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1 Introduction

The Nash equilibrium is one of the most important concepts in game theory,
forming the basis of much recent work in multiagent decision making and
electronic marketplaces. As such, efficiently computing Nash equilibria is one
of the most important problems in computational game theory.

The central result of this paper is a polynomial-time algorithm for computing
a Nash equilibrium for repeated 2-player (bimatrix) games, under the average-
payoff criterion. This result stands in contrast to the problem of computing
a Nash equilibrium in a one-shot game, the complexity of which remains an
important and long-standing open problem [12]. The idea behind our algo-
rithm echoes that of the well known “folk theorem” [11], which shows how
the notion of threats can stabilize a wide range of payoff profiles in repeated
games. While the folk theorem provides a constructive method for identify-
ing Nash equilibria in repeated games, the contribution of this paper is to
show how the threat idea can be used to create an computationally efficient
equilibrium-finding algorithm. While drawing heavily on the folk theorem,
our result is not an immediate corollary. In fact, while there are folk theorems
for n-player repeated games, our polynomial-time algorithm is only valid for
n=2.

In the rest of the paper, we formally describe the problem (Section 2) and
our algorithm for solving it (Section 3), and conclude with a set of illustrative
examples (Section 4).

2 Problem Statement

A repeated bimatrix game is played by two players, 1 and 2, each with a set
of action choices of size n' and n?, respectively. The game is played in rounds,
with the two players simultaneously making a choice of action at each round.
If Player 1 chooses action 1 < 3! < n! and Player 2 chooses 1 < 2 < n2, they
receive payoffs of Pji. and P3;, respectively!. In a repeated game, players
select their actions, possibly stochastically, via a strategy—a function of the
history of their interactions.

The objective of each player in a repeated game is to adopt a strategy that
maximizes its expected average payoff (limit of the means criterion). A pair of

1 For cleanliness of notation, we deviate from common practice and write matrices
so that a player always chooses the row of its own payoff matrix, while the opponent
always chooses the column.



strategies is a Nash equilibrium if each strategy is optimized with respect to
the other—neither player can improve its average payoff by changing strategies
unilaterally [9)].

As a running example in this paper, we use the well known Iterated Prisoner’s
Dilemma to illustrate and motivate our algorithm. In this repeated bimatrix
game, on each round, each player can either cooperate (Action 1) or defect

30
51

(Action 2). The two players use the same payoff matrix, P! = P? =

One pair of equilibrium strategies in the Prisoner’s Dilemma is for both players
to defect in every round. The average payoff in this case is 1 for both players.
These strategies are in equilibrium because a player facing an “always defect”
opponent will receive a payoff of zero for every round in which it selects the
cooperate action; the best respond to “always defect” is to always choose
defect.

This paper considers the following computational problem. Given a game spec-
ified by payoff matrices P! and P?, return a pair of strategies that constitutes
a Nash equilibrium for the average-payoff repeated bimatrix game. The run-
ning time of the algorithm should be a polynomial function of the size of the
input.

To fully specify the equilibrium-computation problem, we must be concrete
about the input and output representations. The input representation is rela-
tively straightforward. For (p, ¢) € {(1,2), (2,1)}, the function P? is an n? x n?
matrix. To bound the size of the numbers in these matrices, we assume they
are rational numbers, specified as integer numerator and natural denominator
of no more than & bits. So, the running time of our algorithm needs to be a
polynomial function of n!, n?, and k.

Note that the representation size of an integer is roughly its logarithm in
base two and the representation size of a rational number is the sum of the
sizes of its numerator and denominator. A polynomial-size number is one with
representation size bounded by a polynomial function of the input size. Multi-
plying, dividing, adding or subtracting two polynomial-size rational numbers
produces a polynomial-size result, as does solving a polynomial-size system of
linear equations or linear program [14].

The output of an equilibrium computation is a pair of strategies. It is well
known that every bimatrix game has at least one pair of strategies that is a
Nash equilibrium. However, strategies in repeated games can be infinitely large
objects mapping the interaction history to action choices, so it is necessary to
use some finite representation for strategies when computing Nash equilibria.
In this paper, we consider two strategy representations: classical finite-state



Fig. 1. A strategy in Prisoner’s Dilemma expressed as a three-state finite-state
machine.

machines and a counting-node extension in which actions can be repeated a
prespecified number of times. Both represent finite-state strategies, but the
counting-node machine can result in exponentially smaller representations, as
described next.

