
A polynomial-time Nash equilibrium algorithm
for repeated games ∗

Michael L. Littman
Dept. of Computer Science

Rutgers University
Piscataway, NJ 08854-8019 USA

mlittman@cs.rutgers.edu

Peter Stone
Dept. of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188 USA

pstone@cs.utexas.edu

ABSTRACT
With the increasing reliance on game theory as a founda-
tion for auctions and electronic commerce, efficient algo-
rithms for computing equilibria in multiplayer general-sum
games are of great theoretical and practical interest. The
computational complexity of finding a Nash equilibrium for
a one-shot bimatrix game is a well known open problem.
This paper treats a closely related problem, that of finding
a Nash equilibrium for an average-payoff repeated bimatrix
game, and presents a polynomial-time algorithm. Our ap-
proach draws on the “folk theorem” from game theory and
shows how finite-state equilibrium strategies can be found
efficiently and expressed succinctly.

1. INTRODUCTION
The Nash equilibrium is one of the most important concepts
in game theory, forming the basis of much recent work in
multiagent decision making and electronic marketplaces. As
such, efficiently computing Nash equilibria is one of the most
important problems in computational game theory.

The central result of this paper is a polynomial-time al-
gorithm for computing a Nash equilibrium for repeated 2-
player (bimatrix) games, under the average-payoff criterion.
This result stands in contrast to the problem of computing
a Nash equilibrium in a one-shot game, the complexity of
which remains an important and long-standing open prob-
lem (Papadimitriou 2001). The idea behind our algorithm
echoes that of the well known “folk theorem” (Osborne and
Rubinstein 1994), which shows how the notion of threats can
stabilize a wide range of payoff profiles in repeated games.
The contribution of this paper is to show how the threat
idea can be used to create an efficient equilibrium-finding
algorithm.

In the rest of the paper, we formally describe the problem

∗Permission block

(Section 2) and our algorithm for solving it (Section 3), ex-
plain how our algorithm can be simplified in the case of
symmetric games (Section 3.5), and conclude with a set of
illustrative examples (Section 4).

2. PROBLEM STATEMENT
A repeated bimatrix game is played by two players, 1 and 2,
each with a set of action choices of size n1 and n2, respec-
tively. The game is played in rounds, with the two players
simultaneously making a choice of action at each round. If
Player 1 chooses action 1 ≤ i1 ≤ n1 and Player 2 chooses
1 ≤ i2 ≤ n2, they receive payoffs of P 1

i1i2 and P 2
i2i1 , respec-

tively1. In a repeated game, players select their actions,
possibly stochastically, via a strategy—a function of the his-
tory of their interactions.

The objective of each player in a repeated game is to adopt
a strategy that maximizes its expected average payoff (limit
of the means criterion). A pair of strategies is a Nash
equilibrium if each strategy is optimized with respect to
the other—neither player can improve its average payoff by
changing strategies unilaterally (Nash 1951).

This paper considers the following computational problem.
Given a game specified by payoff matrices P 1 and P 2, return
a pair of strategies that constitute a Nash equilibrium for
the average-payoff repeated bimatrix game. The running
time of the algorithm should be a polynomial function of
the size of the input.

To fully specify the equilibrium-computation problem, we
must be concrete about the input and output representa-
tions. The input representation is relatively straightforward.
For (p, q) ∈ {(1, 2), (2, 1)}, the function P p is an np×nq ma-
trix. To bound the size of the numbers in these matrices,
we assume they are rational numbers, specified as integer
numerator and natural denominator of no more than k bits.
So, the running time of our algorithm needs to be a polyno-
mial function of n1, n2, and k.

Note that the representation size of an integer is roughly
its logarithm in base two and the representation size of a
rational number is the sum of the sizes of its numerator and

1For cleanliness of notation, we deviate from common prac-
tice and write matrices so that a player always chooses the
row of its own payoff matrix, while the opponent always
chooses the column.

1 *

1

** 221

Figure 1: A strategy expressed as a three-state
finite-state machine.

denominator. A polynomial-size number is one with rep-
resentation size bounded by a polynomial function of the
input size. Multiplying, dividing, adding or subtracting two
polynomial-size rational numbers produces a polynomial-
size result, as does solving a polynomial-size system of linear
equations or linear program.

