Feature Selection for Value Function
Approximation Using Bayesian Model Selection

Tobias Jung and Peter Stone

Department of Computer Sciences

University of Texas at Austin

{tj ung, pstone}@s. ut exas. edu

Summary: Model Selection for GPTD

Big Picture

Consider: Time-discrete process t = 0, 1,2, ... with
® X C RP state space (continuous), A action space
#® Transition probabilities p(x¢41|xt,at) (Markov)

#® Reward function R(x¢41,Xt,at) (immediate payoff)

Define: Utility under a policy (expected sum of rewards)
#® Policy 7 : X — A (deterministic).

® For a given policy 7 the value function (with v € (0,1) being a discount factor)

Vx : VT(x) := E{Z V' R(x¢+1,%x¢, (at))|xo = x}
t>0

(where expectation is wrt the randomness of future events)

Goal: Find a policy 7* with maximum utility, i.e. find 7* := argmax_ V™, an optimal policy.

— Not surprisingly, a vast number of applications: robotics, control, Al, game playing, economics &

finance, operations research ...

In theory: One framework to find 7* is policy iteration:
® Guess initial policy m1. For k=1,2,...
o Compute V7™k (policy evaluation)

» Compute improved policy 741 from V™% (policy improvement)

In practice: quite tricky to get it right. Lots of open questions. Our focus here: policy evaluation.

Approximate policy evaluation (APE):

® Problem #1: State space large. = Function approximation. One good choice: linear

m
Vi(x) = V(x;w) = w; i (x)

=il ~—
— ~ weights basis functions/features (known)

® Problem #2: System dynamics P, R unknown. = Instead: sample transitions

Good news: Given samples and 'good’ features, APE is well understood: TD, LSTD, LSPE, BRM, ...

Bad news: What are 'good’ features? (How can we find them from the data?)

N\
N

RN
NN
R
SN
SN

X R

4 -8 angular velocity 4 -8 angular velocity

angle angle

True value function Manual selection: too smooth
Error: 0 (MSE) Error: 82.69 (MSE)

77
22077771
L1

777/

4 -8 angular velocity 4 -8 angular velocity

angle angle

Manual selection: too complex Automatic model selection
Error: 61.17 (MSE) Error: 12.24 (MSE)

Overview of the talk

Scope: Dynamic programming/reinforcement learning

® requires repeated solution of least-squares-like problems (policy evaluation)

Problem addressed: How to find good approximate representations for V7?7
#» Without the manual tweaking, trial & error usually plaguing RL?

® Without prior knowledge of the domain? Using just the observed training data?

Our approach: Leverage modern machine learning techniques:
® Non-parametric Gaussian processes (no need to worry about individual basis functions)

#® Principled framework for model selection (Bayesian)

Novelty:
® Model selection in RL (via marginal likelihood optimization for GPTD)

® Framework for feature selection: find & eliminate irrelevant state variables/directions
o improves generalization & prediction performance

o reduces runtime complexity

#® Empirical demonstration: it works! (despite minor violation of theoretical assumptions)

Feature Selection for VFA Using GTPD — ECML 9/10/09 — p.6/21

Background GPTD

Why Use GPs for APE?

Non-parametric: Instead of individual basis functions, specify class of functions via
® Smoothness: how much V(x),V(x’) can vary in relation to distance of x, x’

#® Gaussian process: class of functions -> distribution over functions (Gaussian) (prior)

smoothness -> covariance

Example: Let covariance ky(x,x’) = exp{—h ||x — x||*}

lengthscale h=1000

lengthscale h=1

D&

S N\
OB

Important practical advantages:
#® Easy to use: only have to specify kg or its hyperparameter (e.g. one scalar)

® Linear: efficient + robust
s Closed form solution (simple linear algebra, efficient implementation BLAS/LAPACK)
o Convergence APE

#® Model selection: good values for hyperparameters can be found automatically (from data)
® In practice: good performance; at least equal to well-tuned NNs, but without the hassles ...

