Gaussian Processes for Sample Efficient
Reinforcement Learning with RMAX-like
Exploration

Tobias Jung and Peter Stone

Department of Computer Science

University of Texas at Austin

{tj ung, pstone}@s. ut exas. edu

Outline;
1. Motivation & framework
2. Technical implementation

3. Experiments

Part |:
Motivation & Overview

This is what we want to do (and why)

Consider: Time-discrete decision processt = 0,1, 2, ... with
® X C RP state space (continuous), A action space (finite)
#® Transition function x¢4+1 = f(xt,at) (deterministic)

#® Reward function r(z¢, at) (immediate payoff)

Goal: For any zg find actions ag, a1, ... such that >, v'r(x¢, at) is maximized.

Dynamic programming: (value iteration)

® |f transitions f and reward r are known, we can solve

Q=TQ, where (TQ)(x,a) := r(z,a) + ymax Q(f(z,a),a’) Vz,a

to obtain ™, the optimal value function.

® Once Q* is calculated, best action in z¢ is simply argmax, Q*(z¢, a).

Problems:

® Usually f and r are not known a priori =—> learned from samples.

& (State-action space ‘“too big’ to do VI, < will largely ignore this)

—> Our goal: want to improve sample efficiency.

Model-based reinforcement learning

next state, reward

Model-learner

(Gaussian process)
(requires samples)

predict transition
+

say which part of the

<< .
Environment [
observe current state perform action
‘ Ii) Agent <
add transition get best action/explore
N
1 1
: :
i Memory ;
I (stores all transitions) -
1 1
: E_ call when updated
E update every K steps v oo ooooTTEEER '
1
1
; \4
: queries
i
1
1
1
1
1
1
1
1
1

world still needs to be

explored (use approximate model to

solve exactly associated Q)

Remark: throughout the paper we will assume that the reward function is specified a priori.

—> Sample efficiency of RL wholly depends on sample efficiency of model learner.

GP-RMAX — ECML 09/21/10 — p.4/18

Benefits of model-based RL:

® More sample efficient than model-free (however, also more computationally expensive) :
o Samples only used to learn model, but not as “test-points’ in value iteration.
o Sample efficiency of RL wholly depends on sample efficiency of model learner.

® (Model can be reused to solve different tasks in same environment.)

Model-based RL: requires us to worry about 3 things
1. How to implement planner? Here: simple interpolation on grid. (not part of this paper)
2. How to implement model-learner?

3. How to implement exploration?

Our contribution GP-RMAX: model-learner=Gaussian process regression
#® Fully Bayesian: provides natural (un)certainty for each prediction.
® Automated, data-driven hyperparameter selection.

#® Framework for feature selection: find & eliminate irrelevant variables/directions:
o improves generalization & prediction performance —- faster model learning.

® improves uncertainty estimates =—> more efficient exploration.

® Experiments indicate highly sample-efficient online RL possible.

Motivation: GP+ARD Can Reduce Need for Exploration

Example: compare three approaches for model learning in a 100 x 100 gridworld.

100 x 100 cells

Goal ah
Actions: xgzegwt = Told + 0.01
right .
— T yne%u - Yold
Right Up ngw e Told
Start U
ar yngw = Yold + 0.01

After observing 20 transitions, we plot how certain each model is about its predictions for “right":

1 1 '
0.9 .
0.9 0.07
0.8 . 0.8
0.06
0.7 7 0.7
0.05
@ 0.6 A o 0.6
g 2
gos . gos 0.04
g g
> 04 - > 0.4
. 0.03
0.3 . 0.3
0.02
0.2 R 0.2
0.01
0.1 .
° 0.1 °
()d s 0
0.2 0.4) 0.6 0.8 1 0.8 1
x coordinate

0 0.2 0.4 0.6
x coordinate

0

10 x 10 grid Hand-tuned uniform RBF GP with ARD kernel

GP+ARD detects that the y-coordinate is irrelevant = reduced exploration = faster learning.

GP-RMAX — ECML 09/21/10 — p.6/18

Part Il
Technical implementation

This is how we do it

a. Model learning with GPs

General idea:
#® Have to learn D-dim transition function x’ = f(x,a).