The output of an equilibrium computation is a pair of strate-
gies. It is well known that every bimatrix game has at least
one pair of strategies that is a Nash equilibrium. However,
strategies in repeated games can be infinitely large objects,
so it is necessary to use some finite representation for strate-
gies when computing Nash equilibria. In this paper, we con-
sider two strategy representations, classical finite-state ma-
chines and a counting-node extension in which actions can
be repeated a prespecified number of times. Both represent
finite-state strategies, but the counting-node machine can
result in exponentially smaller representations, as described
next.

A finite-state machine strategy for a player p against an
opponent q is a labeled directed graph. One node of the
graph is the designated starting node. Each node of the
graph is labeled with a probability distribution over action
choices for p. Outgoing edges are labeled with actions for q,
with no two edges from a single node sharing the same label;
in particular, transitions are not influenced by the player’s
own actions. One outgoing edge for each node is labeled
“*” to designate a default edge. The size of a finite-state
machine strategy is roughly the sum of the nodes and edges
in the graph.

Figure 1 illustrates an example finite-state machine strategy
for a (2× 2)-action game. The player p starts off at the left
node and selects Action 1. Then, if the opponent q selects
Action 1, p returns to the left node to continue choosing
Action 1. However, on any other action choice for q, a tran-
sition is made to the middle node, where Action 2 is chosen.
Following this, any choice for q results in a transition to the
rightmost node, in which Action 2 continues to be chosen
until q chooses Action 1. At this point, p returns to the left
node again.

The strategy expressed in the figure is “two tits for a tat”
in prisoner’s dilemma; if Action 1 is cooperate and Action 2
is defect, the player defects twice in response to defection,
but otherwise cooperates.

While finite-state machines provide a simple and broad lan-
guage for expressing strategies, some basic strategies become
cumbersome to write down as finite-state machines. Con-

sider, for example, “2b tits for a tat”. A finite-state machine
representation requires a graph with 2b nodes and therefore
an exponentially large representation. We introduce a count-
ing node into the representation to make it easier to express
simple repetitions of this type. Note that the exact form of
this extension was selected to be sufficient for our algorithm
in Section 3; more general and elegant extensions are also
possible.

A counting node is depicted by a double circle with a re-
peat count c written beneath it. Like a standard node, it
is labeled with a probability distribution over actions. This
distribution is used to select actions c times consecutively.
The counting node includes a default outgoing edge, which
is taken after the c repetitions are complete. However, a
counting node can also have up to one other edge, labeled
with one of the opponent’s actions, iq . This edge is taken
if and only if the opponent selected iq all c times while the
player was executing its actions in the counting node. The
size of a counting-node machine strategy is the sum of the
nodes and edges in the graph plus the number of bits in all
the repeat counts.

Figure 2 shows an example of a generic counting node and
its equivalent representation as a set of nodes in a finite-state
machine.

Counting nodes can be used to express “2b tits for a tat” by
replacing the center node in Figure 1 with a counting node
with a repeat count of 2b − 1. Since the number 2b can be
represented easily using b bits, the strategy can be expressed
via a counting-node machine with size O(b). This succinct-
ness is important in the construction in our algorithm in the
next section.

3. ALGORITHM DESCRIPTION
Zero-sum games (von Neumann and Morgenstern 1947) are
those in which P 1 + (P 2)T = 0. Equilibria in these games
can be computed in polynomial time via linear program-
ming and the resulting equilibrium strategies and the ex-
pected payoffs to the two players are polynomial-size num-
bers (Schrijver 1986). An equilibrium strategy in a zero-sum
game can be seen as simultaneously a defensive strategy
that maximizes a player’s expected payoff in the face of the
least desirable strategy of the opponent, and also an attack
strategy that forces the opponent to its minimum expected
payoff.

While an efficient algorithm for zero-sum games appears to
handle a zero-measure set of the possible games, we can use
this efficient computation as an important component of an
algorithm for the general setting. At the highest level, we
can quickly find that either the game is essentially a zero-
sum game or that there are strategies that both players can
play to achieve a better average payoff than what they can
guarantee themselves in the worst case, stabilized by the
threat of being forced to this lower payoff.

In the rest of this section, we describe the computation, ar-
gue that it can be carried out in polynomial time, and prove
that the resulting strategies constitute a Nash equilibrium.

