difficulty Adjustment (DDA), is also common
in tutorials of video games in which the player gradually
gains access to new actions in order to avoid the complexity
of learning to use all actions at once (Zohaib, 2018).



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

Table 1. The proposed factorization types. For each type of factorization, we identify the common factors that can vary in a curriculum,
detail some examples of instances of these factors, and detail the components that will be modified if an MDP is used to describe the
environment.

Type Factors Examples MDP

Agent

State space Morphology, actuators, joints S (Va)
Action space Freezing joins, tying fingers Aa

Dynamics Rubber glove, action latency, motor backlash T
Observations Camera resolution and position, filters and noised O
Initial state Initial joint configuration s0 (Vs0a

)

Environment

State space Chess board configuration, obstacles positions S(Ve)
Action space No ’castling’ in Chess Ae

Dynamics Wet soccer field T
Initial state Initial door configuration (close/open) s0 (Vs0e

)

Mission
Hierarchical Structure Different skills in soccer (running, kicking, etc.) S,A,R, s0, g
Sequential Structure Multiroom (Figure 1) s0, g
Objective Structure Tolerance for reaching a goal, changing the goal state R

An aspect unique to agent factorization is the alteration of
the agent’s observations (changes to Ω in a POMDP). The
modifications of observations can be achieved in many ways,
such as, increasing/decreasing image resolution, changing
the camera’s position, controlling the frequency of the actu-
ators and/or sensors, and adding random noise. In addition,
by changing the observation space the agent can mimic
changes in the environment, even when such changes can-
not be directly controlled. For example, by applying filters
on camera images the agent can simulate night conditions,
even if it is limited to training during the day.

Lastly, factorization can be also achieved by changing the
space of agent state variables (Va in an MDP). In order
to generate a new state space, it is common to define pa-
rameters which control aspects of the state variables. For
example, in the TeachMyAgent environment (Romac et al.,
2021a) the embodiment of agents can be controlled by set-
ting the value of control parameters which affect different
properties of the agents, for example, the number of legs,
the number of joints, and the leg size. Each instantiation
of these control parameters corresponds to a different state
variables, which induce different spaces of states that can
be used for defining source tasks. These parameters can
be controlled either by using explicit heuristics (Narvekar
et al., 2016) or by using black-box procedural generation
methods (Fang et al., 2020) for adaptively generating and
selecting the next task.

4.2. Environment Complexity

As opposed to the agent capabilities factorization, which
utilizes different ways to modify the agent, this factorization
is concerned with altering aspects of the environment. Con-
sider, for example, the RoboCup challenge (Kitano et al.,
1997), in which teams of autonomous agents compete in
the game of soccer. In this example, the environment is

Figure 1. Three examples of tasks in GridWorld domain: (a)
MultiRoom, (b) Cliff, and (c) RandomLava. In each task,
the agent (red triangles) can only see a limited area ahead (greyed-
out squares). To succeed at the task, the agent has to navigate to
the goal (green tiles) overcoming the challenges of picking up the
key, opening the door, avoiding the lava (orange tiles with wave
patterns), and crossing the walls (grey tiles).

the soccer field on which the different teams compete. The
field can be modified in different ways (e.g., changing the
lighting conditions, changing the size of the goal, and col-
oring the grass) that are orthogonal to the morphology and
capabilities of the players.

Despite the conceptual difference between the agent and
the environment, under some representations, the different
factorizations can affect the same component. For instance,
modifications to the environment can also rely on changing
the initial state (e.g., the values of the environment state-
variables in an MDP, often denoted Vs0e

) . A common
example can be seen in the game of chess, as chess puzzles,
which are based on different initial board configurations,
have been designed for the purpose of improving players’
skills since the Middle Ages (Murray, 1913).

Similarly, changes to the environment can affect the transi-
tion dynamics as well. A prominent example of changing
the transition dynamics is AlphaZero (Silver et al., 2017)).
In AlphaZero the agent learns to play the games of chess,



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

shogi and Go by competing against itself. In this context,
the agent’s role as the opponent controls the transitions, i.e.,
what is the next state of the game reached after making a
move. Subsequently, as the agent’s policy improves, the
transitions will be shifted towards more challenging states.
A more straightforward way to control the transitions is by
controlling the conditions of the environment or the condi-
tions of the agents. For example, the dynamics of the ball
on a soccer field change when the field is wet. Moreover,
domain randomization can also be used for perturbating
aspects of the environment, e.g., the physics (geometry, fric-
tion, gravity) in a simulation (OpenAI et al., 2019).

