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Abstract. The traditional agenda in Multiagent Learning (MAL) has
been to develop learners that guarantee convergence to an equilibrium
in self-play or that converge to playing the best response against an op-
ponent using one of a fized set of known targeted strategies. This paper
introduces an algorithm called Learn or Exploit for Adversary Induced
Markov Decision Process (LoE-AIM) that targets optimality against any
learning opponent that can be treated as a memory bounded adversary.
LoE-AIM makes no prior assumptions about the opponent and is tailored
to optimally exploit any adversary which induces a Markov decision pro-
cess in the state space of joint histories. LoFE-AIM either explores and
gathers new information about the opponent or converges to the best
response to the partially learned opponent strategy in repeated play.
We further extend LoE-AIM to account for online repeated interactions
against the same adversary with plays against other adversaries inter-
leaved in between. LoFE-AIM-repeated stores learned knowledge about
an adversary, identifies the adversary in case of repeated interaction,
and reuses the stored knowledge about the behavior of the adversary
to enhance learning in the current epoch of play. LoE-AIM and LoE-
AlM-repeated are fully implemented, with results demonstrating their
superiority over other existing MAL algorithms.

1 Introduction

The aim of many adversarial strategic interactions is to learn a model of the op-
ponent(s) and to respond accordingly [1, 3, 14]. If the opponents execute static
policies, then the learning agent is faced with a stationary environment, thus re-
ducing the problem to effectively a single-agent decision problem. However when
in the presence of other learning agents, there is an inherent non-stationarity in
the environment which makes the learning problem for an individual agent much
harder [12]. The most popular solution concept in such multiagent settings has
been the Nash equilibrium [13] and most multiagent learning (MAL) algorithms
proposed to date aim at convergence to such an equilibrium in self-play [5, 8, 15].

Their popularity notwithstanding, the ability to find Nash equilibria does
not solve all multiagent problems. For one thing, there can be multiple Nash



equilibria in general sum games: MAL algorithms provide no guarantee that
the Nash equilibrium attained at convergence will be the one maximizing social
welfare. Furthermore, an algorithm that converges to such an equilibrium in self-
play may perform poorly when faced with an adversary that behaves differently.

Motivated in part by this observation, Powers and Shoham recently proposed
an alternate set of evaluation criteria for MAL algorithms, focusing on Targeted
Optimality, Auto Compatibility and Safety [14]. In their setting, the goal is to
converge to within e of the best response if the opponent uses one of a set of
known targeted strategies, to within e of a Pareto-dominant Nash equilibrium
in self-play, and to within e of the safety value against any unknown opponent.
The authors further proposed an algorithm that meets these criteria against a set
of target opponents [14,17]. The optimal responses to the stored set of target
strategies are pre-computed, such that when an opponent is recognized to be
using such a strategy, the matching response can be played. While their approach
is effective for a fixed set of opponents, no prior learning algorithm guarantees
outcomes greater than the safety value against arbitrary opponents. This paper
introduces the first algorithm capable of meeting the Powers and Shoham criteria
against adversaries of a finite memory size. We show that a large class of existing
algorithms are actually memory bounded and can be exploited by our approach.
To the best of our knowledge, this learning algorithm is the first that targets
optimality against a mixture of opponents with different properties and goals.
Rather than fixing the set of target opponents, we instead focus our algorithm
on any adversary that induces a Markov Decision Process (MDP) according to
the Adversary Induced MDP (AIM) model [1]. By this model, it can be shown
that for a large class of opponents, the learner finds itself in an MDP whose
states are determined by bounded histories of joint actions and whose transition
function is determined by the opponent’s strategy. Specifically, we introduce an
algorithm Learn or Exploit for AIM (LoE-AIM) that either explores and gathers
new information about the opponent or converges to the best response to the
partially learned opponent strategy.

To demonstrate LoE-AIM’s effectiveness, we first test it against opponents
(both deterministic and stochastic) drawn from the literature of MAL research.
Our results show that in most cases, LoE-AIM converges to playing the optimal
policy against the opponent without knowing the opponent’s identity.