A finite-state-machine strategy for a player p against an opponent ¢ is a labeled
directed graph. One node of the graph is the designated starting node. Each
node of the graph is labeled with a probability distribution over action choices
for p. Outgoing edges are labeled with joint actions for (p, ¢), with no two edges
from a single node sharing the same label. One outgoing edge for each node is
labeled “*” to designate a default edge, taken if the joint action of players p
and ¢q does not match any of the other labels. The size of a finite-state-machine
strategy is roughly the total number of nodes and edges in the graph 2.

Figure 1 illustrates an example finite-state-machine strategy for the Prisoner’s
Dilemma. The player p starts off at the left node and selects Action 1. Then, if
the opponent ¢ selects Action 1 (and p indeed chooses Action 1), p returns to
the left node to continue choosing Action 1. However, on any other joint action,
a transition is made to the middle node where p chooses Action 2. Following
this, any choice of joint action results in a transition to the rightmost node, in
which p continues to choose Action 2 until g chooses Action 1. At this point,
p returns to the left node again.

The strategy expressed in the figure can be thought of as “two tits for a tat”
in the context of the Prisoner’s Dilemma [1]; the player defects at least twice
in response to defection, but otherwise cooperates.

While finite-state machines provide a simple and broad language for express-
ing strategies, some basic strategies become cumbersome to write down as
finite-state machines. Consider, for example, “2° tits for a tat”. A finite-state-
machine representation requires a graph with 2° nodes and therefore an ex-
ponentially large representation. We introduce a counting node into the rep-
resentation to make it easier to express simple repetitions of this type. Note
that the exact form we choose for this extension was selected to be sufficient

2 To be more precise, the size of the numbers in the probability distributions over
actions in the nodes also contribute to the size of the finite-state machines.
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Fig. 2. A generic counting node and an equivalent finite-state machine.

for our algorithm in Section 3; more general and elegant extensions are also
possible.

We depict a counting node by a double circle with a repeat count ¢ written
beneath it. Like a standard node, it is labeled with a probability distribution
over actions. This distribution is used independently to select actions ¢ times
consecutively. The counting node includes a default outgoing edge, which is
taken after the c repetitions are complete. However, a counting node can also
have up to one other edge, labeled with a joint action, (#*,4?). This edge is
taken if and only if the joint action (i?,i7) was selected all ¢ times while the
player was executing its actions in the counting node. The size of a counting-
node-machine strategy is the sum of the nodes and edges in the graph plus the
number of bits in all the repeat counts and the action probability distribution.

Figure 2 shows an example of a generic counting node and its equivalent
representation as a set of nodes in a finite-state machine.

Counting nodes can be used to express “2° tits for a tat” by replacing the
center node in Figure 1 with a counting node with a repeat count of 2° — 1.
Since the number 2° can be represented easily using b+ 1 bits, the strategy can
be expressed via a counting-node machine with size ©(b). This succinctness is
important in the construction used in our algorithm in the next section.

3 Algorithm Description

Zero-sum games [15] are those in which P' 4+ (P?)” = 0. Equilibria in these
games can be computed in polynomial time via linear programming and the
resulting equilibrium strategies and the expected payoffs to the two players
are polynomial-size numbers [14]. An equilibrium strategy in a zero-sum game
can be seen as simultaneously a defensive strategy that maximizes a player’s
expected payoff in the face of the least desirable strategy of the opponent,
and also an attack strategy that forces the opponent to its minimum expected



payoft.

While an efficient algorithm for zero-sum games appears to handle a zero-
measure subset of the set of possible games, we can use this efficient compu-
tation as an important component of an algorithm for general-sum repeated
games. At the highest level, we can quickly find that either the game is essen-
tially a zero-sum game or that there are strategies that both players can play
to achieve a better average payoff than what they can guarantee themselves
in the worst case, stabilized by the threat of being forced to this lower payoff.

In the rest of this section, we describe the computation, argue that it can
be carried out in polynomial time, and prove that the resulting strategies
constitute a Nash equilibrium.