3.1 Attack and Defensive Strategies

π

π π π

πc

π
*

*

*

* *

*

...

c

=
i q

i q i q i q

Figure 2: A generic counting node and an equivalent finite-state machine.

Once again, let (p, q) ∈ {(1, 2), (2, 1)}. We will use 1 ≤ ip ≤
np and 1 ≤ iq ≤ nq to represent action choices for the two
players and πp and πq to be probability distributions (vec-
tors) over these action choices. We denote the probability
of ip in πp as πp

ip . Define

αp = argmin
πp

max
iq

∑
ip

P q
iqipπp

ip , (1)

and

δp = argmax
πp

min
iq

∑
ip

P p
ipiqπp

ip . (2)

Here, αp is the equilibrium strategy for p in the zero-sum
game defined by p “attacking” q—minimizing q’s expected
payoff2. Similarly, δp is the equilibrium strategy for p in
the zero-sum game defined by p “defending” against q—
maximizing its expected payoff in the worst case. As we
mentioned, αp and δp can be computed in polynomial time
using linear programming and the results can be expressed
as polynomial-size numbers.

For convenience, define

gp =
∑
ip

∑
iq

δp
ipαq

iqP p
ipiq , (3)

the expected payoff that p can guarantee itself by playing its
defensive strategy. There is no Nash equilibrium in which p
receives average payoff less than gp, since p could always
switch to δp and do better. In addition, we can define
Ap = P p − gp as the matrix of advantages—for each pair of
action choices, how much more will p’s payoff be than the
value of its defensive strategy? Note that Ap and Aq can be
interpreted as a bimatrix game that has several convenient
properties:

• The advantage game defined by Ap and Aq has the
same set of Nash equilibria as the original game defined
by P p and P q, since average payoffs in the advantage
game are simply shifted down by a constant without
changing the relative ordering of payoffs.

• The attack and defensive strategies defined for the
original game serve the same purposes in the advan-
tage game for the reason listed in the previous point.

2Note that the optimization over q’s action choice is deter-
ministic; once πp is selected, q’s optimal choice can be made
deterministically

• The defensive strategies in the advantage game achieve
expected payoffs of zero.

• The payoffs in the advantage game are polynomial-size
rational numbers, so the overall complexity of working
with the advantage game does not increase more than
polynomially.

In what follows, we will focus on the advantage game, since it
has the same equilibria and roughly the same representation
size, and lets us rule out average payoffs that are negative
when searching for equilibria.

3.2 The Mutual Advantage Case
To find a Nash equilibrium, we consider two cases. In this
section, we show how to recognize the case in which it is
possible for both players to achieve positive advantage. In
the next section, we show how a Nash equilibrium can be
constructed in this case. In the section following, the case
in which mutual advantage cannot be achieved is treated.

When Player 1 chooses i1 and Player 2 chooses i2, the pay-
offs for the two players can be visualized as a point x =
(A1

i1i2 , A2
i2i1) = (x1, x2) in a two-dimensional space. Follow-

ing Nash (1950), we consider the set of all pairs of actions
for the two players, X = {(A1

i1i2 , A2
i2i1)|1 ≤ i1 ≤ n1, 1 ≤

i2 ≤ n2}. All the points x ∈ X can be achieved as average
payoffs for the two players in the repeated game, simply by
repeatedly playing the corresponding action pair.

The convex hull of a set of points is the set of points that
can be formed by a linear combination of the points in the
set, where the linear coefficients are positive and sum to
one (a convex combination). For the purposes of this paper,
we limit our attention to polynomial-size coefficients. Any
point in the convex hull of the points in X can be achieved
as average payoffs for the two players in the repeated game.
Specifically, for any point u in the convex hull of X, there is a
set of weights w such that u =

∑
x∈X wxx. Consider integer

weights w′ derived by multiplying w by the least common
denominator of its components. A pair of strategies that
repeats any sequence that includes, for each x ∈ X, each
action pair corresponding to x a total of w′

x times, achieves
the payoff u on average.

The folk theorem tells us that any u simultaneously in the

convex hull of X and in the first quadrant (positive advan-
tage for both players) is the payoff of a Nash equilibrium in
the repeated game. Typically there are many such points,
any of which would be sufficient for our algorithm. How-
ever, the work of Nash (1950) justifies a particular selection
for a point in the first quadrant via an axiomatic analysis
of bargaining. It shows that a very sensible payoff point for
the two players to accept is one that maximizes the product
of their advantages. We next show how this point can be
identified efficiently.