Unfortunately it is infeasible to develop a learning algorithm that plays opti-
mally against every possible memory bounded opponent of a fixed memory size
without the ability to restart play (i.e. erase the history and start over), e.g., con-
sider the following opponents in the Prisoner’s Dilemma (PD) game (Table 1(a)):
(1) one which always plays cooperate, (2) one which starts playing cooperate,
but defects forever if the opponent ever defects once (known as “grim-trigger”).
It is not possible to develop a learner which can learn to play optimally against
both the opponents without having a restart. Just to differentiate between them,
the learner must play defect, and once it does so, it loses the chance of attaining
the (cooperate, cooperate) payoff against the grim-trigger opponent.



On the other hand, in online learning it is not uncommon to face the same
type of adversary in multiple well-defined “epochs” of several plays, possibly with
epochs against other types of adversaries interleaved in between. In such situa-
tions an effective restart is possible: each time a new opponent of the same type
appears, the history starts over, but the experience from past epochs remains.
Specifically, we consider the case in which the learning agent plays against multi-
ple adversaries that it knows are drawn from the same population and therefore
use the same (or similar) strategy. It plays against each individual for a finite
time before playing against the next. This scenario is representative of common
cases such as online auctions in which an auctioneer repeatedly sells goods to
a pool of bidders. Bids in each auction are irrevocable, but the process restarts
when the next good is introduced to the market. In such a setting, we propose a
mechanism LoE-AIM-repeated that leverages such repeated interactions to learn
a model of the opponent and store it in its repository of learned models. When
playing a new adversary, it tries to map the model of the new adversary to one of
the stored models and uses the knowledge it gathered before about the adversary
to further enhance learning in the current epoch.

The remainder of this paper is organized as follows. Section 2 presents the
background necessary for our work. Section 3 summarizes possible adversaries
in the existing MAL literature and introduces the class of opponents targeted
by LoE-AIM. Sections 4 and 5 introduce the LoFE-AIM algorithm and LoFE-
AIM-repeated respectively, including results achieved against memory bounded
adversaries, and Section 6 concludes.

2 Background and Definitions

In this section we introduce the definitions and concepts necessary for our work.
We focus on bimatrix stage games because they are general enough to fully
explore the concepts we propose and simple enough to implement, study and
relate to the existing MAL literature.

Definition 1 (Bimatrix Game:). A bimatriz game is defined by a pair of
matrices {M;, M,} where each Myzeqi oy is of size |A;| X |A,| and M, : A; x
A, — R maps every possible joint-action to a reward received by agent x. A; and
A, are the sets of actions available to agents i and o respectively.

For the rest of the paper we consider agent ¢ to be the learner under our control
and agent o to be the opponent.

Definition 2 (History(h*):). A history h* = (a;,a,)* where a; € A;,a, € A,
1s the sequence of the last k joint actions played by the agents. In other words, a
history is a vector of length k consisting of the past k joint actions played by the
agents. Often k is referred to as the window size or length of the history. h*(j) is
the jth joint-action in the sequence h¥ where 0 < j < k,k € N with h*(0) being
the most recent joint action. Similarly h¥(j) is the jth action played by agent
o in the sequence h* with h*(0) being the most recent action played by o. The



history at time t is denoted h**'; thus the action played by agent o, j steps before
time t is denoted h¥!(5).

For the rest of the paper, we refer to the memory size of the adversary as k.

Definition 3 (Policy (7,):). A policy 7, of o maps the history to a probability
distribution over o’s action set, i.e., T, : h* — AA, where k is the memory size
of agent o. The probability of playing action j following the policy m,(-) is given
by 71-0()(.7)

Definition 4 (Memory Bounded Opponent:). An opponent is said to be
memory bounded if it follows a policy as specified above.

Now we briefly review some definitions related to Markov Decision Processes
(MDPs).

Definition 5 (Markov Decision Process (MDP) :). An MDP M on a set
of states S and with action set A= {ay,...,ax,...,a4} consists of

Transition Probabilities: For each state-action pair (s,a), a next-state dis-
tribution Pj ,(s") gives the probability of moving to state s’ when action a
is taken in state s.

Reward Distribution: For each state-action pair (s,a), a reward distribution
R(s,a) specifies the probability distribution on a set of real numbers that
can be achieved as reward given action a is taken in state s.