3.1 Attack and Defensive Strategies

Once again, let (p,q) € {(1,2),(2,1)}. Wewilluse 1 < <nPand 1 < i? < n?
to represent action choices for the two players and 7P and 79 to be probability
distributions (vectors) over these action choices. We denote the probability of
i in 7P as 7h,. Define

— : q b
af = argminimax Z Piqip Tips (1)
P 19 -
P
and
5P = i PP P 2
= argmax min ipia Tip -
P z

g

Here, of is the equilibrium strategy for p in the zero-sum game defined by p
“attacking” ¢—minimizing ¢’s expected payoff®. Similarly, 67 is the equilib-
rium strategy for p in the zero-sum game defined by p “defending” against
g—maximizing its expected payoff in the worst case. As we mentioned, o
and 6P can be computed in polynomial time using linear programming and
the results can be expressed as polynomial-size numbers. They are also inter-
changeable in zero-sum games.

In the Prisoner’s Dilemma, 6” is defect. This action guarantees player p a
payoff of at least 1, whereas any other distribution over actions can result in
a lower payoff. Similarly, o is also defect. By making this choice, player p

3 Note that the optimization over ¢’s action choice is deterministic; once 7P is
selected, ¢’s optimal choice can be made deterministically.



forces player ¢ to get no more than a payoff of 1 no matter what it chooses to
do.

For convenience, define

gp = Z E 5$Jagqpﬁiq, (3)

the expected payoff that p can guarantee itself by playing its defensive strategy.
There is no Nash equilibrium in which p receives average payoff less than gP,
since p could always switch to 6? and do better. In addition, we can define
AP = PP — ¢P as the matrix of advantages—for each pair of action choices,
how much more will p’s payoff be than the value of its defensive strategy?
Note that AP and A7 can be interpreted as a bimatrix game that has several
convenient properties:

e The advantage game defined by AP and A7 has the same set of Nash equilib-
ria as the original game defined by PP and P9, since average payoffs in the
advantage game are simply shifted down by a constant without changing
the relative ordering of payoffs.

e The attack and defensive strategies defined for the original game also work
as attack and defensive strategies in the advantage game for the reason
listed in the previous point—the values of all strategies are simply shifted
by a constant.

e The defensive strategies in the advantage game achieve expected payofts of
Z€ero.

e The payoffs in the advantage game are polynomial-size rational numbers, so
the overall complexity of working with the advantage game instead of the
original game is not significantly increased. In particular, if the complexity
of one is polynomial, the complexity of the other must also be polynomial.

Since g' = g = 1 in the Prisoner’s Dilemma, the advantage game is Al =
2 -1
4 0

A? =

In what follows, we will focus on the advantage game, since it has the same
equilibria and roughly the same representation size. It also lets us rule out
average payoffs that are negative when searching for equilibria.

3.2 The Mutual Advantage Case

To find a Nash equilibrium, we consider two cases. In this section, we show
how to recognize the case in which it is possible for both players to achieve
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Fig. 3. The advantage values for pairs of action choices in the Prisoner’s Dilemma.
Player 1’s values are on the x-axis and Player 2’s on the y-axis

positive advantage. In the next section, we show how a Nash equilibrium can
be constructed in this case. The following section treats the case in which
mutual advantage cannot be achieved.

When Player 1 chooses i' and Player 2 chooses 72, the payoffs for the two
players can be visualized as a point ¢ = (AL, A%,1) = (¢}, 2%) in a two-
dimensional space. Following Nash [10], we consider the set of all pairs of
actions for the two players, X = {(Ahp, A2,1)[1 < it < nl,1 <2 < n?}
All the points € X can be achieved as average payoffs for the two players
in the repeated game, simply by repeatedly playing the corresponding action
pair. (Of course, all of the possible payoffs are not necessarily those of Nash

equilibrium strategies.)

As a concrete example, Figure 3 plots the advantages of all pairs of action
choices in the Prisoner’s Dilemma. Clearly, if both players choose cooperate
(Action 1), they receive mutual advantage.

The convex hull of a set of points is the set of points that can be formed
by a linear combination of the points in the set, where the linear coefficients
are positive and sum to one (a convex combination). For the purposes of this
paper, we limit our attention to polynomial-size coefficients. Any point in the
convex hull of the points in X can be achieved as average payoffs for the two
players in the repeated game. Specifically, for any point u in the convex hull
of X, there is a set of weights w such that u = > ,c x w,x. Consider integer
weights w' derived by multiplying w by the least common denominator of its
components. A pair of strategies that repeats any sequence that includes, for
each = € X, each action pair corresponding to = a total of w], times, achieves
the payoff u on average.