Finally, control parameters can be used for generating
new environments (changing Ve in an MDP). For exam-
ple (Narvekar et al., 2016) defined different degrees-of-
freedom for chess, including the size of the board, num-
ber of pieces, etc. Another example is the TeachMyAgent
framework (Romac et al., 2021a), where a neural network
is used for generating environments with different terrains.

4.3. Mission Structure

Complicated task missions often come with inherited struc-
tures. One such structure is the modular or compositional
structure, where a task can be factorized into multiple prim-
itive behaviors and those primitive behaviors are hierarchi-
cally synthesized to solve the original task in a strategic
way. These primitives can be abstractions over the state
space S (for example, considering symmetrical states as a
single state), or over the action space A, (e.g., learning a
choreography – a sequence of actions that are often used to-
gether). Another common structure is temporal dependency
that requires the learner to first execute one sub-task before
it has the resources or ability to execute a second sub-task.
In this case, the set of source tasks comprises sequentially
ordered tasks, such that each task ti offers the learner a
different initial state s0 and a goal state g such that g of ti is
s0 for the next task in the sequence, ti+1. A third structure
that can be leveraged is how a reward, an objective, or a
set of objectives is defined. In an MDP, this factorization is
implemented as changes to the reward function R for each
source task. We focus below on each of these structures and
how they might be used.

4.3.1. HIERARCHICAL MISSION STRUCTURE

Hierarchical factorization breaks a complicated task into
subtasks that are organized in a task hierarchy in a way that
supports synthesizing the policies or skills for each subtask
to solve the original one. A research field that adopts this
idea is hierarchical reinforcement learning, which makes
abstractions of low-level actions as high-level skills, and
solves the problem with those high-level skills (Barto &
Mahadevan, 2003). One representation of such skills is the

option framework, which uses a close-loop policy for taking
actions over a period of time. A theory of semi-Markov
Decision Process is used to plan with predefined options
and improve existing options (Sutton et al., 1999). A sim-
ilar idea is used in learning motor skills where nonlinear
policies are built on top of the canonical systems. A motor
primitive framework is proposed to guide a robot to learn a
desired complex control policy by transforming from an ex-
isting simple canonical control policy (Ijspeert et al., 2002;
Kober & Peters, 2009). In a more sophisticated scenario
like robot soccer, there are several types of primitive robot
behaviors: walk, dribble, and kick. Those behaviors can be
further strategically assembled into high-level behaviors in
the upper layer (MacAlpine & Stone, 2018). Almost all of
the above examples generate subtasks or skills using expert
knowledge. Existing techniques also seek to automatically
learn the abstract representations directly from low-level
environment (Konidaris et al., 2018). Those manually de-
fined or automatically discovered abstractions leverage the
hierarchical structure to efficiently solve complicated tasks.

In the context of hierarchical factorization, each skill can be
treated as a source task to be used in a curriculum. Moreover,
if the skills are complex to master directly, an additional
layer of curriculum could be constructed for learning each
skill. Note that different tasks can be designed for the pur-
pose of learning different skills. For example, learning
delicate motion control for object manipulation is signif-
icantly different than learning to run. Consequently, the
source tasks that correspond to different skills can be differ-
ent from one another in terms of states, actions and rewards
(i.e., S,A,R, s0, or g in an MDP). Eventually, those skills
can be composited in a strategic way to solve the target task.

4.3.2. SEQUENTIAL MISSION

Sequential structure factorization is possible in tasks for
which the task can be factorized into sub-tasks, where the
sub-tasks are independent from one another with the ex-
ception of some partial ordering that indicates that some
sub-tasks must be completed before others. For example,
consider a Mini-Grid setting (Figure 1 a) in which an agent
needs to first find a key, use this key to open a door to an-
other room, and find a goal location in another room. This
problem can be factorized into three separate sub-goals:
finding the key, unlocking the door, and finding the goal.
Each sub-goal corresponds to a source task (or a distribution
over source tasks). Note that as opposed to hierarchical
structure, the individual components are independent from
one another, i.e., it is not necessary be able to solve one sub-
goal in order to learn to how to solve another. Furthermore,
the objective is not to learn abstract skills which would be
useful for solving the target task, but rather to solve differ-
ent parts of the task and combine the partial solutions to a
full solution. In a sequential factorization, tasks differ from



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

one another in their initial state and goal. In the example
above, the initial state of the first sub-task is the initial state
of the target task, and the goal is to find the key. The second
sub-task starts with the key already in possession of the
agent and ends when the door is unlocked. Finally, the last
sub-task begins when the door is unlocked and ends once
the agent has reaches the goal location.