2.1 Adversary Induced Markov Decision Process (AIM)

The key insight enabling this research is that in the setting of a repeated game
where the adversary is a memory bounded opponent, the dynamics of the system
can be modeled as a MDP whose transition probabilities and reward functions
are determined by the model of the opponent. For a history of play (a “state”)
h¥+* the next state h**T1 and the reward received are determined by the current
state h**, the adversary’s policy in that state m,(h**), and the action a; chosen
by agent 1.

Definition 6 (Adversary Induced Markov Decision Process:). An Ad-
versary Induced MDP (AIM) M is defined as follows,

State Space (S) : The state space S of M is given by a® where a € A; x A,,
i.e, set of all possible joint histories of length k. From now onwards we will
use the word state and history interchangeably.

Action Space (A): The action space A of M is given by A;. The action space
is just the set of actions available to agent i.

Transition Probabilities (P): Intuitively, the history is updated as a sliding
window. Transitioning from a history h¥?* to a history h¥**+1 is just keeping
the last k£ — 1 joint actions (each shifted one time step backwards) and in-
cluding the latest pair at index 0 of the vector. The transition probability of



transitioning from a history h*? to a history h¥!*1 given the action taken
being a; is,

Pric g, (R = 1 (KB (REH1(0)) where 27 (0) = a;.

=0ow

Note that, there is a non-zero probability to transitioning to only those
histories which end in action a; as they are the possible histories for this
transition. For all other histories, the transition probability is 0. If 7, (h*!)
is stochastic, then Py, ,, is stochastic as well. Whether the AIM is ergodic !
depends on 7,. For example, against an opponent playing grim-trigger in PD,
once learner play a defect action, it can never transition to a state where the
opponent has recently played cooperate.

Reward Function (R): The reward function R of M is given by R(h¥, a;) =
anwﬂo(hk,t)Mi(ai,ao).

3 A taxonomy of possible Adversaries

The algorithms introduced in this paper target adversaries whose action at time
t depend on at most the past k joint actions (h*?). In this section, we show that
this apparently restrictive class of adversaries actually captures a large class
of opponents from the literature. In order to do so, we present a taxonomy of
possible adversaries, along with how several existing strategies can be classified
within it. This taxonomy is summarized in Figure 1.
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Fig. 1. A taxonomy of possible adversaries

First, an adversary can be broadly classified as either joint-action based or
joint-strategy based. A joint-action based adversary bases its current action on
the joint-actions played in the past. They can be further classified as k-Markov
opponents whose policies depend only on the past k joint-actions, or opponents
whose current action depend on the entire history of play. Examples of k-Markov
opponents include Bully, Godfather [16] and Best Response (BR), while Ficti-
tious Play (FP) [9], Joint-action learner (JAL) [7], and the family of Q-learners

L' A MDP is ergodic if there is a non-zero probability of eventually transiting from
every state to every other state (possibly via some number of intermediate states).



(e.g, PHC and WoLF-PHC [5]) depend on the entire history. A BR opponent
plays the best reponse to the empirical distribution of the opponent’s play cap-
tured by the current history. If memory size is unbounded, BR is equivalent to
FP.

In contrast to a joint-action based adversary, a joint-strategy based adver-
sary bases its current step strategy on the past history of joint strategies: not
just the actual plays, but the probability distributions from which they were
drawn. In practice, it is unnatural to assume that the opponent strategy is ever
known. Thus in this paper, the past step opponent strategy is estimated based
on the recent history. In this paper we estimate the opponent strategy by the
frequency of each action played by the opponent in the captured history at that
time instant. As a result, joint-strategy opponents are in effect also joint-action
opponents. Nonetheless, we classify them differently since in the literature they
are presented and analyzed as acting based on past joint-startegies.

Similar to the joint-action case, joint-strategy based adversaries can be fur-
ther classified based on whether the current step strategy depends either on just
the past step joint strategy or the entire history of joint strategies. Examples
of the former are MAL algorithms which converge to a single stage Nash Equi-
librium in a repeated setting (e.g. IGA [15], WoLF-IGA [4] and ReDVaLer [2])
while examples of the latter are no-regret learners which attempt to minimze
the cost of online learning [10].

As our targeted opponents in this paper, we consider the k-Markov joint-
action opponents and single-step joint-strategy adversaries. Though our results
are against a sample of such opponents drawn from the literature, our claims
hold for any opponent which induces an AIM in a joint-action space of bounded
length.

