
To appear in Proceedings of the 5th Workshop on Humanoid Soccer Robots at Humanoids 2010,
Nashville, TN, USA, December 2010.

Optimizing Interdependent Skills for Simulated 3D Humanoid Robot Soccer

Daniel Urieli, Patrick MacAlpine, Shivaram Kalyanakrishnan, Yinon Bentor and Peter Stone

Department of Computer Science, The University of Texas at Austin

{urieli,patmac,shivaram,yinon,pstone}@cs.utexas.edu

Abstract—In several realistic domains an agent’s behavior
is composed of multiple interdependent skills. For example,
consider a humanoid robot that must play soccer, as is the
focus of this paper. In order to succeed, it is clear that the
robot needs to walk quickly, turn sharply, and kick the ball
far. However, these individual skills are ineffective if the robot
falls down when switching from walking to turning, or if it
cannot position itself behind the ball for a kick.

This paper presents a learning architecture for a humanoid
robot soccer agent that has been fully deployed and tested
within the RoboCup 3D simulation environment. First, we
demonstrate that individual skills such as walking and turning
can be parameterized and optimized to match the best per-
formance statistics reported in the literature. These results are
achieved through effective use of the CMA-ES optimization
algorithm. Next, we describe a framework for optimizing
skills in conjunction with one another, a little-understood
problem with substantial practical significance. Over several
phases of learning, a total of roughly 100–150 parameters
are optimized. Detailed experiments show that an agent thus
optimized performs comparably with the top teams from the
RoboCup 2010 competitions, while taking relatively few man-
hours for development.

I. INTRODUCTION

As agents gain complexity and autonomy, automatic learn-

ing and optimization methods become attractive, as (a)

they can improve and refine human intuition, especially

in complex, dynamic environments, and (b) they demand

significantly less labor to adapt to changes in the agent and

environment. As most complex systems naturally decompose

into smaller sub-units, for learning within such systems, it

becomes convenient, even beneficial, to explicitly recognize

such decomposition. In this paper we investigate the learning

of agent behavior that can be decomposed into a sequence of

atomic skills. Specifically we focus on optimizing multiple

skills within each agent, and present a learning architecture

for a humanoid robot soccer agent, which is fully deployed

and tested within the RoboCup [3] 3D simulation environ-

ment.

In general, factors such as nonstationarity make it hard to

provide strong theoretical guarantees when learning multi-

ple behaviors. Therefore it becomes relevant to investigate

such learning through empirical means. Our case study is

performed on a complex domain, with realistic physics,

state noise, multi-dimensional actions, and real-time control.

In our test domain, teams of six autonomous humanoid

robots play soccer in a physically realistic environment.

Although each robot is ultimately controlled through low-

level commands to its joint motors, we devise primitives

for skills such as walking, turning, and kicking. In turn,

such skills are strung together for implementing higher-level

behaviors such as GoToTarget() and DriveBallToGoal(). It is

quite clear that a behavior such as DriveBallToGoal() will be

more successful if the robot can walk fast, turn quickly and

sharply, and kick the ball with speed and accuracy. On the

other hand, a very fast walk might tend to lead to a fall

when transitioning into a turn; kicks lose their potency if

the robot cannot accurately position behind the ball through

precise side-walking and turning. The key idea in this paper

is that skills can be optimized while respecting the tight

coupling induced over them by high-level behaviors.

Robot soccer has served as an excellent platform for

testing learning scenarios in which multiple skills, decisions,

and controls have to be learned by a single agent, and agents

themselves have to cooperate or compete. Although there is

a rich literature based on this domain, most reported work

primarily addresses (a) low-level concerns such as perception

and motor control [5], [16], or (b) high-level decision-

making problems [10], [18]. Thus the first contribution

of our paper is a general methodology for optimizing the

intermediate stratum of skills in an agent’s control architec-

ture. The volume of the space thus optimized (hundreds of

parameters) marks a qualitative shift from a predominantly

hand-coded approach to one significantly based on learning.