The folk theorem tells us that any u simultaneously in the convex hull of X
and in the first quadrant (positive advantage for both players) is the payoff



of a Nash equilibrium in the repeated game (such points are sometimes called
feasible and enforceable). Typically there are many such points, any of which
would be sufficient for our algorithm. However, the work of Nash [10] justifies
a particular selection for a point in the first quadrant via an axiomatic analysis
of bargaining. It shows that a very sensible payoff point for the two players to
accept is one that maximizes the product of their advantages. We next show
how this point can be identified efficiently.

Note that the point that maximizes the product of the advantages will be found
on the outer boundary of the convex hull—the product of the advantages of
any internal point can be increased by moving to a point above it and to the
right [10]. This implies that that the point can be expressed by a weight vector
w that has non-zero weight on only one or two z € X, since the convex hull
is a two-dimensional polygonal region bounded by line segments that connect
pairs of points in X.

Next, let z,y € X be two points formed by two different action pairs, each
with at least one component non-negative. We want to find a point z on the
edge between z and y, z = wer + (1 — w,)y for 0 < w, < 1, such that the
product of the advantages, z'22, is maximized. Setting the derivative of this
product to zero and solving for w,, we find that the product is maximized
when

—y*(z" —y') — y'(a® — ¢?)
2(2? —y?) (2t —yt)

(4)

Wy =

If w, < 0 or w, > 1, then the maximum product is achieved at an endpoint.
We can now make the following observations:

e We are trying to identify a payoff in the convex hull of X in the first quadrant
(both components positive) that maximizes the product of the components.
We argued that such a point is either in X or on a line segment between
two points in X. Therefore, our search can be limited to examining pairs of
points in X.

e If a point z € X is in the third quadrant (both components negative), it
need not be considered. To produce a point in the first quadrant, z would
have to be paired with a point y € X in the first quadrant, and the point y
would dominate any combination it could make with z: w, = 0.

e Points in the second or fourth quadrant (one positive, one negative com-
ponent) need to be considered, since they could possibly be combined with
another point and result in a point with a larger product of advantages than
either endpoint. For example, for z = (3, —1), y = (1, 5), Equation 4 results
in w, =1/6, or z = (4/3,4) with a product of advantages of 16/3.

e Evaluating Equation 4 results in a weight that is a polynomial-size ratio-



Fig. 4. A generic pair of strategies that maximizes the product of advantages.

nal number, since it is written as a constant number of basic arithmetic
operations on polynomial-size rational numbers.

e If the weight computed for points  and y is between 0 and 1, let the weight
be represented by the rational number % for integers 0 < r < s. A pair of
strategies that repeats any sequence that includes the action pair associated
with y a total of s—r times and z a total of » times achieves an average payoff
whose product of advantages is maximized over all convex combinations of
x and y.

e By looping through all points and pairs of points in X (a polynomial num-
ber n'n? + (n')?(n?)? of combinations), ignoring any points with mutually
negative advantages, computing weights, and checking which has the largest
product of advantages, we can identify a pair of action pairs i',42 and j*, 52
and (polynomial-size) integers r; and 7;. A pair of strategies that repeats
any sequence that includes the action pair (i!,7?) a total of r; times and
(41, 7%) a total of r; times maximizes the product of advantages over all fea-
sible payoffs. One such pair of strategies is illustrated in Figure 4, in which
the like action choices are made consecutively. Note that if the product of
advantages is maximized for a point x € X, one-state strategies that re-
peat the actions associated with x suffice. This is the case for the Prisoner’s
Dilemma, in which Action 1 can be repeated indefinitely. The product of
advantages in this case is 4 and r; = 1.

e The procedure executes in polynomial time and produces a polynomial-size
output.

The next section shows how to combine the strategies in Figure 4 with attack
strategies from Section 3.1 to produce a Nash equilibrium.

3.3 Punishment

The strategies in Figure 4 result in average advantages of

z = (’I“,'Azhp + rjA 2, TiA?2i1 + TjA?zﬂ)/(’l“i + ’I"j). (5)

1
V]

These strategies maximize the product of advantages over all strategies, so we
say they represent mutual cooperation. However, they are not necessarily in
equilibrium, as either player might have an incentive to select a different action

10



Fig. 5. A pair of strategies that is a Nash equilibrium.

that results in higher payoff at the expense of the opponent; we call any such
strategy defection. We now show how to modify the cooperative strategies so
that each player threatens the other with worse payoff for failing to cooperate,
thus eliminating the incentive for defection.