4 LoE-AIM

This section introduces the LoE-AIM algorithm which is the heart of our overall
learning mechanism. We present two versions of this algorithm, one for oppo-
nents which play deterministically (e.g. Bully, Godfather, and BR) and another
for opponents who play stochastic stratgies (e.g. MAL algorithms). We start by
assuming that the player? knows whether the opponent is playing deterministi-
cally or stochastically. In Section 5 we present a more general framework which
enables the player to learn this attribute of the opponent well.

Algorithm 1 presents the version of the learning algorithm for deterministic
opponents. Due to space constraints, we only present the high level algorithm
and for all called methods, we give a textual explanation. The algorithm takes
as input the current opponent-model (7,), the current start state (history) and
the number of episodes for which it should continue learning. Note 7, refers to
some partially learned model if it exists. If the algorithm has no prior informa-
tion about the opponent it is playing, opponent-model is null. All the results

2 From this point onwards we will refer to the learner as the player.



Algorithm 1: LoE-AIM-DETERMINISTIC

begin
input : episodes, 7, history
output: 7,, m;
episode « 0
m; +— SOLVE-AIM-MODEL(7,)
for episode++ < episodes do
opponent-action «— action taken by opponent
player-action «— action as per m;
if {history, opponent-action} ¢ 7, then
7o — 7o U {history, opponent-action}
m; «— SOLVE-AIM-MODEL(7, )
history < UPDATE-HISTORY (history, {player-action, opponent-action})

® N O Uk W N

end

presented in this section assume that there exists no such partial model and the
learner learns from scratch. In Section 5 when we talk about repeated interac-
tions with an opponent, then the 7, fed as input can be a partially learned model
from past interaction(s) with the same opponent. The algorithm outputs the fi-
nal 7, and the solved AIM strategy (m;) governing the model. 7; is explained
below. Since the opponent is deterministic, just one visit is needed to a state
to know what the opponent’s policy is for that state. The SOLVE-AIM-MODEL
function finds a control policy (r;) for the underlying AIM by assuming that for
all known histories h; of play, the opponent plays 7, and for all unknown histo-
ries, the opponent plays the maximax strategy for the player (the strategy that
maximizes the maximum pay-off for the player). The assumption for unknown
histories causes 7; to explore towards histories of play not visited before. The
UPDATE-HISTORY method updates the history by prepending the most recent
joint action and removing the oldest joint-action.

Algorithm 2 is similar to Algorithm 1 except now that opponent can play
stochastic strategies. In this case, the player maintains a stochastic model of
the opponent. UPADATE-OPPONENT-MODEL updates 7, with the latest decision
taken by the opponent. Note, “updating” here means updating the percentage
of times an action has been played for that state and then normalizing over all
possible actions. The HAS-CHANGED-OPPONENT-MODEL? returns true if for any
state the probability of taking an action is 7 gretear than that of the same action
in the previous solved model and the number of visits to that state is at least
k. All results in this paper use values for  and  that led to the best results in
informal preliminary testing, namely n = 0.1 and x = 20.

Lemma 1. In repeated infinite play LoE-AIM either converges to the optimal
policy for the partially learned opponent model or keeps expanding the learned
model.



Algorithm 2: LoE-AIM-STOCHASTIC

begin
input : episodes, 7, history
output: 7,,7;
episode « 0
m; +— SOLVE-AIM-MODEL(7,)
for episode++ < episodes do
opponent-action «— action taken by opponent
player-action «— action as per m;
7o «— UPADATE-OPPONENT-MODEL(7,, {history, opponent-action})
if HAS-CHANGED-OPPONENT-MODEL? (77, ) then
m; «— SOLVE-AIM-MODEL(7, )
L history < UPDATE-HISTORY (history, {player-action, opponent-action})

® N O Uk W N

end

Proof. Let 7, be the remainder of m, that needs to be learnt at a particular
time instant. 7, refers to the part of the opponent strategy that the player
knows while 7, being the part that still needs to be explored. By solving for
a control policy for 7, where for every state in 7, the player believes that it
could get the best possible reward (since it assumes that the opponent playes
the maximax strategy for the player at those states and the value of maximum
possible achievable reward is known), the algorithm generates 7; that will always
promote exploring states in 7,. However if 7, is non-ergodic, then there are
chances that the current state may prohibit transition to newer states, i.e, the
strategy of the opponent is such that it prevents further expanding of the model.
Then the algorithm converges to the optimal policy given the partially learned
model.