A second contribution of our paper is the light it sheds

on designing objective functions (“fitness” functions) for

optimization. On the one hand, “raw” statistics such as the

precision and speed of soccer skills do not yield skills that

operate well in unison. On the other hand, true objectives

such as goal difference and win-loss record are too noisy to

use effectively as a signal for learning. We demonstrate that

carefully designed sequences of skills — such as those used

by DriveBallToGoal() — can promote learning to achieve

high-quality performance.

Finally, as an empirical contribution, we conduct detailed

and extensive experiments related to our investigation. In

particular, we compare several existing optimization meth-

ods, and find CMA-ES [8], a relatively recent addition to

the literature, to be the most robust and effective. We also

show evidence that conjunctive skill optimization can yield

a very competitive soccer agent, which ranks among the top

8 teams from the RoboCup 2010 competitions.

The remainder of this paper is organized as follows.

In Section II we describe our domain and agent’s skills.

Section III describes how individual skills are parameterized

and set up for optimization, and reports the skill performance

achieved through optimization. Section IV then presents

our methodology for optimizing these skills in sequence.

Comprehensive experimental results are presented both in

Section III and in Section V. We conclude the paper with a

summary and discussion in Section VI.

II. DOMAIN AND AGENT’S SKILLS

The RoboCup 3D simulation environment is based on

SimSpark[4], a generic physical multiagent system simula-

tor. SimSpark uses the Open Dynamics Engine[2] (ODE)

library for its realistic simulation of rigid body dynamics

with collision detection and friction. ODE also provides

support for the modeling of advanced motorized hinge joints

used in the humanoid agents.

The robot agents in the simulation are homogeneous and

are modeled after the Aldebaran Nao robot [1], which has

a height of about 57 cm, and a mass of 4.5 kg. The agents

interact with the simulator by sending actuation commands

and receiving perceptual information. Each robot has 22

degrees of freedom: six in each leg, four in each arm,

and two in the neck. In order to monitor and control its

hinge joints, an agent is equipped with joint perceptors and

effectors. Joint perceptors provide the agent with noise-free

angular measurements every simulation cycle (20ms), while

joint effectors allow the agent to specify the direction and

speed (torque) in which to move a joint. Although there is no

intentional noise in actuation, there is slight actuation noise

that results from approximations in the physics engine and

the need to constrain computations to be performed in real-

time. Visual information about the environment is given to

an agent every third simulation cycle (60ms) through noisy

measurements of the distance and angle to objects within a

restricted vision cone (120
◦). Agents are also outfitted with

noisy accelerometer and gyroscope perceptors as well as

force resistance perceptors on both feet. Additionally agents

can communicate with each other every other simulation

cycle (40ms) by sending messages limited to 20 bytes.

At the lowest level of control, each robot is operated

by specifying torques to its joints. As a more convenient

abstraction, we implement PID controllers for each joint,

which take as input a desired target angle and compute the

appropriate torque for achieving it. In turn, skills use the

PID controllers as primitives. The set of skills needed to

develop a successful agent, and the focus of this paper, in-

clude walking (forwards, backwards, and sideways), turning,

kicking, standing, goalie-diving and getting up after falling.

Further, it is useful to explicitly breakdown skills such as

walking forwards into several different speeds. Whereas we

are able to manually program fairly successful goalie-diving

and getting up skills, effective locomotion and kicking skills

are harder to develop manually: in contrast to getting up

and goalie-diving, successful locomotion and kicking require

a combination of dynamic balancing, precision and high

speed. Locomotion skills further need to be able to transition

well to and from other skills. Thus, for these skills we devise

templates with parameters, which are subsequently learned.

Bipedal locomotion has long been an active area of

research. Pratt’s thesis [15] provides an excellent overview

of the field; Katić and Vukobratović [11] specifically survey

intelligent control techniques used therein. A majority of

the literature on bipedal locomotion focuses on model-based

approaches. For instance, a humanoid robot is commonly

modeled as an inverted pendulum [9], whose dynamics can

be analyzed and used to plan trajectories. Recent approaches

have also considered learning more complicated models,

such as Poincaré maps [14]. Analytical modeling has indeed

resulted in classical techniques — such as monitoring the

“Zero Moment Point” of the robot [19] — which can resist

noise in sensing, planning, and actuation, and small irreg-

ularities on the walking surface [13]. Even without explicit

modeling of the dynamics, deviations from the intended

trajectory can be constantly corrected through “closed-loop”

control [7].