Factorizing a problem to independent sub-tasks is an old
concept in reinforcement learning (Karlsson, 1994), yet a
challenging task is to find a problem factorization without
needing domain knowledge. Sequential structure is strongly
related to the concept of landmarks in planning (Hoffmann
et al., 2004). Landmarks are facts that must be reached at
some point in every valid plan and can be used to decom-
pose the planning task into small chunks. A recent line of
work (Eysenbach et al., 2019; Huang et al., 2019; Emmons
et al., 2020; Zhang et al., 2021; Savinov et al., 2018; Kim
et al., 2021; Liu et al., 2020; Shang et al., 2019) has focused
on utilizing planning concepts such as landmarks in order
to obtain sub-goals for RL-based agents.

4.3.3. REPRESENTATION OF THE MISSION

Lastly, the reward or the objective(s) of a task can be fac-
torized to assist a learner and aiming its search. A common
use-case where such factorization is important is in domains
with sparse reward, where reward shaping can be leveraged
to guide the learner. For instance, (Fournier et al., 2018)
have used a curriculum to control the accuracy requirements
in a goal reaching task. Sometimes a task has multiple ob-
jectives, even if these objectives are all part of one reward
function. Consider a learner that learns to control a vehicle:
it needs to learn to drive and reach a goal, while avoiding
collisions with pedestrians and other vehicles.

Finally, a case of special interest is when the objective of
the agent is to reach a particular goal (i.e., a particular state
g ∈ S). In this case, the goal which the agent needs to
reach can be altered in order to generate a range of different
tasks (Sukhbaatar et al., 2018; Racanière et al., 2019; Pong
et al., 2020). By using this method, the agent can focus on
training on achievable goals based on its current policy, and
as a result to gradually learn to solve the target tasks. In RL,
this process of goal selection can be thought of as a form of
intrinsic motivation that enables the agent to make progress
even if the reward is sparse. One particular form of goal
selection is common when the agent needs to preform well
on a set of target tasks, where each target task is associated
with a different goal (goal-conditioned learning), as opposed
to a single target task with a fixed goal. In this case, the
agent can choose on which target task to train next in order
to best improve its progress on learning to preform well on
all tasks in the target set (Florensa et al., 2018).

5. Case Studies
To showcase how different factorizations affect the over-
all learning process, we use two different domains in
which straightforward learning is challenging or even in-
feasible, and a more elaborate curriculum is needed: the
Gridworld which is based on the widely used bench-
mark for RL research by Chevalier-Boisvert et al. (2018),
and a more complicated motor control task domain called
ReachNinja (Ghonasgi et al., 2021). In each of these
domains, we use hand-crafted curricula based on different
factorizations and compare them to target task-only learning,
to show how each curriculum choice impacts the learning
progress of the agent.

5.1. Gridworld Domain

As shown in Figure 1, each task in this domain requires an
agent to navigate to a goal location (green tiles) by executing
a set of discrete actions that change the states of the agent
(e.g. moving around) or objects (e.g. pick up keys or open
doors). Three types of challenges are presented in this
domain: (1) navigate around the blocks (grey tiles) which
the agent cannot overlap with; (2) avoid tiles covered with
lava (orange tiles with wave patterns) that cause immediate
failure of an episode once the agent visits them; (3) pick up
the key and open the door that blocks the way to the goal
location. A positive reward of +10 is assigned for the agent
reaching the goal, otherwise, the agent receives a step-cost
reward of −0.005.