Note that the point that maximizes the product of the ad-
vantages will be found on the outer boundary of the convex
hull—the product of the advantages of any internal point
can be increased by moving to a point above it and to the
right (Nash 1950). This implies that that the point can be
expressed by a weight vector w that has non-zero weight
on only one or two x ∈ X, since the convex hull is a two-
dimensional polygonal region bounded by line segments.

Next, let x, y ∈ X be two points formed by two different
action pairs, each with at least one component non-negative.
We want to find a point z on the edge between x and y,
z = wxx + (1−wx)y for 0 ≤ wx ≤ 1, such that the product
of the advantages, z1z2, is maximized. Setting the derivative
of this product to zero and solving for wx, we find that the
product is maximized when

wx =
−y2(x1 − y1) − y1(x2 − y2)

2(x2 − y2)(x1 − y1)
. (4)

If wx < 0 or wx > 1, then the maximum product is achieved
at an endpoint.

We can now make the following observations:

• We are trying to identify a payoff in the convex hull
of X in the first quadrant (both components positive)
that maximizes the product of the components. We
argued that such a point is either in X or on a line
segment between two points in X.

• If a point x ∈ X is in the third quadrant (both compo-
nents negative), it need not be considered. To produce
a point in the first quadrant, x would have to be paired
with a point y ∈ X in the first quadrant, and the point
y would dominate any combination it could make with
x: wx = 0.

• Points in the second or fourth quadrant (one posi-
tive, one negative component) need to be considered,
since they could possibly be combined with another
point and result in a point with a larger product of
advantages than either endpoint. For example, for
x = (3,−1), y = (1, 5), Equation 4 results in wx = 1/6,
or z = (4/3, 4) with a product of advantages of 16/3.

• Evaluating Equation 4 results in a weight that is a
polynomial-size rational number, since it involves a
constant number of basic arithmetic operations.

• If the weight computed for points x and y is between
0 and 1, let the weight be represented by the rational
number r

s
for integers 0 ≤ r ≤ s. A pair of strategies

that repeats any sequence that includes the action pair

j 1 j 2i 2*

*

*

*
i 1

r
i

r
j

r
i

r
j

Figure 3: A pair of strategies that maximizes the
product of advantages.

associated with y a total of s − r times and x a total
of r times achieves an average payoff whose product of
advantages is maximized over all convex combinations
of x and y.

• By looping through all points and pairs of points in
X (a polynomial number n1n2 + (n1)2(n2)2 of combi-
nations), ignoring any points with mutually negative
advantages, computing weights, and checking which
has the largest product of advantages, we can identify
a pair of action pairs i1, i2 and j1, j2 and (polynomial-
size) integers ri and rj . A pair of strategies that re-
peats any sequence that includes the action pair (i1, i2)
a total of ri times and (j1, j2) a total of rj times max-
imizes the product of advantages over all achievable
payoffs. One such pair of strategies is illustrated in
Figure 3, in which the action choices are made con-
secutively. Note that if the product of advantages is
maximized for a point x ∈ X, one-state strategies that
repeat the actions associated with x suffice.

• The procedure executes in polynomial time and pro-
duces a polynomial-size output.

The next section shows how to combine the strategies in
Figure 3 with attack strategies from Section 3.1 to produce
a Nash equilibrium.

3.3 Punishment
The strategies in Figure 3 result in average advantages of

z = (riA
1
i1i2 + rjA

1
j1j2 , riA

2
i2i1 + rjA

2
j2j1)/(ri + rj). (5)

These strategies maximize the product of advantages over
all strategies, so we say they represent mutual cooperation.
However, they are not necessarily in equilibrium, as either
player might have an incentive to select a different action
that results in higher payoff at the expense of the opponent;
we call any such strategy defection. We now show how to
modify the cooperative strategies so that each player threat-
ens the other with worse payoff for failing to cooperate, thus
eliminating the incentive for defection.