Feature Selection for VFA Using GTPD — ECML 9/10/09 — p.8/21

Training data: Observed transitions under
® sequence of states X := [x1,...,Xy], where x; ~ p(- |x;_1,7(x;-1)) 'Inputs’

#® associated rewards r := [r1,...,rp_1], Wwhere r; := R(x;,X;4+1,7(x;)) Targets’

Note: Unlike ordinary regression, in RL we cannot observe samples from V directly. Instead: recursion

value of one state = value of successor state + reward (Bellman equation)

GPTD for stochastic transitions (Engel et al. 2003, 2005)
r|X,0 ~ N(0,Q), where Q:=HKH' +0iHH"), [K];; := ko (x;,%;)

To predict: the function value V(x*) at a new state x*, we have

V(x*)|X,r,x*, 0 ~ N(u(x*),o%(x*))

where _
feature vector weights

~

i{(X*)T i_ITQ—l;
o(x*) = k(x*,x*)—k(x*)TH' Q 1Hk(x*).

£
X

=
|

Note: to make all of this work, all we need to know is data + hyperparameters 0 (incl. noise)

Of course, it's not that easy ...

Problem: training O(n3), memory O(n?), prediction O(n)

Subset of regressors: (well known for ordinary GPs, here for GPTD)
® Approximate kernel from subset: k(x,x") & Km (X) " Kmi km ('), m < n

® Solve a reduced problem: training O(nm?), memory O(m?), prediction O(m)
(details in paper)

Selection of subset:
® In general, supervised and unsupervised methods possible.
#® Here: unsupervised. Use: ICD of K (dual) < partial Gram-Schmidt (primal)

® Note:
o Number m of selected elements will depend on effective rank of K (eigenspectrum)
» Eigenspectrum of K < complexity of solution (cf. likelihood)

Thus: simpler solutions = better generalization + better runtime (important for RL!)

Model Selection for GPTD

Model selection = finding good hyperparameters @ automatically (in RL currently done manually)

Marginal likelihood for GPTD:
1. Consider likelihood of the data
p(r|X,0) = N (0,Q)

as function of hyperparameters 0: (neg loglike)

1 1
L(O) = =5 log det Q — §rTQ_1r — g log 27

2. Find 0 that minimizes L
® Requires iterative gradient-based solver (like cg)
® Gradient of £ can be obtained in closed form (see paper)

Note: L consists of two conflicting terms
N Complexity log det Q (note: log det = sum of log eigenvals)
® Datafitr'Q !r

Generally: it's either/or
® large bandwidth -> high complexity (large effective rank) -> low data error
® small bandwidth -> low complexity (small effective rank) -> high data error

Automated procedure for hyperparameter selection:

® — can use cov with larger number of hyperparameters

(infeasible to set by hand)

® — better fit regularities of data, remove what is irrelevant

Covariance: We consider three variants of the form:

ko, x') = v exp { =3 6= x)2x =) b+

with scalar hyperparameters vg, b and matrix €2 given by

N
N
N

Note:

°

Variant I: €2 = hlL.
Variant Il: 2 = diag(ai,...,ap).
Variant lll: 2 = MM} + diag(a1,...,ap).

(1), (1) contain adjustable parameters for every state variable

Setting them automatically from data —

Model selection automatically determines their relevance

(I

Experiments

Scenario: Ly

® 2D gridworld (11 x 11 cells) G |

® —1 per step, except when in goal G G >">i

® stochastic transitions (_36 50%

#® y-coordinate irrelevant for predicting V'™ " X
Results:

® sample 500 transitions under optimal policy, GPTD with (1),(1l)

® whole learning was fully automated

true value function using (1), no ARD using (I1), with ARD
Error: 0 (MSE) Error: 0.030 (MSE) Error: 0.019 (MSE)

Results from model selection:

Hyperparameters 0 Complexity Data fit L (smaller is better)
(1 h = 2.89 -2378.2 54.78 -2323.4
(1) a1 = 3.53 ag =107° -2772.7 13.84 -2758.8
(1) without y | a1 =3.53 as =0 -2790.7 13.84 2776.8