This domain benefits from its simplicity incurred by the lim-
ited discrete state and action space, yet also maintains the
flexibility of creating diverse and challenging tasks using
different task factorizations. In this section, we demonstrate
how each type of task factorization can be utilized to facili-
tate the training of corresponding challenging target tasks
in the GridWorld domain. The agent is trained by the
PPO algorithm (Schulman et al., 2017) implemented by
Stable-Baseline3 (Raffin et al., 2021). The actor and
critic networks are both represented by two 64-hidden-unit
fully connected layers with the Tanh activation function.
The policies are trained with a learning rate of 0.0005. All
other hyper-parameters are kept at default. During training,
the policies are evaluated on the target tasks for 12 episodes
at every 50k time steps to measure the progress on the target
tasks. Figure 2 shows for three target tasks the cumulative
episodic rewards during the evaluations at different time
steps for two training policies: one that leverages one type
of task factorization to generate a manually-crafted curricu-
lum (Task factorization) and one that trains directly on the
target tasks without any factorization (target task only).

Mission (Sequence) For this task factorization, we pro-
pose a MultiRoom task where the agent has to execute



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

Figure 2. Cumulative Episodic rewards evaluated on target tasks with policies trained on curriculum with task factorization (blue) and on
target tasks only (orange) in MultiRoom, Cliff and RandomLava respectively. The evaluated episode rewards are averaged by the
results of 5 independent runs, and the shaded area shows the 95% confidence interval. The vertical dashed lines mark the time steps when
tasks switch in the curriculum for the factorization based training.

a long trajectory that starts from a random location in an
initial room and enters three rooms sequentially to the goal
location (see Figure 1 (a)). To enter each room, the agent has
to acquire one of the three unique skills (crossing the wall,
avoiding the lava, and opening the door). Training for this
target task will benefit from decomposing the whole trajec-
tory and learning just one additional skill in each new task
in a curriculum. Therefore, we create a four-task curricu-
lum with its first, second, third, and fourth tasks randomly
initializing the agent in the fourth, third, second, and first
rooms respectively (thus changing s0). The four tasks are
trained sequentially for 50k, 500k, 1000k, 1000k time steps
respectively. As shown in Figure 2 on the left, training on
the factorized source tasks at the beginning deteriorates the
performance on the target task, but equips the agent with the
ability to solve the future tasks in the sequence. Equipped
with all the skills, the agent learns to solve the target task
very quickly in just a few thousands time steps. On the other
hand, directly training on the target task does not show any
improvement in four of the five independent runs. Notice
that, by training on the second task that initializes the agent
at the third room, the reward on the target task actually
drops. The reason is that learning on the second task will
encourage the agent to avoid the lava completely which does
not contribute to the target task directly, but will facilitate
the learning of the next task (across the lava).

Agent Capability To demonstrate the task factorization
in terms of the agent capability, we propose a Cliff task
in which the agent is subject to an action noise pa that has a
fixed probability of pa to execute a random action at each
time step. To create a challenging target task, the agent with
an action noise pa = 0.6 is placed in an environment with a
cliff represented by a 4×10 grid of lava (see Figure 1 (b)).
The exploration becomes difficult in this task, because bad
random actions may easily cause catastrophic failures by
making the agent step into the lava. To solve this target task,
we create a simple two-task curriculum. The agent is first

trained with a source task of action noise pa = 0 for 300k
time steps to learn to walk along the cliff, then trained on the
target task of pa = 0.6 for 700k time steps to perform safely
under the action noise. The result is shown in Figure 2 in
the middle. By training on the task without action noise,
the agent can easily learn to cross the cliff and to preserve
this knowledge when switching to high action noise. By
contrast, directly training on the target task leads to failures
in two of the five independent runs.

Environment Complexity Factorizing a target task by
environmental complexity is especially useful when aiming
to learn a policy that solves multiple instances of the same
domain. To this end, we propose RandomLava tasks, in
which the agent has to navigate from the left-top corner to
the bottom-right corner in an 8 × 8 grid randomly filled
with a total number of n lava tiles (see Figure 1 (c)). The
configuration of lavas is completely random so that the agent
cannot solve the task by simply memorizing any specific
configuration, but rather is forced to learn a general policy
over all possible lava configurations. The difficulty of the
tasks can be varied by controlling the number of lava tiles
n. We use a target task in which n = 30. The target task is
factorized into a series of source tasks, in which the number
of lava tiles n starts from 3 and is incremented by 3 every
600k time steps up to n = 30. Then, the agent is trained on
the target task for additional 2000k time steps. As shown in
Figure 2 on the right, while no observable improvement is
shown by directly training on the target task, the curriculum
that gradually increases the amount of lava leads to a steady
improvement on the target task.