Figure 4 illustrates strategies that build on the strategies
in Figure 3 to include the threat of punishment if a player
doesn’t cooperate. Here, α1 and α2 are the attack strategies
defined in Section 3.1. In words, the player p executes its
cooperative actions for ri + rj steps. If, at any point, the
opponent defects by deviating from its assigned actions, the
player enters a punishment phase for ap steps at the end of
the cooperative phase. When the punishment is complete,

a new cooperative phase begins3. Once again, the structure
of these strategies can be simplified in games in which the
product of advantages is maximized for a point x ∈ X.

The only, as yet, undefined quantity in the strategies just
described is the number of punishment steps ap for the two
players. We next show how to select values for a1 and a2 so
that mutual cooperation becomes a best response.

Let (p, q) ∈ {(1, 2), (2, 1)}. When faced with a strategy for p
of the form given in Figure 4, the average payoff of Player q
for cooperating is

zq = (riA
q
iqip + rjA

q
jqjp)/(ri + rj), (6)

much like in Equation 5. Let

dq = max
x∈X

xq, (7)

which is an upper bound on the largest possible value that
q can get in a single round by defecting. The average payoff
to q in the advantage game for using a strategy that defects
cannot be larger than ((ri + rj)d

q)/(ri + rj + ap), since q
can do no better than dq on each cooperation round and 0
on each punishment round. In fact, this bound is exceed-
ingly loose, as dq is probably not achievable in most games.
Nevertheless, we use this expression since it simplifies pre-
sentation.

We want to know how to set ap so that cooperation is a best
response: zq > ((ri + rj)d

q)/(ri + rj + ap), or equivalently,
apzq > (ri + rj)(d

q − zq). Note that zq > 0 since we specif-
ically chose a point that has positive advantage. Similarly,
dq > zq because q’s payoff for defection must exceed the
payoff for cooperating or defection will not be considered.
Solving for ap and rounding up, we get

ap = d(ri + rj)(d
q − zq)/zqe. (8)

Once again, since this expression uses only basic arithmetic
operations on polynomial-size numbers, the result is a polynomial-
size number. Therefore, in the case in which both players
can achieve positive advantage, the counting-node machines
illustrated in Figure 4 constitute a Nash equilibrium and
have polynomial size.

Recall that the preceding rested on the assumption that
there are strategies for which both players have positive ad-
vantage. But, mutual advantage is not always possible, for
example, if none of the convex hull is strictly in the first
quadrant. The next section completes the presentation of
our algorithm by providing Nash equilibrium strategies in
the case where positive advantages cannot be achieved.

3.4 Complete Strategy
The previous two subsections dealt with the case in which it
is possible for both players to receive average payoffs better
than what they can guarantee themselves using a defensive
strategy. If no such strategies exist, then we must use a
different tack to find an equilibrium. Let vp be the largest

3Note that delaying punishment until the end of the coop-
erative phase is not necessary and is probably wasteful. We
use this approach simply because it simplifies our presenta-
tion and is sufficient to prove our result.

payoff that p can achieve against the defensive strategy of
its opponent in the advantage game:

vp = max
ip

∑
iq

Ap
ipiq δq (9)

Note that it can’t be the case that both v1 > 0 and v2 > 0,
which would imply we are in the mutual advantage case. In
addition, neither v1 < 0 nor v2 < 0 (Player p can guar-
antee itself at least 0 with a best response). This leaves
two subcases: v1 = 0 and v2 = 0, or vp > 0 and vq = 0
for some (p, q) ∈ {(1, 2), (2, 1)}. In the first subcase, indefi-
nitely repeating δ1 and δ2 is a Nash equilibrium (the game
is essentially zero sum). In the second subcase, let hp be p’s
best response against δq,

hp = argmax
ip

∑
iq

Ap
ipiq δq. (10)

Note that δq must also be a best response to hp. Why? Any
better response to hp would imply a payoff for q greater
than 0 (perhaps at the expense of p), which would violate
the assumption that there is no strategy pair with mutual
advantage4. Therefore, playing hp against δq must be a
Nash equilibrium.

This completes our algorithm, which we summarize below.

1. Begin with a game specified by matrices P 1 and P 2.

2. Compute attack strategies α1 and α2 (Equation 1) and
the values g1 and g2 the players can guarantee them-
selves (Equation 3).

3. Compute advantage matrices A1 = P 1 − g1 and A2 =
P 2 − g2.

4. Loop through all pairs of actions and all pairs of pairs
of actions to find a cooperation point that maximizes
the product of advantages (Section 3.2).