“Open-loop” approaches that do not rely on corrective

feedback are typically simpler to implement and tend to

yield faster walks, even if they are less robust to distur-

bances. However, in our simulation there is only minor

noise in sensing or actuating joint angles (note that vision

percepts are still noisy), and the soccer field is perfectly

flat. Consequently we find it effective to develop open-

loop skills for our agent. It must be noted that although

the absence of significant actuation noise simplifies skill-

development in our 3D simulation environment, in com-

pensation the domain necessitates the development of an

entire suite of soccer-related skills: multi-directional walks,

turns, and kicks. Thus simulation enables us to investigate

a concept that is relatively unexplored in the mainstream

bipedal control literature. Even the few learning approaches

within the 3D simulation environment have mainly been in

the context of straight walking [17].

Each of our open-loop skills is implemented as a periodic

state machine with multiple key frames, where a key frame is

a static pose of fixed joint positions. To provide us flexibility

in designing and parameterizing skills, we design an intuitive

skill description language that facilitates the specification of

keyframes and the waiting times between them. Below is an

illustrative example describing the WalkFront skill (further

explained in Section III).

SKILL WALK_FRONT

KEYFRAME 1

reset ARM_LEFT ARM_RIGHT LEG_LEFT LEG_RIGHT end

setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...

setTarget JOINT3 4.3 JOINT4 52.5

wait 0.08

KEYFRAME 2

increaseTarget JOINT1 -2 JOINT2 7 ...

setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)

wait 0.08

.

.

.

As seen above, joint angle values can either be numbers or

be parameterized as $<varname>, where <varname> is

a variable value that can be loaded after being learned. Note

that due to left-right symmetry, some of these parameters

influence multiple keyframes.

Before proceeding to details about our skill optimization,

it is relevant to observe that alternative parameterizations

of skills could also be conceived. For example, rather than

direct control of joints, foot trajectories could be parameter-

ized and tracked using inverse kinematics [12]. We plan to

explore such variations in future work.

III. OPTIMIZING INDIVIDUAL SKILLS

In this section we describe how we optimize a for-

ward walk, which essentially illustrates the basic procedure

adopted for optimizing any of our skills. As a starting point

for subsequent optimization, we achieve a relatively stable

front walk by programming the robot to raise its left and

right feet alternately to a certain height above the ground,

swinging them slightly forward, and then retracting them to

their initial configurations. This hand-coding exercise results

in slow but stable skills, which are not very competitive

themselves, but which serve as useful seeds for further

optimization. Our walk consists of four key frames through

which the agent periodically loops. General intuition for a

straight and stable walk suggests that the legs should move

in a symmetric and periodic manner. For this reason the

joint positions of our first two frames are the same as our

next two, except that the positions of the left and right legs

are mirrored. Based on informal experimentation we decide

to optimize three joint positions in each leg for each key

frame as they appear to be the most meaningful for a forward

walk. These joints are the hip moving the leg forward and

backwards, knee, and ankle moving the foot up and down.

This provides a 12-dimensional parameter space to optimize,

as we have 6 joint positions for each frame (3 for each

leg), across two frames (as frames 3 and 4 are just mirrored

values of frames 1 and 2). See Figure 1 for screenshots

with the joints we are optimizing circled. We set the time

to transition between key frames to be 80ms. This time was

also determined by informal experimentation and gives the

agent a walk cycle duration of 320ms (4x80ms).

Fig. 1. Nao robot walk frames with joints we are optimizing circled.

In order to evaluate the performance of a forward walk,

we measure the distance in the forward direction the agent

can travel in 15 seconds. Our performance metric of dis-

placement in the forward direction not only rewards speed,

but it also encourages straight walks (as the shortest dis-

tance to walk is a straight line) and penalizes for lack of

robustness (if the agent falls over it takes several seconds

for it to stand up again). These measurements are taken in

an automated fashion using a distributed computing cluster.