5.2. Case Study - ReachNinja Domain

The usefulness of task factorization is also tested in
ReachNinja. This domain was designed to test motor
learning techniques in people, and it is inspired by the pop-
ular game “Fruit Ninja” (Halfbrick, 2010). As seen in Fig-



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step 1e6

150

100

50

0

50

100

150

200

250
Cu

m
ul

at
iv

e 
Ep

iso
di

c 
Re

wa
rd

ReachNinja Hierarchical
Task factorization
Target only

(a)

0 1 2 3 4 5
Time step 1e5

0

50

100

150

200

250

Cu
m

ul
at

iv
e 

Ep
iso

di
c 

Re
wa

rd

ReachNinja Control Noise
Task factorization
Target only

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Time step 1e6

0

50

100

150

200

250

Cu
m

ul
at

iv
e 

Ep
iso

di
c 

Re
wa

rd

ReachNinja Partial Observability
Task factorization
Target only

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step 1e6

50

0

50

100

150

200

250

Cu
m

ul
at

iv
e 

Ep
iso

di
c 

Re
wa

rd

ReachNinja Environment Complexity
Task factorization
Target only

(d)

Figure 3. Episode rewards of policies trained on curriculum with task factorization (blue) and on target tasks only (orange), evaluated on
corresponding target tasks. The evaluated episode rewards are averaged over 5 independent runs with different random seeds, and the
shaded area shows the 95% confidence interval. The vertical dashed lines mark the time steps when tasks switch in the curriculum for the
task-factorization-based training.

Figure 4. The ReachNinja domain. The red marker is con-
trolled by the player, and the blue and black markers are targets.
Total score and time remaining are always displayed on screen.

ure 4, the agent has to manipulate a red marker by assigning
a two-dimensional continuous vector of acceleration in a
screen of 480× 640 pixels. At each time step, random blue
and black markers will have fixed probabilities to pop out
from the bottom of the screen with random velocities and
eventually leave the screen due to a constant acceleration
of gravity. The mission of the task is to catch as many blue
markers as possible while avoiding black markers. Similar
to GridWorld, we identify one or more dimensions of pa-
rameters for each type of task factorization and demonstrate
how the tasks generated by modifying the target task along
these dimensions can be utilized to build a curriculum that
solves the challenging target tasks.

Mission (Hierarchical Structure) In this example of a
hierarchical mission structure (Figure 3a), the target task
includes a maximum of 3 blue markers and 3 black markers
at any given time. The penalty of a collision with a black
marker is higher than the reward of catching a blue marker.
To maximize the performance, the agent has to master two
primitive skills: catching blue markers and avoiding black
markers. We design three source tasks that enable the agent
to learn the two skills separately and synthesize their learned
policies using Progressive Neural Networks (Rusu et al.,
2016). The first source task includes only the black markers

and gives extra reward for high velocity, so that the agent
learns to avoid black markers while moving fast. The second
source task includes only one blue marker, and the third
source task includes all three blue markers. After learning
each source task, all the network weights are frozen and
another column of hidden layers is added. The weights are
initialized at random for the first two source tasks to train
the primitive skills. For the third task and the target task,
the weights of the new columns are initialized to match the
last policy, as introduced by (Rusu et al., 2017). This case
also demonstrates a factorization which is utilized in an
incremental way, where each skill is learned separately and
progressively added to the learner’s representation.

Agent Capability In the ReachNinja domain, we study
the task factorization of the agent capability by looking at
the Control Noise (Figure 3b) and Partial Observability
(Figure 3c). The target task for Control Noise is that the
agent’s action execution suffers from a zero-mean Gaussian
noise with standard deviation of 3 ∼ N (0, 3). The learning
process suffers from such noise, but the agent has to be
aware of the action noise to find a safer trajectory. In light
of this, we design a three-stage curriculum so that the learner
can learn from the noise-free environment for the first 100k
steps, and we switch to two larger control noise levels in the
following 400k steps. For Partial Observability, the target
task is to have the agent perform well under an 80 % frame-
skip rate, without any history augmentation. In this case, we
teach the agent to learn from higher observability first and
then gradually switch to low observability (frame-skip rate
from 0%, to 20%, 40%, 60%, 80%). In both experiments,
by first enlarging the agent’s capability and then limiting
its capability, we are able to learn a better policy under the
scenarios where the agent’s capability is highly constrained.