Figure 5 illustrates strategies that build on the strategies in Figure 4 to include
the threat of punishment for players that do not cooperate. Here, o' and o?
are the attack strategies defined in Section 3.1. In words, the player p executes
its cooperative actions for r; +r; steps. If, at any point, either player deviates
from its assigned actions, the player enters a punishment phase for max(a?, a?)
steps at the end of the cooperative phase. When the punishment is complete,
a new cooperative phase begins*. Once again, the structure of these strategies
can be simplified in games in which the product of advantages is maximized
for a single point x € X.

The only, as yet, undefined quantity in the strategies just described is the
number of punishment steps for the two players. We next show how to select
values for a' and a2 so that mutual cooperation becomes a best response.

Let (p,q) € {(1,2),(2,1)}. When faced with a strategy for p of the form given
in Figure 5, the average payoff of Player ¢ for cooperating is

20 = (riljuie + 1 Ajajp)/ (ri +75), (6)

much like in Equation 5. Let

d? = me%gcarq, (7)

which is an upper bound on the largest possible value that ¢ can get in a single
round by defecting. The average payoff to ¢ in the advantage game for using

4 Note that delaying punishment until the end of the cooperative phase is not
necessary and is probably wasteful. We use this approach because it simplifies our
presentation and is sufficient to prove our result.

11



a strategy that defects against the strategy in Figure 5 cannot be larger than

((ri +73)d")/(ri + 75 + a®), (8)

since g can do no better than d? on each cooperation round and 0 on each
punishment round. In fact, this bound is exceedingly loose, as d? is probably
not achievable in most games. Nevertheless, we use this expression since it
simplifies presentation.

We want to know how to set a? so that cooperation is a best response (Equa-
tion 6 is larger than Equation 8):

29> ((’I“, —Jr’l"j)dq)/(’l“i +’f'j +ap)
(ri +1j)2% +aP2? > (r; + 1;)d?
aPz?> (r; +r;)(d? — 29),

since all quantities are positive. Note that z? > 0 since we specifically chose
a point that has positive advantage. Similarly, d? > 27 because ¢’s payoff
for defection must exceed the payoff for cooperating or defection will not be
considered. Dividing by 2?7 and rounding up, we get

P = [1+ (r; +1;)(d? — 29)/29]. 9)

Punishing for a” or more rounds provides a sufficient deterrent to discourage
¢’s defection. Once again, since this expression uses only basic arithmetic
operations on polynomial-size numbers, the result is a polynomial-size number.
The construction described in this section proves the following lemma:

Lemma 1 In a two-player general-sum game in which both players can achieve
positive advantage, the counting-node machines illustrated in Figure 5 consti-
tute a Nash equilibrium and have polynomial size.

To make these calculations more concrete, consider how the algorithm behaves
on the advantage game from the Prisoner’s Dilemma. Here, d* = d? = 4, the
maximum payoff possible for a player on a single trial. The product of advan-
tages is maximized for z = (2,2) from (cooperate, cooperate). Therefore,
we can set 7; = 1 and r; = 0 (only one cooperating state is needed). Plugging
these values into Equation 9 results in a? = a? = 2. The resulting equilibrium
strategy is for each player to play cooperate, switching to two defects is
either player fails to cooperate. After the two punishment actions, the player
returns to cooperate regardless of the opponent’s actions.

The resulting strategy might be called “exactly two tits for a tat” in that it
resembles the strategy in Figure 1, but returns unconditionally to cooperation

12



after the second defection.

To verify that a pair of strategies is a Nash equilibrium, we must ask whether
a player can improve its expected payoff by selecting actions differently. If the
answer is “no” at the start of the repeated game, we say the strategies con-
stitute a Nash equilibrium. However, it is also reasonable to ask this question
after any possible history of interactions—can a player improve its expected
payoft by selecting a different action after some history? If the answer is al-
ways “no”, the strategies constitute a subgame perfect Nash equilibrium. Such
equilibria are robust because any threat issued by a player is credible—the
player has no incentive not to follow through on the threat.

We argued that the strategies in Figure 5 constitute a Nash equilibrium, but
the stronger statement that they constitute a subgame perfect Nash equilib-
rium is also true. This property follows from the fact that the machines are
“synchronized”—mno matter what the history is, the two strategies will be in
analogous states and therefore return to mutual cooperation in tandem ® . Be-
cause the punishment phase is of finite duration, any one-stage deviation by
either player results in no change in the average payoff to that player. At any
stage in the game, deviating from its assigned strategy can only decrease the
player’s expected reward.