5. If a cooperation point is found with positive advan-
tages, we have a pair of action pairs (i1, i2) and (j1, j2)
and repeat counts ri and rj . Compute the average
payoffs for cooperating z1 and z2 (Equation 6), and
a bound on the maximum defection payoff d1 and d2

(Equation 7), and use these to compute a1 and a2,
the number of punishments needed to stabilize coop-
eration (Equation 8). Output strategies as shown in
Figure 4.

6. If no cooperation point is found with positive advan-
tages, compute defensive strategies δ1 and δ2 (Equa-
tion 2). Compute the best responses h1 and h2 to

4Playing hp against δq results in the payoff point (vp, 0) with
vp > 0. Let h′q be a best response to hp. Playing hp against
h′q results in the payoff point (v′p, v′q). Assume v′q > 0. It
must be that v′p < 0, otherwise we have a strategy pair that
is mutually advantageous. Now, consider ε = vp/(vp − v′p).
By the inequalities already stated, 0 < ε < 1 (vp is positive,
v′p negative). Moving a fraction ε/2 from the payoffs of hp

against δq to hp against h′q results in payoffs of vp/2 > 0
for p and v′qε/2 > 0 for q. This is impossible, since we
could then construct a pair of strategies that is mutually
advantageous. Therefore, the assumption that v′q > 0 is
invalid, implying that δq is a best response to hp.

i

a 2

α
*

*2j

j
r

*
2j

*

21

a 1

α
*

*1j

j
r

*
1j

*

2
1i

1j
j

r

2j

2i

i
r

1i

j
r

i
r

Figure 4: A pair of strategies that is a Nash equilibrium.

the defensive strategies (Equation 10) and the players’
expected payoffs v1 and v2 for adopting them (Equa-
tion 9). If v1 = 0 and v2 = 0, output δ1 and δ2 as
a Nash equilibrium. If v1 > 0 and v2 = 0, output h1

and δ2 as a Nash equilibrium. If v1 = 0 and v2 > 0,
output δ1 and h2 as a Nash equilibrium.

We have argued that each of these operations can be imple-
mented to execute in polynomial time and produces polynomial-
size output, and that the cases considered are exhaustive and
correct.

3.5 Symmetric Games
A symmetric game is one in which P 1 = P 2, so both play-
ers face the same strategic situation. In human-constructed
games, this situation is very common as it embodies the
notion of a fair game.

The argument in Section 3.2 becomes much simpler in the
symmetric case. First, note that the convex hull of the
points in X will be symmetric about the line through the
origin with slope one. The product of advantages will be
maximized by a point on this line, which implies that it is
only necessary to check pairs of points such that x1 = y2

and x2 = y1. In this case, Equation 4 simplifies to wx = 1
2
,

so the action pair with the largest average payoff for the two
players determines the point to be considered.

For symmetric games, our algorithm can be simplified as
follows.

1. Begin with a game specified by matrix P 1 (P 2 is the
same).

2. Compute an attack strategy α1 (Equation 1) and the
value g1 players can guarantee themselves (Equation 3).

3. Compute advantage matrix A1 = P 1 − g1.

4. Loop through all pairs of actions i, j to find the pair
that maximizes z1 = (A1

ij + A1
ji)/2.

5. If z1 > 0, and i 6= j, use i1 = j2 = i, i2 = j1 = j, ri =
rj = 1, compute a bound on the maximum defection
payoff d1 (Equation 7), and use it to compute a1 =
d2(d1− z1)/z1e, the number of punishments needed to

stabilize cooperation. Output strategies as shown in
Figure 4 (the cooperation nodes no longer need to be
counting nodes). On the other hand, if i = j, a simpler
equilibrium strategy is possible with a single node that
repeats action i as long as the opponent chooses the
same action, then punishes for a1 = d(d1 − z1)/z1e
times on a defection.

6. If z1 = 0, compute defensive strategy δ1 (Equation 2)
and output the pair of strategies (δ1, δ1) as a Nash
equilibrium.

Note that the cooperative phase in the symmetric case is
never more than two-states.

4. EXAMPLES
This section provides several concrete examples of games to
help illustrate the ideas from the previous sections.