Our setup on the distributed computing cluster allows us

to run massive amounts of simulations in parallel, which is

necessary in order for our learning algorithms to complete in

a reasonable amount of time. We conducted a comprehensive

comparison between four learning algorithms: hill climbing

(HC), cross-entropy method (CEM) [6], genetic algorithm

(GA), and covariance matrix adaptation evolution strategy

(CMA-ES) [8]. While the details of the comparison are left

out of this paper due to space constrains, the main result

was that CMA-ES performed significantly better then all the

other algorithms. Table I shows the best results we achieve

when optimizing each of our main skills using the method

described above and using the CMA-ES algorithm. To the

best of our knowledge, these results are among the fastest

that have been achieved in our domain [17].

IV. OPTIMIZING SEQUENCES OF SKILLS

Whereas the results from Table I signify that our param-

eterized skills can effectively be optimized using CMA-ES,

the job of deploying these skills to play soccer remains

unfinished. Fast locomotion skills, however stable they are

when executed individually, result in frequent falls of the

robot if integrated directly. To see why, consider a typical

log of the skills invoked (every 320ms, as described in

the previous section) by the agent during soccer play: . . .

WalkFront, WalkFront, Turn(R), Turn(R), Turn(R), WalkFront,

WalkFront, WalkFront, Turn(L), Turn(L), WalkBack, WalkBack,

. . . . The trace shows that skills are highly interleaved,

with frequent transitions between them. In game scenarios,

the same skill is seldom executed for more than a few

consecutive cycles. Therefore, optimizing skills in isolation

does not necessarily benefit their combined operation.

In order to optimize sequences of skills to work together,

carefully designed constraints are necessary. We begin by

revising the evaluation criterion used by the learning process.

Ideally, when learning a skill, it would be best to evaluate it

with respect to our ultimate goal: the team’s win-loss record

or mean goal difference against a set of opponents. However,

as this is an extremely noisy measure, the number of runs

needed in order to obtain reliable performance estimates

becomes impractical. A much less noisy measure, which still

aligns well with the team’s objective, is the time taken by a

single agent to score a goal on an empty field. We denote this

behavior DriveBallToGoal(), and the associated evaluation

metric time-to-score. Pseudo-code for DriveBallToGoal() is

as follows:

function DriveBallToGoal()

if robotDistanceFromBall > threshold_0

getRoughlyBehindBall()

TABLE I

PERFORMANCE STATISTICS FOR VARIOUS SKILLS OPTIMIZED USING

CMA-ES. IN THIS TABLE AND ALL SUBSEQUENT ONES, ENTRIES

WITHIN PARENTHESES CORRESPOND TO ONE STANDARD ERROR.

Skill Statistic Performance

WalkFront Speed 1.07(.00)m/s

WalkBack Speed 1.03(.00)m/s

WalkSide Speed .62(.01)m/s

Turn Angular speed 112.03(.24) ◦/s

Kick Ball displacement 5.09(.07)m

else

chooseKickDirectionAndType()

computeThresholdsForPositioning()

Position to kick / dribble:

if distanceToPosition > threshold_1

walkFront()

elseif robotOffsetFromKickDirection > threshold_2

turn()

elseif lateralLegAlignementWithBall > threshold_3

sideWalk()

else

kickOrDribble()

We use this behavior for our evaluations, as it achieves

a good balance between eliminating noisy effects such as

the actions of other players, while still requiring the agent

to combine its basic skills in a complex, realistic manner.

Later, we show empirical results validating the choice of

time-to-score as an evaluation metric while learning skills.

Several skills are used during a learning evaluation

through DriveBallToGoal(). However, it would be inefficient

to try and learn all of them at once, due to the high

dimensionality of the search space (roughly 100 – 150

parameters). Instead we use a more efficient approach, which

learns one skill (roughly 12 parameters) at a time, while

keeping others fixed. This process results in a sequence

of incremental improvements in the agent, with the crucial

invariant property that at any time all the skills work well

together. In particular the optimization process improves

the agent’s speed while keeping it stable, as falls typically

result in poor time-to-score values. In turn, the amount each

individual skill can be optimized is limited by the need to

cooperate with other skills.