® To do this, we combine multiple univariate GPs.

Training:
® Data consists of transitions {(x¢, at,x})}Y |, where x}, = f(x¢,a¢) and x¢,x; € RP.

® Train independently one GP for each state variable, action.
o GP;; models i-th state variable under action a = j

s GP;; has hyperparameters 9_;-3- found from minimizing marginal likelihood

: ~ 1 1 _ n
Igliljpﬁ(eij) =3 log det(Ke—»ij +ol) — §yT(K§ij + o)ty — 5 log 27

» Once trained, G'P;; produces for any state x*

s Prediction fi(x*,a = j) := kg,) (Kg, —I—JI)
ij

s Uncertainty ¢;(x*,a = j) := kg (x*,x") — (x)T(K~ -+ O'I)_lké*. (x*).
1] 1]

® At the end, predictions of individual state variables are stacked together.

Automated procedure for hyperparameter selection:
¥

o

—> can use cov with larger number of hyperparameters
(infeasible to set by hand)

—> better fit regularities of data, remove what is irrelevant

Covariance: We consider three variants of the form:

ko, x') = v exp { =3 6= x)2x =)} + 0

with scalar hyperparameters vg, b and matrix €2 given by

N
N
N

Note:

°

Variant I: €2 = hlL.
Variant Il: 2 = diag(ai,...,ap).

Variant lll: 2 = MM} + diag(a1,...,ap).

(1), (1) contain adjustable parameters for every state variable

Setting them automatically from data —
Model selection automatically determines their relevance

Can use likelihood scores to prune irrelevant state variables.

[()

b

>

b oan w
u

b. Planning (with approximate model)

Remember:
® Input to the planner is the current model.

® The current model “produces” for any (z, a)

~

s f(z,a), the predicted successor state

o ¢&(x,a), the associated uncertainty (O=certain, 1=uncertain)

General idea:
® Value iteration on grid I';, + multidimensional interpolation.
® Instead of true transition function, simulate transitions with current model.

® As in RMAX integrate “exploration” into value updates. (Nouri & Littman 2009)

Algorithm: iterate kK = 1,2,...: ¥V node §; € '}, action a

Qu+1(€i,a) = (1= &, @) - | 7(60,a) +ymax Qu(f(§ia),) | + (&, a) - Viaax

given a priori interpolation in RL

Note:
® If ¢(&;,a) = 0, no exploration.

® If ¢(&;,a) =~ 1, state is artificially made more attractive = exploration.

Part Il
Experiments

These are the results

Examine what: examine online learning performance of GP-RMAX, that is,
® sample complexity, and
® quality of learned behavior

in various popular benchmark domains.

Domains:
® Mountain car (2D state space)
#® |Inverted pendulum (2D state space)
#® Bicycle balancing (4D state space)
® Acrobot (swing-up) (4D state space)
Contestants:

#® Sarsa(\) + tilecoding
GP-RMAXexp (exploration where uncertainty is determinded from GP)

GP-RMAXnoexp (no exploration)

o o @

GP-RMAXgrid (exploration where uncertainty is determined from grid)

Results 2D domains

500

450

400

Mountain car (GP-RMAX)

optimal

—&— GP-RMAX exp

—&— GP-RMAX noexp
GP-RMAX grid5

—*— GP-RMAX grid10

500

4501

400+

Mountain car (Sarsa)

optimal
Sarsa(A) Tilecoding 10
Sarsa(A) Tilecoding 20

© @
o] o]
R K%)
~ 350 ~ 350
2 2
(@) o
= 300 = 3001
S S
o 250 © 2501
8 8
a g
5 200 5 2001
N n
150 150
100 100 > ' >
0 5 10 15 20 0 200 400 600 800 1000
Episodes Episodes
Inverted pendulum (GP-RMAX) Inverted pendulum (Sarsa)
0 1 0 T T
_50 o
[]
@ -200 optimal @ -150}
5 —— GP-RMAX exp 5
S —A— GP-RMAX noexp S ~200¢ optimal
£ -300 : - =)
° GP-RMAX gr!d5 o -250r Sarsa(A) Tilecoding 10 -
g GP-RMAX grid10 g Sarsa()) Tilecoding 40
T -400 : T —-3001 1
I <
o S —-350 .
F -500 1 =
-400¢} .
_600 i i i _450 I I I I
0 5 10 15 20 0 100 200 300 400 500
Episodes Episodes