The prisoner’s dilemma game is defined by P 1 = P 2 =[
3 0
5 1

]
. This game is symmetric, so the simplified anal-

ysis in Section 3.5 applies. The attack strategy is Action 2
(defect) making the guaranteed value g = 1. The pair of
actions (i, j) = (1, 1) maximizes the average payoff of z = 3.
Maximum defection payoff is estimated as d = 5. Since
i = j, the formula for the number of punishment rounds
computes a = 1. Thus, the equilibrium strategy computed
by our algorithm is precisely tit-for-tat, the winning strategy
from Axelrod (1984)’s tournament.

The battle of the sexes game is defined by P 1 =

[
1 0
0 2

]

and P 2 =

[
2 0
0 1

]
. This game is not symmetric (although

it is fair). The attack strategy for Player 1 is (1/3, 2/3) and
for Player 2 is (2/3, 1/3). Players can guarantee themselves
g = (2/3, 2/3) by playing defensive strategies, which are ob-
tained by reversing the probabilities in the attack strategies.

From this, the advantage game is A1 =

[
1/3 −2/3
−2/3 4/3

]

and A2 =

[
4/3 −2/3
−2/3 1/3

]
. The maximum product of ad-

vantages comes from i = (1, 2) and j = (2, 1), for which we
get wx = 1/2. This results in ri = rj = 1 and z = (5/6, 5/6).
The defection bound is d = (2, 2), resulting in punishment

repeats of a = (14, 14). Thus, the equilibrium strategy is to
alternate between both players choosing Action 1 and both
players choosing Action 2, and using the attack strategy 14
consecutive times as punishment if a player doesn’t go along
with the plan.

In the definition of this unbalanced game, the payoffs have

the form P 1 =

[
0 1/2
−1 1

]
and P 2 =

[−1 −1
0 0

]
. Any

choice for Player 1 works equally well as an attack strategy,
and the attack strategy for Player 2 is Action 1. Players
can guarantee themselves g = (0, 0), so the advantage game
is identical to the original game. No pair of action pairs
leads to a positive product of advantages, so the defensive
strategies δ1 = Action 1 and δ2 = Action 2 are computed.
The best response for Player 2 to δ1 is to stay the same,
whereas the best response for Player 1 to δ2 is to switch to
Action 2, leading to an improvement of v2 = 1. The Nash
equilibrium found by our algorithm is for both players to
choose Action 2. Note how, in this case, there are no payoffs
that achieve positive advantages and the defensive strategies
are not in equilibrium. Nevertheless, our algorithm correctly
identifies a Nash equilibrium.

As a final example, we define the exponential game as a
family of games parameterized by the integer b. It is de-

fined by P 1 =

[−2b 0
0 2

]
and P 2 =

[
2b + 1 0

0 −1

]
. The

attack strategy for Player 1 is Action 2 and for Player 2 it
is Action 1. Players can guarantee themselves g = (0, 0), so
the advantage game is identical to the original game. The
maximum product of advantages comes from i = (1, 1) and
j = (2, 2), for which we get wx = 3/(2b+1 + 4). This results
in ri = 3 and rj = 2b+1+1 and z = ((2b−1+1)/(2b+2), 1/2).
The defection bound is d = (2, 2b + 1), resulting in punish-
ment repeats of a = (22b+2 + 102b + 4, 3 · 2b+1 + 20). Note
that these quantities are large, but are still polynomial-size
numbers. Therefore, the strategies can be expressed by a
polynomial-size counting-node machine. Note also that this
example requires an exponential-size finite-state machine to
achieve advantages greater than zero—by construction, i
and j must be combined by a ratio of between (2b +1)/(2b +
2) and (2b)/(2b + 2) and this requires at least 2b states.

5. CONCLUSIONS
Our interest in repeated games and in the use of threats
to spur mutually beneficial behavior came about during a
study of automated bidders in simultaneous auctions (Csirik
et al. 2001). When human bidders participate in auctions,
they have been known to use threats to influence the behav-
ior of other bidders (Weber 1997). We were able to show
experimentally that threats can be a valuable tool for auto-
mated agents in auctions (Reitsma et al. 2002), and under-
took the more theoretical treatment presented here.