Environment Complexity ReachNinja has a rich set
of parameters to control the game. To demonstrate the use-
fulness of task factorization in terms of the environment
complexity (Figure 3d), we chose two continuous parame-



In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

ters: Marker Radius r and Marker Velocity Range v, where
r is the radius of blue markers, and the radius of black mark-
ers is always set to be 20px − r. Marker Velocity Range
v sets a range of [0.5 × v, v] from which the magnitudes
of both the blue and black markers are sampled. The chal-
lenging target task has a small Marker Radius r = 5 and a
large Marker Velocity Range v = 1600. To solve this target
task, the agent is trained with r = 15px and v = 400px/s
at the beginning with gradually changing r and v by −2px
and 240px/s at every 300k time steps. In the end, the agent
is trained on the target task for another 1000k time steps.
As shown in Figure 3 on the right, the manually designed
curriculum with source tasks created from task factorization
enables the training of the challenging target task, which
cannot be learned directly.

6. Conclusions
We identified factors of a target task that can be modified
to generate source tasks for the learner, which can then be
used to reach the objective of the CL problem. For each
category of factors — agent, environment, and mission —
we identify the commonly used algorithms that leverage that
factorization. We also presented two domains to showcase
how leveraging an appropriate factorization type can boost
learning using a simple curriculum. The presented case
studies are based on manually designed curricula, and the
policies are transferred by copying all the parameters of the
policy. In the future, better automatic curriculum learning
algorithms (Portelas et al., 2020) and transfer mechanisms
(e.g. shaping the reward and the value function) can be
explored accordingly for each type of task factorization.

To conclude this work, we highlight the immediate gains
from leveraging this new perspective on target task factoriza-
tion. First, identifying the factors modified in a curriculum
can provide researchers with a deeper understanding of why
a curriculum works or not, as well as provide alternatives to
the chosen source tasks. This understanding can also inform
researchers on how to choose the most appropriate learning
and teaching algorithms that can utilize the modified factors
(as our use of progressive neural networks for hierarchical
mission factorization in ReachNinja). Lastly, decoupling
some factors from the task representation can assist in ac-
complishing specific objectives. For example, when the
objective of the learning is robustness, the modified factor
should be the environment of the task.

References
Andrew G Barto and Sridhar Mahadevan. Recent advances

in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1):41–77, 2003.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and

Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine
learning, pp. 41–48, 2009.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman
Pal. Minimalistic gridworld environment for ope-
nai gym. https://github.com/maximecb/
gym-minigrid, 2018.

Zih-Yun Chiu, Yi-Lin Tuan, Hung-yi Lee, and Li-Chen
Fu. Parallelized reverse curriculum generation. CoRR,
abs/2108.02128, 2021.

Leah Chrestien, Tomas Pevny, Antonin Komenda, and Ste-
fan Edelkamp. Heuristic search planning with deep neural
networks using imitation, attention and curriculum learn-
ing. arXiv preprint arXiv:2112.01918, 2021.

Scott Emmons, Ajay Jain, Michael Laskin, Thanard Kuru-
tach, Pieter Abbeel, and Deepak Pathak. Sparse graphical
memory for robust planning. In NeurIPS, 2020.

Ben Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
Search on the replay buffer: Bridging planning and rein-
forcement learning. In NeurIPS, pp. 15220–15231, 2019.

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei.
Adaptive procedural task generation for hard-exploration
problems. arXiv preprint arXiv:2007.00350, 2020.

Carlos Florensa, David Held, Markus Wulfmeier, Michael
Zhang, and Pieter Abbeel. Reverse curriculum genera-
tion for reinforcement learning. In CoRL, volume 78 of
Proceedings of Machine Learning Research, pp. 482–495.
PMLR, 2017a.

Carlos Florensa, David Held, Markus Wulfmeier, Michael
Zhang, and Pieter Abbeel. Reverse curriculum genera-
tion for reinforcement learning. In Conference on robot
learning, pp. 482–495. PMLR, 2017b.