To complete the argument that Nash equilibria can be found for all games, we
must consider the case in which there is no pair of strategies for which both
players have positive advantage. This can occur, for example, in zero-sum
games or generally if none of the convex hull is strictly in the first quadrant
of the advantage game. The next section completes the presentation of our
algorithm by providing Nash equilibrium strategies in the case where positive
advantages cannot be achieved.

3.4 Complete Strategy

The previous two subsections dealt with the case in which it is possible for
both players to receive average payoffs better than what they can guarantee
themselves using a defensive strategy. If no such strategies exist, then we must
use a different tack to find an equilibrium. Let vP be the largest payoff that
p can achieve by playing a best response against the defensive strategy of its

5 This is an improvement over the construction presented in our earlier paper 8],
which, while an equilibrium, could be forced into cascading punishments resulting
in a non-credible threat. Here, since attack phases are finite in duration, the average
reward will return to the mutually beneficial level producing a believable deterrent
to defection.

13



opponent in the advantage game:

vP = max ) AL, 6% (10)

The value v? might be larger (and can’t be smaller) than what p can achieve
by playing its own defensive strategy, specifically zero.

Note that it can’t be the case that both v! > 0 and v? > 0; it would imply
we are in the mutual advantage case. In addition, neither v! < 0 nor v? < 0
(Player p can guarantee itself at least 0 by playing its defensive strategy).
This leaves two subcases: v! = 0 and v? = 0, or v? > 0 and v? = 0 for some
(p,q) € {(1,2),(2,1)}. In the first subcase, indefinitely repeating §' and 42 is
a Nash equilibrium (the game can be treated as if it were zero sum). In the
second subcase, let h? be p’s best response against ¢,

hP = argmax » | Ab,;,67. (11)
4

P

Lemma 2 In a two-player general-sum game in which both players cannot
achieve positive advantage and vP > 0, the infinitely repeated strategies h? and
07 constitute a Nash equilibrium and have polynomial size.

Proof: Playing h? against 67 results in the payoff point (vP,0) with v > 0.
Let h? = argmax;, A%, be a best response to h?. Playing h? against h? results
in the payoff point (wP, w?) = (A%, ¢, Alape) With w? > 0 since h? is at least
as good for Player ¢ as 07 is. If w? = 0, then AP and ¢? constitute a Nash
equilibrium since neither player can improve unilaterally (h? is no better than
84 for Player q).

Assume w? > 0, implying that Player ¢ can strictly improve its payoff by
switching to h?. It must be that w? < 0, otherwise (h?, h?) is a strategy
pair that is mutually advantageous, contrary to our initial assumption. Now,
consider € = vP/(vP — wP). By the inequalities already stated, 0 < e < 1 (vP
is positive, wP non-positive). Consider a pair of strategies in which Player p
plays h? and Player g plays 67 1 — €/2 of the time and h? ¢/2 of the time. The
payoff point for this pair of strategies will be

<

(vF + (w” = v*)(e/2), w¥(e/2))
(0P + (w” — ") (0P / (0P — wP)) /2, w%(e/2))
(vF = (v7)/2, w¥(e/2))

(vP/2, w(e/2)).

Since both v? and w? are positive, we have identified a pair of strategies with
positive advantages—a contradiction. Therefore, the assumption that w? > 0

14



is invalid, implying that 0? is a best response to hP. Therefore, playing h,
against 67 must be a Nash equilibrium. Q.E.D.

This completes our algorithm, which we summarize below.

(1) Begin with a game specified by matrices P! and P2.

(2) Compute attack strategies o' and o? (Equation 1) and the values g* and
g? the players can guarantee themselves (Equation 3).

(3) Compute advantage matrices A' = P! — g! and A? = P% — g°.

(4) Loop through all pairs of actions and all pairs of pairs of actions to
find a cooperation point that maximizes the product of advantages (Sec-
tion 3.2).

(5) If a cooperation point is found with positive advantages, we have a pair
of action pairs (i*,:?) and (5!, %) and repeat counts r; and r;. Compute
the average payoffs for cooperating z' and 22 (Equation 6), and a bound
on the maximum defection payoff d' and d?> (Equation 7), and use these
to compute a' and a2, the number of punishments needed to stabilize
cooperation (Equation 9). Output strategies as shown in Figure 5.

