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Big Picture




Consider: Time-discrete process t = 0, 1,2, ... with
® X C RP state space (continuous), A action space
#® Transition probabilities p(x¢41|xt,at) (Markov)

#® Reward function R(x¢41,Xt,at) (immediate payoff)

Define: Utility under a policy (expected sum of rewards)
#® Policy 7 : X — A (deterministic).

® For a given policy 7 the value function (with v € (0,1) being a discount factor)

Vx : VT(x) := E{Z V' R(x¢+1,%x¢, (at))|xo = x}
t>0

(where expectation is wrt the randomness of future events)

Goal: Find a policy 7* with maximum utility, i.e. find 7* := argmax_ V™, an optimal policy.

— Not surprisingly, a vast number of applications: robotics, control, Al, game playing, economics &

finance, operations research ...




In theory: One framework to find 7* is policy iteration:
® Guess initial policy m1. For k=1,2,...
o Compute V7™k (policy evaluation)

» Compute improved policy 741 from V™% (policy improvement)

In practice: quite tricky to get it right. Lots of open questions. Our focus here: policy evaluation.

Approximate policy evaluation (APE):

® Problem #1: State space large. = Function approximation. One good choice: linear

m
Vi(x) = V(x;w) = w; i (x)

=il ~—
— ~ weights basis functions/features (known)

® Problem #2: System dynamics P, R unknown. = Instead: sample transitions

Good news: Given samples and 'good’ features, APE is well understood: TD, LSTD, LSPE, BRM, ...

Bad news: What are 'good’ features? (How can we find them from the data?)
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Overview of the talk

Scope: Dynamic programming/reinforcement learning

® requires repeated solution of least-squares-like problems (policy evaluation)

Problem addressed: How to find good approximate representations for V7?7
#» Without the manual tweaking, trial & error usually plaguing RL?

® Without prior knowledge of the domain? Using just the observed training data?

Our approach: Leverage modern machine learning techniques:
® Non-parametric Gaussian processes (no need to worry about individual basis functions)

#® Principled framework for model selection (Bayesian)

Novelty:
® Model selection in RL (via marginal likelihood optimization for GPTD)

® Framework for feature selection: find & eliminate irrelevant state variables/directions
o improves generalization & prediction performance

o reduces runtime complexity

#® Empirical demonstration: it works! (despite minor violation of theoretical assumptions)
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Background GPTD




Why Use GPs for APE?

Non-parametric: Instead of individual basis functions, specify class of functions via
® Smoothness: how much V(x),V(x’) can vary in relation to distance of x, x’

#® Gaussian process: class of functions -> distribution over functions (Gaussian) (prior)

smoothness -> covariance

Example: Let covariance ky(x,x’) = exp{—h ||x — x||*}

lengthscale h=1000

lengthscale h=1
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Important practical advantages:
#® Easy to use: only have to specify kg or its hyperparameter (e.g. one scalar)

® Linear: efficient + robust
s Closed form solution (simple linear algebra, efficient implementation BLAS/LAPACK)
o Convergence APE

#® Model selection: good values for hyperparameters can be found automatically (from data)
® In practice: good performance; at least equal to well-tuned NNs, but without the hassles ...
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Training data: Observed transitions under
® sequence of states X := [x1,...,Xy], where x; ~ p(- |x;_1,7(x;-1)) 'Inputs’

#® associated rewards r := [r1,...,rp_1], Wwhere r; := R(x;,X;4+1,7(x;)) Targets’

Note: Unlike ordinary regression, in RL we cannot observe samples from V directly. Instead: recursion

value of one state = value of successor state + reward (Bellman equation)

GPTD for stochastic transitions (Engel et al. 2003, 2005)
r|X,0 ~ N(0,Q), where Q:=HKH' +0iHH"), [K];; := ko (x;,%;)

To predict: the function value V(x*) at a new state x*, we have

V(x*)|X,r,x*, 0 ~ N(u(x*),o%(x*))

where _
feature vector weights

~

i{(X*)T i_ITQ—l;
o(x*) = k(x*,x*)—k(x*)TH' Q 1Hk(x*).

£
X

=
|

Note: to make all of this work, all we need to know is data + hyperparameters 0 ( incl. noise)




Of course, it's not that easy ...