Corollary 1. If w, is ergodic, then LoE-AIM converges to the optimal policy in
infinite repeated play.

Note that this exploratory aspect of LoFE-AIM is motivated in part by the R-
Max algorithm [6] which also deliberately balances exploitation with exploration
of unvisited states. The main difference is that R-Max is designed for single
agent MDP’s and hence the exploration depends only on the action of the agent,
whereas in AIMs, the agent and its adversary jointly determine the state space
explored.

4.1 Results against deterministic opponents

This section presents the results achieved by LoE-AIM against the determin-
istic opponents mentioned in Section 3, namely k-Markov adversaries such as
Godfather, BR and Bully.

Figure 2 shows the results achieved by LoE-AIM in the game of Prisoner’s
Dilemma (PD) (Table 1(a)) against a couple of variations of the Godfather,
Bully [16] and BR strategies.



(a) Prisoner’s Dilemma (b) Chicken
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Table 1. Payoff matrices.
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Fig. 2. Results against Godfather opponents in PD.

Godfather is a finite-state strategy that makes its opponent an offer that
it cannot refuse. Godfather chooses a targetable pair 3. From then on, if the
opponent keeps playing its half of targetable pair in one stage, Godfather plays
its half in the next stage. Otherwise it plays a strategy (threat) that forces the
opponent to achieve at most its safety value. Hence Godfather is a memory-
bounded adversary with k& = 1. We now introduce a couple of variations of the
Godfather strategy that are tailored for k& > 1.

— Godfather-lenient plays its part of a targetable pair if the opponent at least
once played its own half of the pair (within the last k actions). Otherwise
Godfather-lenient punishes its opponent by playing the threat strategy that
reduces the opponent’s best outcome to its safety value.

— Godfather-strict is a stricter version that always punishes its opponent if
the opponent ever deviated from the targetable pair during the observable
history.

Note that in case of PD, the Godfather players target the {cooperate, cooperate}
pair and use defect as the threat strategy.

Bully is a deterministic strategy given by argmax, . M,(a;j,a,) where aj =
argmax, ¢ 4, M;i(a;, a,). The opponent optimizes its payoff by assuming that the
Bully remains fixed while the Bully optimzes its payoff by assumimg that the
opponent is the follower and would adapt accordingly.

3 A pair of deterministic policies is a targetable pair if playing them results in each
player getting more than the safety value and plays its half of the pair



Now we present results which show that LoE-AIM exploits all of the above
opponents without knowing their identity. For benchmarking purposes we also
present results had the player chosen any of the deterministic strategies as its
strategy instead of LoFE-AIM. The results presented in Figure 2 are for k = 3
and averaged over 10 random instantiations of the start state (e.g. the assumed
“history” of the opponent when it makes its first decision). However, each run
is independent and the learner starts learning from scratch with each restart. In
the spirit of online learning, LoFE-AIM converges to the optimal policy in each
of the occasions without requiring a restart. Against Godfather-strict, the LoE-
AIM algorithm eventually learns (after about 55 episodes of learning) that it
should play cooperate (its half of the targetable pair) and hence converges to
a payoff of 3 (Figure 2(a)). The results show that none except the Godfather-
strict 4 strategy converge to the optimal payoff. For Godfather-lenient, LoE-AIM
learns to optimally exploit by playing cooperate frequently enough so that the
history always contains one cooperate action for the player. At convergence, the
LoE-AIM player plays defect twice followed by a cooperate ensuring two consec-
utive payoffs of 4 followed by a payoff of 3 (Figure 2(b) shows that the average
converged payoff (after about 10 episodes) oscillates between 3 and 4). In case of
PD, both the Bully strategy and BR strategy is to play defect deterministically.
Against both of these opponents, the learner eventually learns to play defect and
converges to a payoff of 2 (for space constraints, we omit the graphs).