Analysis: How a data-adapted covariance reduces complexity of the model

10*

—8— isotropic
—=24— axis—aligned ARD (full)
— + —axis—aligned ARD (reduced) H

Eigenspectrum K

Eigenvalues of K

10°

10°F &

T T
—H&— isotropic

—&— axis—aligned ARD (full)]
— + —axis—aligned ARD (reduced) 4

10" |

10° |

Il Il Il Il
5 10 15 20 T 22
Eigenspectrum Q=(HKH +0

Eigenvalues of

5
HHT)

Q

Even as we add more (irrelevant) state variables, optimization of the marginal likelihood with the ARD kernel

correctly identifies those that matter:

.
6D state x = [:c y x + small noise x + large noise y + small noise y + large noise]

ARD lengthscale (relevance)

10

=
o

o

[EnY
O|

=
o

=
o

=
o

=

|
N

|
w

|
I

10

State variable #1
State variable #2
State variable #3
State variable #4
State variable #5
State variable #6

o

20 25 30
Iterations of likelihood optimization

35

40 45

50

Scenario: a more realistic benchmark

God °

4 -8 angular velocity

ane (optimal Vﬂ'*)

o
Wi \ . ' Nyl
o’o.O,OMN’Q,'II/,(;,.,,, N \ » QN2 =
\ : O 7
i R S
e '///’ll =>

—25].

4 -8 angular velocity 4 -8 angular velocity 4 -8 angular velocity

angle angle angle

(1) Error: 46.36 (MSE) (I1) Error: 48.89 (MSE) (I11) Error: 12.24 (MSE)

Analysis:

® No irrelevant state variable but
o (1) finds dominant direction

o (1) is restricted to axis aligned directions (same as (1))

® Consequence:
o (IIl) achieves best generalization with the least complex model

o the least complex model also requires the least computational resources

T
—8— isotropic 350) - -

—4A— axis—aligned ARD ++ |so_tri)pln_c 4 ARD
— + —factor analysis axis—aligne

— + — factor analysis

required subset size

0 | | | | | | | | | 50—
5 10 15 20 25 30 35 40 45 50 10
Eigenvalue index

desired accuracy (ICD-tol)

eigenspectrum number of elements ICD selects

Summary (so far):

#® Framework for automatic feature selection/generation in RL
o based on GPs as underlying function approximator
» based on Monte-Carlo rollouts/LSTD(1) as policy evaluation method (=GPTD)
» based on likelihood-based model selection

® Framework doesn’t come with theoretical guarantees (violates some independence assumptions)

®» Framework seems to work in practice

Ongoing work:
® Solve the full optimal control problem, i.e. do policy iteration
» requires policy improvement
o requires exploration (or strategy for sample generation)

may require extension to joint state-action space (Q-function)
® More complex experiments/simulations.
® Gain more theoretical insights, e.g. when will GPTD fail?
® Compare with other policy evaluation methods, like LSTD, LSPE, ...

Related work

GPTD:
[1] Y.Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach to
temporal difference learning. ICML 20, 2003
[2] Y.Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. ICML 22,
2005

Adaptation of basis functions in RL:
[3] N. Menache, N. Shimkin, and S. Mannor. Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research, 134:215-238

Other:
[4] P. Keller, S. Mannor, and D. Precup. Automatic basis function construction for approximate
dynamic programming and reinforcement learning. ICML 23, 2006
[5] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for
value-function approximation. ICML 24, 2007
[6] S. Mahadevan and M. Maggioni. Proto-value functions. A Laplacian framework for learning
representation and control in Markov decision processes. JMLR, 8:2169-2231, 2007
[7] J. Reisinger, P. Stone, and R. Mikkulainen. Online kernel selection for Bayesian reinforcement
learning. ICML 25, 2008

Feature Selection for VFA Using GTPD — ECML 9/10/09 — p.21/21

	Big Picture
	Optimization Over Time
	Dynamic Programming/Reinforcement Learning
	Why is choosing 'good' features difficult?
	Overview of the talk
	Background GPTD
	Why Use GPs for APE?
	GPTD (Summary)
	SR Approximation for GPTD
	Model Selection for GPTD
	Model Selection
	Automatic relevance determination
	Experiments
	Experiment 1a: 2D gridworld
	Analysis
	Experiment 1b: 6D gridworld
	Experiment 2: Inverted pendulum
	Analysis
	Finish
	Related work