GP-RMAX — ECML 09/21/10 — p.15/18

Results 4D domains

Total reward (higher is better)

-10

-12

Bicycle balancing (GP—-RMAX)

optimal
—o— GP-RMAX exp

—A— GP-RMAX noexp
—=— GP-RMAX grid5

Total reward (higher is better)

-10

=12

Bicycle balancing (Sarsa)

optimal
Sarsa(A) Tilecoding 7
Sarsa(\) Tilecoding 10| 7

Steps to goal (lower is better)

_14 | | | Il _14 | | | |
0 10 20 30 40 50 0 50 100 150 200 250
Episodes Episodes
Acrobot (GP-RMAX) Acrobot (Sarsa)
500 \ \ \ 500 ‘ ‘
optimal** optimal**
450 . —&— GP-RMAX exp |1 450 Sarsa(A) Tilecoding 7 |]
400 —A— GP-RMAX noexp| 400 Sarsa()) Tilecoding 20|
—#— GP-RMAX grid5
350 350 .

300
250
200
150
100

50
0

20

40 60 80 100

Episodes

Steps to goal (lower is better)

300
250
200
150
100

50
0

200 300 400 500
Episodes

GP-RMAX — ECML 09/21/10 — p.16/18

GP-RMAX:
® Online model-based RL that separates

o function approximation in the model-learner (which requires samples)

s from interpolation in planner (which does not require samples).

® Employs GPs with data-driven, automatic hyperparameter selection (feature selection):
» improves generalization & prediction performance —- faster model learning

improves uncertainty estimates —> more efficient exploration.

® — large gains over model-free RL possible (if model learning is “easier’” than VF learning).

Limitations & future work:

® Major problem: planner relies on global value iteration
» A naive grid is limited to low dimensionality.
o More fancy grids (sparse, adaptive) might scale to higher dimensionality, but this is
largely open research.
® Minor problems: doing away with our simplifying assumptions
» deterministic state transitions (experiments done with well-behaved simulations)
o known reward function

o discrete (finite) actions

Related work

Closely related:
[1] A. Nouri and M. L. Littman. Dimension reduction and its application to model-based
exploration in continuous spaces. ECML, 2010
[2] S. Davies. Multidimensional triangulation and interpolation for reinforcement learning. NIPS,
1996.
[3] T. Hester, M. Quinlan, and P. Stone. Generalized Model Learning for Reinforcement Learning
on a Humanoid Robot. ICRA, 2010.
[4] N. K. Jong and P. Stone. Model-based exploration in continuous state spaces. In: 7th
Symposium on Abstraction, Reformulation and Approximation, 2007.

Related:
[5] A. Bernstein and N. Shimkin. Adaptive-resolution reinformcement learning with efficient
exploration. Machine Learning (published online 5 May 2010).
[6] R. Brafman and M. Tennenholtz. R-MAX, a general polynomial time algorithm for
near-optimal reinforcement learning. JMLR, 3:213-231, 2002.
[7] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7-9):1508-1524, 2009.
[8] L. Li, M. L. Littman, and C. R. Mansley. Online exploration in least-squares policy iteration.
AAMAS, 2009
[9] A. Nouri and M. L. Littman. Multi-resolution exploration in continuous spaces. NIPS, 2008

GP-RMAX — ECML 09/21/10 — p.18/18

	Part I: \ Motivation & Overview \ vspace *{2cm} artemis {This is what we want to do (and why)}

	Objective: dynamic programming
	Model-based reinforcement learning
	Overview of the talk
	Motivation: GP+ARD Can Reduce Need for Exploration
	Part II: \ Technical implementation \ vspace *{2cm} artemis {This is how we do it}
	a. Model learning with GPs
	Model learning with GPs
	Automatic relevance determination
	b. Planning (with approximate model)
	Value iteration in $mathbbm R^D$
	Part III: \ Experiments \ vspace *{2cm} artemis {These are the results}
	Experimental setup
	Results 2D domains
	Results 4D domains
	Finish
	Related work