Problem: training O(n3), memory O(n?), prediction O(n)

Subset of regressors: (well known for ordinary GPs, here for GPTD)
® Approximate kernel from subset: k(x,x") & Km (X) " Kmi km ('), m < n

® Solve a reduced problem: training O(nm?), memory O(m?), prediction O(m)
(details in paper)

Selection of subset:
® In general, supervised and unsupervised methods possible.
#® Here: unsupervised. Use: ICD of K (dual) < partial Gram-Schmidt (primal)

® Note:
o Number m of selected elements will depend on effective rank of K (eigenspectrum)
» Eigenspectrum of K < complexity of solution (cf. likelihood)

Thus: simpler solutions = better generalization + better runtime (important for RL!)




Model Selection for GPTD




Model selection = finding good hyperparameters @ automatically (in RL currently done manually)

Marginal likelihood for GPTD:
1. Consider likelihood of the data
p(r|X,0) = N (0,Q)

as function of hyperparameters 0: (neg loglike)

1 1
L(O) = =5 log det Q — §rTQ_1r — g log 27

2. Find 0 that minimizes L
® Requires iterative gradient-based solver (like cg)
® Gradient of £ can be obtained in closed form (see paper)

Note: L consists of two conflicting terms
N Complexity log det Q (note: log det = sum of log eigenvals)
® Datafitr'Q !r

Generally: it's either/or
® large bandwidth -> high complexity (large effective rank) -> low data error
® small bandwidth -> low complexity (small effective rank) -> high data error




Automated procedure for hyperparameter selection:

® — can use cov with larger number of hyperparameters

(infeasible to set by hand)

® — better fit regularities of data, remove what is irrelevant

Covariance: We consider three variants of the form:

ko, x') = v exp { =3 6= x)2x =) b+

with scalar hyperparameters vg, b and matrix €2 given by

N
N
N

Note:

°

Variant I: €2 = hlL.
Variant Il: 2 = diag(ai,...,ap).
Variant lll: 2 = MM} + diag(a1,...,ap).

(1), (1) contain adjustable parameters for every state variable

Setting them automatically from data —

Model selection automatically determines their relevance

(I




Experiments




Scenario: Ly

® 2D gridworld (11 x 11 cells) G |

® —1 per step, except when in goal G G >">i

® stochastic transitions (_36 50%

#® y-coordinate irrelevant for predicting V'™ " X
Results:

® sample 500 transitions under optimal policy, GPTD with (1),(1l)

® whole learning was fully automated

true value function using (1), no ARD using (I1), with ARD
Error: 0 (MSE) Error: 0.030 (MSE) Error: 0.019 (MSE)




Results from model selection:

Hyperparameters 0 Complexity Data fit L (smaller is better)
(1 h = 2.89 -2378.2 54.78 -2323.4
(1) a1 = 3.53 ag =107° -2772.7 13.84 -2758.8
(1) without y | a1 =3.53 as =0 -2790.7 13.84 2776.8

Analysis: How a data-adapted covariance reduces complexity of the model
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Even as we add more (irrelevant) state variables, optimization of the marginal likelihood with the ARD kernel

correctly identifies those that matter:

.
6D state x = [:c y x + small noise x + large noise y + small noise y + large noise]

ARD lengthscale (relevance)
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Scenario: a more realistic benchmark
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Analysis:

® No irrelevant state variable but
o (1) finds dominant direction

o (1) is restricted to axis aligned directions (same as (1))

® Consequence:
o (IIl) achieves best generalization with the least complex model

o the least complex model also requires the least computational resources
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Summary (so far):

#® Framework for automatic feature selection/generation in RL
o based on GPs as underlying function approximator
» based on Monte-Carlo rollouts/LSTD(1) as policy evaluation method (=GPTD)
» based on likelihood-based model selection

® Framework doesn’t come with theoretical guarantees (violates some independence assumptions)

®» Framework seems to work in practice

Ongoing work:
® Solve the full optimal control problem, i.e. do policy iteration
» requires policy improvement
o requires exploration (or strategy for sample generation)

# may require extension to joint state-action space (Q-function)
® More complex experiments/simulations.
® Gain more theoretical insights, e.g. when will GPTD fail?
® Compare with other policy evaluation methods, like LSTD, LSPE, ...
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