(6) If no cooperation point is found with positive advantages, compute de-
fensive strategies 6 and 6% (Equation 2). Compute the best responses h'
and h? to the defensive strategies (Equation 11) and the players’ expected
payoffs v! and v? for adopting them (Equation 10). If v! = 0 and v? = 0,
output 6' and 6% as a Nash equilibrium. If ¥ > 0 and v? = 0, output A'
and ¢2 as a Nash equilibrium. If v! = 0 and v? > 0, output 6! and h? as
a Nash equilibrium.

We have argued that each of these operations can be implemented to execute
in polynomial time and produces polynomial-size output, and that the cases
considered are exhaustive and correct. This proves our main result:

Theorem 1 For any two-player repeated game under the average-payoff cri-
terion, a Nash equilibrium pair of controllers can be synthesized in polynomial
time.

3.5 Symmetric Games

Theorem 1 holds for all two-player games, but the resulting equilibrium con-
trollers can be complex for some games. In this section, we show how the result
can be simplified for symmetric games.

A symmetric game is one in which P! = P2?  so both players face the same

strategic situation. In human-constructed games, this situation is very com-
mon as it embodies the notion of a fair game.
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The argument in Section 3.2 becomes much simpler in the symmetric case.
First, note that the convex hull of the points in X will be symmetric about
the line through the origin with slope one. The product of advantages will be
maximized by a point on this line, which implies that it is only necessary to
check pairs of points such that ! = y? and z? = y'. In this case, Equation 4
simplifies to w, = %, so the action pair with the largest average payoff for the
two players determines the point to be considered as the one that maximizes
the product of the advantages.

For symmetric games, our algorithm can be simplified as follows.

(1) Begin with a game specified by matrix P! (P? is the same).

(2) Compute an attack strategy o' (Equation 1) and the value g* players can
guarantee themselves (Equation 3).

(3) Compute advantage matrix A' = P! — g'.

(4) Loop through all pairs of actions 7,j to find the pair that maximizes
2t = (AL + A})/2.

(5) If 2! > 0, and i # j, use ¢* = j2 =14, 2 = j' = j, r; = r; = 1, compute
a bound on the maximum defection payoff d* (Equation 7), and use it
to compute a! = [2(d* — 2!)/2'], the number of punishments needed
to stabilize cooperation. Output strategies as shown in Figure 5 (the
cooperation nodes no longer need to be counting nodes). On the other
hand, if ¢+ = j, a simpler equilibrium strategy pair is defined by a single
node that repeats action ¢ as long as both players choose the cooperation
action, then punishes for a' = [(d' — 2')/2!] times on a defection.

(6) If z2* = 0, compute defensive strategy §' (Equation 2) and output the
pair of strategies (6%, 6%) as a Nash equilibrium.

Note that the cooperative phase in the symmetric case is never more than
two states. The punishment phase can be considerably longer if the defection
payoff is sufficiently large.

4 Examples

This section provides several concrete examples of games to help illustrate the
ideas from the previous sections.

3.01.5
The game of chicken is symmetric and is defined by P! = P2 = . The

3.5 1.0
standard one-shot equilibria are for Player 1 to take Action 1 while Player 2
takes Action 2 or the reverse. The attack strategy is Action 2 and the guarantee
value is g = 1.5. Maximum pair is (¢, j) = (1, 2) with z = 2.5.
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The battle of the sexes game is defined by P! = Lo and P? = 20 . This

02 01
game is not symmetric (although it is fair). The attack strategy for Player 1
is (1/3,2/3) and for Player 2 is (2/3,1/3). Players can guarantee themselves
g = (2/3,2/3) by playing defensive strategies, which are obtained by revers-
ing the probabilities in the attack strategies. Based on these calculations, the
advantage game is A! = /3 =2/3 and A% = i3 =23 . The max-
-2/3 4/3 —-2/3 1/3
imum product of advantages comes from i = (1,1) and j = (2,2), for which
we get w, = 1/2. This results in 7, = r; = 1 and z = (5/6,5/6). The de-
fection bound is d = (2,2), resulting in punishment repeats of a = (3, 3).
Thus, the equilibrium strategy is to alternate between both players choosing
Action 1 and both players choosing Action 2, and using the attack strategy
three consecutive times as punishment if a player doesn’t go along with the
plan.