4.2 Results against stochastic opponents

We now present results of LoE-AIM learning against popular MAL algorithms
that converge to single-stage Nash equilibrium in repeated play. Due to space
constraints we only present results against IGA [15] and WoLF-IGA [3], but
the algorithm also works against all other MAL algorithms that decide their
next step strategy based on the past step joint-strategy (e.g. ReDVaLer [2]). We
assume that the opponent cannot observe the player’s past step strategy and
hence approximates it by the proportion of each action played by the player in
the current state (history). A point to note is that the opponent knows its own
strategy for sure and uses it to compute its next step strategy. This makes the
process non-Markovian in the space of the k-history. However if k is large enough,
the proportion of each action played by the opponent will be close to its real
strategy and hence will make the process approximately Markovian. Though it
seems that larger the value of k the better, our results show that even for k = 4,
LoE-AIM can efficiently model the opponent and exploit it to the optimum.
Once again all our results are averaged over 10 different instantiations of the
start state and learning at each restart starts from scratch. The learning rate
used for IGA is 0.1 and the learning rates for WoLF-IGA are 0.1 and 0.2. Figure 3
gives evidence that the LoE-AIM learner was successful in reaching its optimal
payoff in the game of chicken(Table 1(b)) by exploiting the MAL opponents on
both the occasions. The reason we choose Chicken game is because the game

4 Note, Godfather-strict strategy in self play always converge to the targetable pair.



has three Nash equilibria: two in pure strategies, sustaining the outcomes (4,2)
and (2,4), and one in mixed strategies where the players play each of their
actions with equal probability with the corresponding expected payoff of 2.5 for
each agent. Neither IGA, nor WoLF-IGA guarantees the possible final converged
Nash pay-off in self-play, e.g, in both Figure 3(a) and Figure 3(b), self-play
generates outcomes much less than 4 showing that on numerous occasions the
final converged Nash payoff was not (4,2), the one most coveted by the player.
In contrast, in all of its runs, LoE-AIM converged to the outcome (4,2).
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Fig. 3. Results against MAL opponents in Chicken game

Figure 5 gives a summary of a head to head comparison among the various
opponents discussed in this section together with results achieved by LoE-AIM.
There are 78 structurally distinct 2 x 2 strict ordinal games in which the two
players can strictly rank the four payoffs from best to worst. Of the 78 games,
only 6 games (shown in Figure 4) have multiple Nash equilibria with each player
favoring a different one. We present results from these games because in self-
play none of the MAL algorithms guarantee the final converged Nash pay-off
(the algorithms can converge to any one of the Nash equilibria depending on
the learning rates and start states). Each point in the plot has been averaged
over results achieved from all the 6 games, with the results in each game first
averaged over 10 runs with different initial start states. For benchmark compar-
isons, we show head to head results achieved by various other algorithms that
the player could have used as its default strategy instead of LoE-AIM. Figure 5
shows that against the MAL algorithms (IGA, WoLF-IGA) and BR, LoE-AIM
successfully converged to its best outcome of 4 on all occasions thereby demon-
strating its ability to exploit its opponent to the optimum. All the benchmarks
generate lower average payoffs when played against these opponents. Against the
other opponents, LoFE-AIM still did better than all other benchmarks though the
average outcome was lower than 4 in these cases. Note, that against certain op-
ponents it is never possible to achieve the 4 outcome because the opponent won’t
allow that, e.g, against Godfather-strict in PD (see Figure 2(a)).
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means that the game has 3 Nash equilibria where the probabilities of playing action
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5 LoE-AIM-repeated

In online learning, repeated interaction with multiple opponents is quite com-
mon. For example, the player may plays opponent 1 for 10 rounds, opponent 2
for the next 10 rounds, and then again opponent 1 for another 10 rounds. One
such scenario is a market with multiple sellers where the buyer is interested in




learning an optimal negotiation strategy for buying items. The buyer negotiates
in turn with different sellers and learns from these experiences.

