Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-like Exploration

Tobias Jung and Peter Stone

Department of Computer Science

University of Texas at Austin

{tjung,pstone}@cs.utexas.edu

Outline:

- Motivation & framework
- 2. Technical implementation
- 3. Experiments

Part I: Motivation & Overview

This is what we want to do (and why)

Objective: dynamic programming

Consider: Time-discrete decision process $t=0,1,2,\ldots$ with

- $m{\mathcal{A}}\subset\mathbb{R}^D$ state space (continuous), \mathcal{A} action space (finite)
- **▶** Transition function $x_{t+1} = f(x_t, a_t)$ (deterministic)
- Reward function $r(x_t, a_t)$ (immediate payoff)

Goal: For any x_0 find actions a_0, a_1, \ldots such that $\sum_{t>0} \gamma^t r(x_t, a_t)$ is maximized.

Dynamic programming: (value iteration)

lacksquare If transitions f and reward r are known, we can solve

$$Q = \mathcal{T}Q, \qquad \text{where } (\mathcal{T}Q)(x,a) := r(x,a) + \gamma \max_{a'} \ Q(f(x,a),a') \quad \forall x,a$$

to obtain Q^* , the optimal value function.

• Once Q^* is calculated, best action in x_t is simply $\operatorname{argmax}_a Q^*(x_t, a)$.

Problems:

- ullet Usually f and r are not known a priori \Longrightarrow learned from samples.
- (State-action space "too big" to do VI,

 will largely ignore this)

⇒ Our goal: want to improve sample efficiency.

Model-based reinforcement learning

Remark: throughout the paper we will assume that the reward function is specified a priori.

⇒ Sample efficiency of RL wholly depends on sample efficiency of model learner.

Overview of the talk

Benefits of model-based RL:

- More sample efficient than model-free (however, also more computationally expensive):
 - Samples only used to learn model, but not as "test-points" in value iteration.
 - Sample efficiency of RL wholly depends on sample efficiency of model learner.
- (Model can be reused to solve different tasks in same environment.)

Model-based RL: requires us to worry about 3 things

- 1. How to implement planner? Here: simple interpolation on grid. (not part of this paper)
- 2. How to implement model-learner?
- 3. How to implement exploration?

Our contribution GP-RMAX: model-learner=Gaussian process regression

- Fully Bayesian: provides natural (un)certainty for each prediction.
- Automated, data-driven hyperparameter selection.
- Framework for feature selection: find & eliminate irrelevant variables/directions:
 - ullet improves generalization & prediction performance \Longrightarrow ${\sf faster}$ ${\sf model}$ ${\sf learning}.$
 - improves uncertainty estimates ⇒ more efficient exploration.
- Experiments indicate highly sample-efficient online RL possible.

Motivation: GP+ARD Can Reduce Need for Exploration

Example: compare three approaches for model learning in a 100×100 gridworld.

After observing 20 transitions, we plot how certain each model is about its predictions for "right":

 $\mathsf{GP} + \mathsf{ARD}$ detects that the y-coordinate is irrelevant \Longrightarrow reduced exploration \Longrightarrow faster learning.

Part II: Technical implementation

This is how we do it

a. Model learning with GPs

Model learning with GPs

General idea:

- Have to learn D-dim transition function $\mathbf{x}' = f(\mathbf{x}, a)$.
- To do this, we combine multiple univariate GPs.

Training:

- lacksquare Data consists of transitions $\{(\mathbf{x}_t, a_t, \mathbf{x}_t')\}_{t=1}^N$, where $\mathbf{x}_t' = f(\mathbf{x}_t, a_t)$ and $\mathbf{x}_t, \mathbf{x}_t' \in \mathbb{R}^D$.
- Train independently one GP for each state variable, action.
 - \mathcal{GP}_{ij} models *i*-th state variable under action a=j

$$\min_{\vec{\theta}_{ij}} \mathcal{L}(\vec{\theta}_{ij}) = -\frac{1}{2} \log \det(\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I}) - \frac{1}{2} \mathbf{y}^{\mathsf{T}} (\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1} \mathbf{y} - \frac{n}{2} \log 2\pi$$

- ullet Once trained, \mathcal{GP}_{ij} produces for any state \mathbf{x}^*
 - Prediction $\tilde{f}_i(\mathbf{x}^*, a = j) := \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*)^{\mathsf{T}}(\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1}\mathbf{y}$.
 - Uncertainty $\tilde{c}_i(\mathbf{x}^*, a = j) := k_{\vec{\theta}_{ij}}(\mathbf{x}^*, \mathbf{x}^*) \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*)^\mathsf{T} (\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1} \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*).$
- At the end, predictions of individual state variables are stacked together.