In the definition of this unbalanced game, the payoffs we define have the form

0 1/2 ~1-1 _
= and P? = . Any choice for Player 1 works equally

-1 1 0 O

well as an attack strategy, and the attack strategy for Player 2 is Action 1.
Players can guarantee themselves g = (0,0), so the advantage game is identi-
cal to the original game. No pair of action pairs leads to a positive product of
advantages, so the defensive strategies 6 = Action 1 and §%> = Action 2 are
computed. The best response for Player 2 to 6! is to stay the same, whereas
the best response for Player 1 to 2 is to switch to Action 2, leading to an im-
provement of v? = 1. The Nash equilibrium found by our algorithm is for both
players to choose Action 2. Note how, in this case, there are no payoffs that
achieve positive advantages and the defensive strategies are not in equilibrium.
Nevertheless, our algorithm correctly identifies a Nash equilibrium.

Pl

Finally, we define the exponential game as a family of games parameterized

—2b0 2°+1 0
by the integer b. It is defined by P! = and P? =
0 2 0 -1
While Player 2 strongly wants to play Action 1, Player 1 strongly wants to
avoid it. The attack strategy for Player 1 is Action 2 and for Player 2 it
is Action 1. Players can guarantee themselves g = (0,0), so the advantage
game is identical to the original game. The maximum product of advantages
comes from i = (1,1) and j = (2,2), for which we get w, = 3/(2°*! + 4).
This results in 7; = 3 and r; = 21 + 1 and z = ((2°7* +1)/(2° + 2),1/2).
The defection bound is d = (2,2° + 1), resulting in punishment repeats of
a = (2%24+10-2°+4, 3-2°71 +20). Note that these quantities are large, but are
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still polynomial-size numbers. Therefore, the strategies can be expressed by a
polynomial-size counting-node machine. Note also that this example requires
an exponential-size finite-state machine to achieve advantages greater than
zero—by construction, i and j must be combined by a ratio of between (2° +
1)/(2° +2) and (2°)/(2° + 2) and this requires at least 2° states.

5 Conclusions

Our interest in repeated games and in the use of threats to spur mutually
beneficial behavior came about during a study of automated bidders in simul-
taneous auctions [4]. When human bidders participate in auctions, they have
been known to use threats to influence the behavior of other bidders [16]. We
were able to show experimentally that threats can be a valuable tool for auto-
mated agents in auctions [13], and undertook the more theoretical treatment
presented here.

Our use of threats in this context echoes their use in folk theorems [11]. It is
also similar to the efficient learning equilibrium work of Brafman and Tennen-
holtz [2], which seeks punishments that achieve their influence after a poly-
nomial number of rounds. Folk theorems can be considered algorithms, since
they constructively prove the existence Nash equilibria. However, they gener-
ally don’t include a computational analysis or include arguments for general
games, in particular those with no mutual advantage point. Our results show
that the idea behind folks theorems can be used to create an efficient algorithm
for computing equilibria in two-player repeated games.

The Nash equilibria found by our algorithm have a number of beneficial prop-
erties. The equilibrium payoffs are pareto-efficient; no set of payoffs exists in
which both players improve. Equilibria can be found efficiently—nearly as ef-
ficiently as in the much easier zero-sum case. The resulting strategies are easy
to execute, requiring only a simple counter and the ability to keep track of
which nodes follow which other nodes. The payoffs described in this paper
satisfy Nash’s bargaining axioms, although other criteria such as maximizing
the average combined payoff of the two players present no additional difficulty;
in one-shot games, identifying such an equilibrium is NP-hard [3]. The fact
that punishment is of finite duration after any history makes the equilibrium
subgame perfect [11]. For symmetric games, the resulting payoffs are socially
optimal and symmetric.

On the negative side, our algorithm depends heavily on the use of the average-
payoft criterion. It does not apply to finite-horizon games or even infinite-
horizon discounted payoff games, unless the discount factor is set in a game-
specific way to a value extremely close to 1. As such, our result sheds no
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light whatsoever on the problem of computing equilibria in the one-shot case.
In addition, the construction does not immediately generalize to games with
more than two players. Although there are folk theorems that apply to games
with three or more players, we have not been able to generalize the argument
applying to the non-mutual-advantage case in a computationally efficient way.

Nonetheless, there are a number of other contexts in which we are applying the
ideas in this paper, such as computing equilibria in repeated Markov games [6]
and n-player games expressed in a graphical notation [5], and using reinforce-
ment learning to issue and recognize threats [7]. The relative simplicity of
the threat-based approach makes it a promising direction for future work in
computational game theory and electronic commerce more generally.
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