Figure 6 presents LoE-AIM-repeated, which such a buyer can employ to max-
imize her return. We assume that the buyer has a fixed set of interactions

(STORE-EPISODES, null, start-state)
end-state = record end state

{ (model, AlM-strategy) = LoE-AIM }
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stored-models = Popl
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Fig. 6. LoE-AIM-repeated

(episodes) with an opponent in one run (EPOCH). For the first STORE-EPISODES
number of plays, the buyer tries to build an approximate model of the oppo-
nent. The LoE-AIM method called with opponent-model set to null, outputs
an approximate model and an AIM-strategy for that model. In these STORE-
EPISODES number of plays, if ever the opponent took different actions for the
same state, Hy is set as stochastic, else Hy is set as deterministic. Once the
model has been built, the framework searches for the closest-model in the pool
of stored models. The method Get-Closest-Model takes as arguments the pool



of stored models and model, and returns the closest model that matches the
model. In the deterministic case, closest-model is computed by iterating over all
the stored deterministic models and returning the one which has the maximum
number of states such that the same decision would be taken. In the stochastic
case, closest-model is selected by iterating over all the stored stochastic models
and returning the one which has the minimum Max Norm distance from model.
If a convincing closest-model exists (if the distance is smaller than a fixed thresh-
old for the stochastic case), the model is updated with the closest-model. The
player then calls the LoE-AIM method with the updated opponent model and
runs it for PLAY-EPISODES. Next, the framework recomputes the closest-model
(Hs) based on the newly updated model returned by the earlier call to the LoE-
AIM method. In these PLAY-EPISODES number of plays, if ever the opponent
took different actions for the same state, Hs is set as stochastic, else Hs is set as
deterministic. Finally the framework makes a conservative check to see whether
the assumptions it made after the first STORE-EPISODES number of plays also
hold after the next PLAY-EPISODES number of plays. If the assumptions hold, it
stores (replaces, if it updated a former stored model) the newly generated model
in the pool. The whole process repeats with every new EPOCH of play.

For experimental evalauation of LoE-AIM-repeated, we restrict the set of
opponents to the two versions of the Godfather together with IGA and WoLF-
IGA. The opponents we choose give a fair representative mix of the targeted class
that LoE-AIM-repeated is designed to exploit. Figure 7 provides a comparative
picture of the results achieved by the LoFE-AIM-repeated in the game of PD and
Chicken respectively. As base case results, we also provide the results achieved
by each of the opponent approaches had they been the approach employed by
the player. We break the results in each game in two individual plots for clarity
of expression, one comparing the performance of LoE-AIM-repeated with the
deterministic opponents (two versions of Godfather) and the other comparing the
same with the MAL opponents (IGA nd WoLF-IGA). We tested our approach
for different values of STORE-EPISODES and PLAY-EPISODES, and finally decided
to fix them at 20 and 80 respectively. As part of our future work, we would like to
have a theoritical bound on the number of episodes we need to explore (STORE-
EPISODES) to get a reasonable approximation of the model. The simulation has
been run for 20 EPOCHs thereby resulting in a run of 2000 episodes in total.
After every EPOCH a new opponent is chosen randomly. The results have been
averaged over 10 instantiations of the start state. In both the plots, LoE-AIM
does better than the benchmark opponents. An interesting thing to note is that
the LoE-AIM learning plot has spikes after every 100 episodes. After every 100
episodes, the learner explores for 20 episodes to build an approximate model of
the new opponent. But once it builds the model, it matches it with a stored
model and starts using the knowledge it learned from past interactions with the
opponent.
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Fig. 7. LoE-AIM-repeated Results

6 Conclusion

In this paper we introduced a general mechanism for learning against memory-
bounded adversaries. Our algorithm LoFE-AIM either explores to gather new
information about the opponent or converges to the best response to the par-
tially learned opponent strategy. We showed detailed results in the games of PD
and Chicken and further backed our claims with results averaged over 6 games
with ordinal payoffs and multiple Nash equilibria and each player favoring a
different Nash equilibrium. Our results show that LoE-AIM generates higher av-
erage rewards than existing MAL approaches against the same set of opponents.
We then introduced a mechanism that enables online learning based on epochs
of play against similar opponents by mining of learned knowledge about the op-
ponent and using it to seed learning when faced against the same opponent in
future interactions.

This research suggests several possible directions for future work. First, the
algorithms presented are limited to targeting opponents with bounded memory.
It would be natural to try to extend the results to opponents that fall in other
parts of the taxonomy shown in Figure 1. For example, it would be interesting to
see how LoE-AIM can be generalized to account for opponents whose next step
strategy depends on the entire history of play (not just k-Markov as assumed



in this paper). An important challenge in that direction would be to devise a
compact finite state representation that captures the history of play.
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