Automatic relevance determination

Automated procedure for hyperparameter selection:

- can use cov with larger number of hyperparameters (infeasible to set by hand)
- better fit regularities of data, remove what is irrelevant

Covariance: We consider three variants of the form:

$$k_{\theta}(\mathbf{x}, \mathbf{x}') = \mathbf{v_0} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \mathbf{\Omega} (\mathbf{x} - \mathbf{x}') \right\} + \mathbf{b}$$

with scalar hyperparameters v_0, b and matrix Ω given by

- ullet Variant I: $oldsymbol{\Omega}=h\mathbf{I}$.
- Variant II: $\Omega = \operatorname{diag}(a_1, \ldots, a_D)$.
- Variant III: $\Omega = \mathbf{M}_k \mathbf{M}_k^{\mathsf{T}} + \operatorname{diag}(a_1, \dots, a_D)$.

Note:

- (II), (III) contain adjustable parameters for every state variable
- Setting them automatically from data ⇒ Model selection automatically determines their relevance
- Can use likelihood scores to prune irrelevant state variables.

b. Planning (with approximate model)

Value iteration in \mathbb{R}^D

Remember:

- Input to the planner is the current model.
- The current model "produces" for any (x, a)
 - $\tilde{f}(x,a)$, the predicted successor state
 - $\tilde{c}(x,a)$, the associated uncertainty (0=certain, 1=uncertain)

General idea:

- ullet Value iteration on grid Γ_h + multidimensional interpolation.
- Instead of true transition function, simulate transitions with current model.
- As in RMAX integrate "exploration" into value updates. (Nouri & Littman 2009)

Algorithm: iterate $k=1,2,\ldots$ \forall node $\xi_i\in\Gamma_h$, action a

$$Q_{k+1}(\xi_i, a) = (1 - \tilde{c}(\xi_i, a)) \cdot \left[\underbrace{r(\xi_i, a)}_{\text{given a priori}} + \gamma \max_{a'} \underbrace{Q_k(\tilde{f}(\xi_i, a), a')}_{\text{interpolation in } \mathbb{R}^D} \right] + \tilde{c}(\xi_i, a) \cdot V_{\text{MAX}}$$

Note:

- If $\tilde{c}(\xi_i, a) \approx 0$, no exploration.
- If $\tilde{c}(\xi_i, a) \approx 1$, state is artificially made more attractive \Longrightarrow exploration.

Part III: Experiments

These are the results

Experimental setup

Examine what: examine online learning performance of GP-RMAX, that is,

- sample complexity, and
- quality of learned behavior

in various popular benchmark domains.

Domains:

- Mountain car (2D state space)
- Inverted pendulum (2D state space)
- Bicycle balancing (4D state space)
- Acrobot (swing-up) (4D state space)

Contestants:

- Sarsa(λ) + tilecoding
- GP-RMAXexp (exploration where uncertainty is determinded from GP)
- GP-RMAXnoexp (no exploration)
- GP-RMAXgrid (exploration where uncertainty is determined from grid)

Results 2D domains

Results 4D domains

Finish

GP-RMAX:

- Online model-based RL that separates
 - function approximation in the model-learner (which requires samples)
 - from interpolation in planner (which does not require samples).
- Employs GPs with data-driven, automatic hyperparameter selection (feature selection):
 - improves generalization & prediction performance \improves faster model learning
 - improves uncertainty estimates \improve more efficient exploration.
- \blacksquare Large gains over model-free RL possible (if model learning is "easier" than VF learning).

Limitations & future work:

- Major problem: planner relies on global value iteration
 - A naive grid is limited to low dimensionality.
 - More fancy grids (sparse, adaptive) might scale to higher dimensionality, but this is largely open research.
- Minor problems: doing away with our simplifying assumptions
 - deterministic state transitions (experiments done with well-behaved simulations)
 - known reward function
 - discrete (finite) actions

Related work

Closely related:

- [1] A. Nouri and M. L. Littman. Dimension reduction and its application to model-based exploration in continuous spaces. ECML, 2010
- [2] S. Davies. Multidimensional triangulation and interpolation for reinforcement learning. NIPS, 1996.
- [3] T. Hester, M. Quinlan, and P. Stone. Generalized Model Learning for Reinforcement Learning on a Humanoid Robot. ICRA, 2010.
- [4] N. K. Jong and P. Stone. Model-based exploration in continuous state spaces. In: 7th Symposium on Abstraction, Reformulation and Approximation, 2007.

Related:

- [5] A. Bernstein and N. Shimkin. Adaptive-resolution reinformcement learning with efficient exploration. Machine Learning (published online 5 May 2010).
- [6] R. Brafman and M. Tennenholtz. R-MAX, a general polynomial time algorithm for near-optimal reinforcement learning. JMLR, 3:213-231, 2002.
- [7] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic programming. Neurocomputing, 72(7-9):1508-1524, 2009.
- [8] L. Li, M. L. Littman, and C. R. Mansley. Online exploration in least-squares policy iteration. AAMAS, 2009
- [9] A. Nouri and M. L. Littman. Multi-resolution exploration in continuous spaces. NIPS, 2008