Carlos Florensa, David Held, Xinyang Geng, and Pieter
Abbeel. Automatic goal generation for reinforcement
learning agents. In ICML, volume 80 of Proceedings
of Machine Learning Research, pp. 1514–1523. PMLR,
2018.

Pierre Fournier, Olivier Sigaud, Mohamed Chetouani,
and Pierre-Yves Oudeyer. Accuracy-based curricu-
lum learning in deep reinforcement learning. CoRR,
abs/1806.09614, 2018.

Ann M Gentile. Skill acquisition: Action, movement, and
the neuromotor processes. Movement science: Founda-
tions for physical therapy in rehabilitation, 1987.

Keya Ghonasgi, Reuth Mirsky, Sanmit Narvekar, Bharath
Masetty, Adrian M Haith, Peter Stone, and Ashish D

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

Deshpande. Capturing skill state in curriculum learning
for human skill acquisition. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 771–776. IEEE, 2021.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. Automated curriculum
learning for neural networks. In international conference
on machine learning, pp. 1311–1320. PMLR, 2017.

Anderson Nascimento Guimarães, Herbert Ugrinowitsch,
Juliana Bayeux Dascal, Alessandra Beggiato Porto, and
Victor Hugo Alves Okazaki. Freezing degrees of free-
dom during motor learning: A systematic review. Motor
control, 24(3):457–471, 2020.

Halfbrick. Fruit ninja, 2010. URL https://www.
halfbrick.com/.

Nicola J Hodges, Spencer Hayes, Robert R Horn, and
A Mark Williams. Changes in coordination, control and
outcome as a result of extended practice on a novel motor
skill. Ergonomics, 48(11-14):1672–1685, 2005.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered
landmarks in planning. J. Artif. Intell. Res., 22:215–278,
2004.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state
space using landmarks for universal goal reaching. In
NeurIPS, pp. 1940–1950, 2019.

Auke Ijspeert, Jun Nakanishi, and Stefan Schaal. Learn-
ing attractor landscapes for learning motor primitives.
Advances in neural information processing systems, 15,
2002.

Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen,
and Marco Pavone. Barc: Backward reachability curricu-
lum for robotic reinforcement learning. In ICRA, pp.
15–21. IEEE, 2019.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and
Alexander G Hauptmann. Self-paced curriculum learn-
ing. In Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, 2015.

Jonas Karlsson. Task decomposition in reinforcement learn-
ing. In Proceedings of the AAAI Spring Symposium on
Goal-Driven Learning, Stanford, CA, 1994.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-
guided subgoal generation in hierarchical reinforcement
learning. CoRR, abs/2110.13625, 2021.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki
Noda, and Eiichi Osawa. Robocup: The robot world cup
initiative. In Agents, pp. 340–347. ACM, 1997.

Jens Kober and Jan Peters. Learning motor primitives for
robotics. In 2009 IEEE International Conference on
Robotics and Automation, pp. 2112–2118, 2009. doi:
10.1109/ROBOT.2009.5152577.

George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. From skills to symbols: Learning sym-
bolic representations for abstract high-level planning.
Journal of Artificial Intelligence Research, 61:215–289,
2018.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced
learning for latent variable models. Advances in neural
information processing systems, 23, 2010.

Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel,
and Aviv Tamar. Hallucinative topological memory for
zero-shot visual planning. In ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 6259–6270.
PMLR, 2020.

Patrick MacAlpine and Peter Stone. Overlapping layered
learning. Artif. Intell., 254:21–43, 2018.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman. Teacher–student curriculum learning. IEEE
transactions on neural networks and learning systems, 31
(9):3732–3740, 2019.

Harold James Ruthven Murray. A history of chess. Claren-
don Press, 1913.

Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Pe-
ter Stone. Source task creation for curriculum learning.
In Proceedings of the 2016 international conference on
autonomous agents & multiagent systems, pp. 566–574,
2016.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov,
Matthew E. Taylor, and Peter Stone. Curriculum learning
for reinforcement learning domains: A framework and
survey. J. Mach. Learn. Res., 21:181:1–181:50, 2020.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving rubik’s cube with a
robot hand. CoRR, abs/1910.07113, 2019.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair,
Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. In
ICML, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 7783–7792. PMLR, 2020.

https://www.halfbrick.com/
https://www.halfbrick.com/


In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hof-
mann, and Pierre-Yves Oudeyer. Automatic curricu-
lum learning for deep rl: A short survey. arXiv preprint
arXiv:2003.04664, 2020.