Our use of threats in this context echoes their use in folk the-
orems (Osborne and Rubinstein 1994). Folk theorems can
be considered algorithms, since they constructively prove
the existence Nash equilibria. However, they generally don’t
include a computational analysis or include arguments for
general games, in particular those with no mutual advantage
point. Our results show that the idea behind folks theorems
can be used to create an efficient algorithm for computing

equilibria in repeated games.

The Nash equilibria found by our algorithm have a num-
ber of beneficial properties. The equilibrium payoffs are
pareto-efficient; no set of payoffs exists in which both play-
ers improve. Equilibria can be found efficiently—nearly as
efficiently as in the much easier zero-sum case. The result-
ing strategies are easy to execute, requiring only a simple
counter and the ability to keep track of which nodes follow
which other nodes. The payoffs described in this paper sat-
isfy Nash’s bargaining axioms, although other criteria such
as maximizing the average combined payoff of the two play-
ers present no additional difficulty; in one-shot games, iden-
tifying such an equilibrium is NP-hard (Conitzer and Sand-
holm 2002). The fact that punishment is of finite duration
makes the equilibrium subgame perfect (Osborne and Ru-
binstein 1994). For symmetric games, the resulting payoffs
are socially optimal and symmetric.

On the negative side, our algorithm depends heavily on the
use of the average-payoff criterion. It can’t be used for
finite-horizon games or even infinite-horizon discounted pay-
off games, unless the discount factor is set in a game-specific
way to a value extremely close to 1.

Nonetheless, there are a number of other contexts in which
we are applying the ideas in this paper, such as computing
equilibria in repeated Markov games (Littman 2001) and
n-player games expressed in a graphical notation (Kearns
et al. 2001), and using reinforcement learning to issue and
recognize threats (Littman and Stone 2001). The relative
simplicity of the threat-based approach makes it a promising
direction for future work in computational game theory and
electronic commerce more generally.

Acknowledgments
We thank Amy Greenwald, Avi Pfeffer, Luis Ortiz, Michael
Kearns, Satinder Singh, Roberto Serrano, and Tuomas Sand-
holm for discussions and suggestions. This work was sup-
ported in part while the authors were in AT&T’s Artificial
Intelligence Principles Research group and more recently by
DARPA IPTO.

References
Robert Axelrod. The Evolution of Cooperation. Basic Books,

1984.

Vincent Conitzer and Tuomas Sandholm. Complexity re-
sults about Nash equilibria. Technical Report CMU-CS-
02-135, CMU School for Computer Science, 2002.

János A. Csirik, Michael L. Littman, Satinder Singh, and
Peter Stone. FAucS: An FCC spectrum auction simu-
lator for autonomous bidding agents. In Second Inter-
national Workshop on Electronic Commerce (WELCOM-
2001), pages 193–151, 2001.

Michael Kearns, Michael L. Littman, and Satinder Singh.
Graphical models for game theory. In Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 253–260, 2001.

Michael L. Littman. Friend-or-foe Q-learning in general-
sum games. In Proceedings of the Eighteenth International

Conference on Machine Learning, pages 322–328. Morgan
Kaufmann, 2001.

Michael L. Littman and Peter Stone. Implicit negotiation
in repeated games. In Eighth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-
2001), pages 393–404, 2001.

J. F. Nash. Non-cooperative games. Annals of Mathematics,
54:286–295, 1951.

John F. Nash. The bargaining problem. Econometrica, 28:
155–162, 1950.

Martin J. Osborne and Ariel Rubinstein. A Course in Game
Theory. The MIT Press, 1994.

Christos H. Papadimitriou. Algorithms, games, and the in-
ternet. In Proceedings of the 33rd Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 749–753,
2001.

Paul S. A. Reitsma, Peter Stone, János A. Csirik, and
Michael L. Littman. Self-enforcing strategic demand re-
duction. In Agent Mediated Electronic Commerce IV: De-
signing Mechanisms and Systems, volume 2531 of Lecture
Notes in Artificial Intelligence. Springer Verlag, 2002.

Alexander Schrijver. Theory of Linear and Integer Program-
ming. Wiley-Interscience, New York, NY, 1986.

J. von Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, Prince-
ton, NJ, 1947.

Robert J. Weber. Making more from less: Strategic demand
reduction in the FCC spectrum auctions. Journal of Eco-
nomics and Management Strategy, 6(3):529–548, 1997.