Sébastien Racanière, Andrew K. Lampinen, Adam Santoro,
David P. Reichert, Vlad Firoiu, and Timothy P. Lillicrap.
Automated curricula through setter-solver interactions.
CoRR, abs/1909.12892, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kan-
ervisto, Maximilian Ernestus, and Noah Dormann. Stable-
baselines3: Reliable reinforcement learning implementa-
tions. Journal of Machine Learning Research, 22(268):1–
8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Clément Romac, Rémy Portelas, Katja Hofmann, and Pierre-
Yves Oudeyer. Teachmyagent: a benchmark for auto-
matic curriculum learning in deep RL. In ICML, volume
139 of Proceedings of Machine Learning Research, pp.
9052–9063. PMLR, 2021a.

Clément Romac, Rémy Portelas, Katja Hofmann, and
Pierre-Yves Oudeyer. Teachmyagent: a benchmark for
automatic curriculum learning in deep rl. In Interna-
tional Conference on Machine Learning, pp. 9052–9063.
PMLR, 2021b.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. Progressive neural
networks. arXiv e-prints, pp. arXiv–1606, 2016.

Andrei A Rusu, Matej Večerı́k, Thomas Rothörl, Nicolas
Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real
robot learning from pixels with progressive nets. In Con-
ference on Robot Learning, pp. 262–270. PMLR, 2017.

Tim Salimans and Richard Chen. Learning mon-
tezuma’s revenge from a single demonstration. CoRR,
abs/1812.03381, 2018.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
Semi-parametric topological memory for navigation. In
ICLR (Poster). OpenReview.net, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Naman Shah and Siddharth Srivastava. Using deep learn-
ing to bootstrap abstractions for hierarchical robot plan-
ning. International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2022.

Wenling Shang, Alexander Trott, Stephan Zheng, Caiming
Xiong, and Richard Socher. Learning world graphs to

accelerate hierarchical reinforcement learning. CoRR,
abs/1907.00664, 2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge.
Nat., 550(7676):354–359, 2017.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu
Sebe. Curriculum learning: A survey. arXiv preprint
arXiv:2101.10382, 2021.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel
Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic moti-
vation and automatic curricula via asymmetric self-play.
In ICLR (Poster). OpenReview.net, 2018.

Richard S Sutton. The quest for a common model
of the intelligent decision maker. arXiv preprint
arXiv:2202.13252, 2022.

Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelli-
gence, 112(1-2):181–211, 1999.

Yasutake Takahashi, Minoru Asada, and Koh Hosoda. Rea-
sonable performance in less learning time by real robot
based on incremental state space segmentation. In Pro-
ceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems. IROS’96, volume 3, pp.
1518–1524. IEEE, 1996.

Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(7), 2009.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomiza-
tion for transferring deep neural networks from simula-
tion to the real world. In IROS, pp. 23–30. IEEE, 2017.

Lisa Torrey and Matthew E Taylor. Help an agent out: Stu-
dent/teacher learning in sequential decision tasks. In Pro-
ceedings of the Adaptive and Learning Agents workshop
(at AAMAS-12), pp. 41–48, 2012.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan.
Dynamic curriculum learning for imbalanced data classi-
fication. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5017–5026, 2019.

Lucas Willems, Salem Lahlou, and Yoshua Bengio. Mas-
tering rate based curriculum learning. arXiv preprint
arXiv:2008.06456, 2020.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


In Proceedings of the Decision Awareness in Reinforcement Learning (DARL) workshop at the 39th International
Conference on Machine Learning (ICML 2022),
Baltimore, Maryland, USA July 2022

Lunjun Zhang, Ge Yang, and Bradly C. Stadie. World model
as a graph: Learning latent landmarks for planning. In
ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 12611–12620. PMLR, 2021.

Mohammad Zohaib. Dynamic difficulty adjustment (dda)
in computer games: A review. Advances in Human-
Computer Interaction, 2018, 2018.