Apart from goalie dives and getting up skills, all the skills

used by our final agent are optimized. Yet, for the purposes

of this paper, we present an isolated study of our optimiza-

tion procedure involving only forward and backward walks,

namely WalkFront and WalkBack, respectively. We start with

a base agent that uses basic, hand-coded versions of these

skills. Let us call this agent A0. Under A0 these skills

are not very fast, but they ensure relative stability during

locomotion and skill transitions. The idea is to use A0 as a

seed for successive optimizations. Figure 2(a) presents a skill

transition diagram, which shows the main skills of agent A0

along with the legal transitions between them (marked by

arrows). Notice that the agent can only invoke Kick if it is

already standing; nor can it transition into a skill other than

Stand after executing Kick. In Figure 2(a) the walking skills

of A0 are suffixed “ S” to denote that they are “slow”.

We improve upon A0 in five incremental steps, each

step creating a new agent based on the agent that resulted

from the previous step. We denote the resulting agents

A1, A2, A3, A4, and A5. The first improvement, A1, is

created from A0 by optimizing “WalkFront S” using CMA-

ES, under the time-to-score measure. Consider that while

WalkFront S is being optimized under this measure, we are

searching for a set of parameters that both improve speed

and maintain stability. The need to maintain stability while

cooperating with all other skills puts multiple constraints

on WalkFront S and therefore limits how fast WalkFront S

can get. We address this problem in A2, by “decoupling”

from WalkFront S an additional skill called WalkFront F

(“F” denoting “fast”). As seen in Figure 2(c), we constrain

the behavior of agent A2 such that WalkFront F can only

be invoked following WalkFront S, and to transition to any

other skills, it must first transition into WalkFront S. The

skills WalkFront S and WalkFront F have exactly the same

template, and initially the same parameter values. However,

optimizing the parameters of WalkFront F after first opti-

mizing WalkFront S (under A1) allows the agent to achieve

greater speed while retaining its stability. These properties

result from the fact that WalkFront F is unconstrained by

most of the skills that constrain WalkFront S.

Results in Section V demonstrate tangible gains consistent

with our progressive refinements from A0 to A1 to A2.

Indeed the trend is carried forward to agents A3 (Figure 2(d))

and A4 (Figure 2(e)), which are obtained based on a similar

decoupling procedure applied to the WalkBack skill. Recall

that agents A1 through A4 are all obtained solely by skill

optimizations of one skill at a time, starting from the seed

agent A0. To obtain our final agent, A5, we take A4 and

manually retune thresholds and the logic for selecting and

invoking our new learned skills in order to best utilize them

to their full potential. For example, a change in skill speeds

can change the robot’s stopping distance, which in turn

affects the threshold for the decision of whether to continue

to WalkFront, as can be seen in the DriveBallToGoal() pseudo-

code. While the tuning is done here manually, it could

potentially be automated and learned. However, in this paper

we focus on skill learning, and leave the learned tuning as

possible future work.1

Note that agents A0 through A5 all use the same skills,

apart from WalkFront and WalkBack. The turns and side

walks used were also optimized in the manner described

above and were already integrated into our agent A0. It is

worth mentioning, however, that time-to-score does not serve

as an ideal fitness measure while optimizing kicks, as the

kick skill is used only a small fraction of time, and most

of the time is spent on locomotion and positioning behind

the ball. Since Kick is only executed after an intermediate

Stand skill, we optimize kicks by starting the robot behind

the ball, using the distance covered by the ball in the kick

direction as an informative evaluation measure.

V. EXPERIMENTAL EVALUATION

In the previous section, we described how we used two

main ideas for learning and optimizing skills: the idea of

optimizing a skill under the constraints of cooperating with

other skills, and the idea of skill decoupling. This section

shows that our skill optimization process achieved tangible

gains, that were reflected directly in the agent’s performance

with respect to its ultimate objective: its win-loss record or

goal difference against a set of opponents.

1Videos showing optimized skills and behavior are provided at the
following URL: http://www.cs.utexas.edu/˜AustinVilla/

sim/3dsimulation/AustinVilla3DSimulationFiles/

2010/html/skilloptimization2010.html.

Turn
Walk
Side

Stand

Walk
Front_S

Walk
Back_S Kick

(a) A0

Turn
Walk
Side

Stand

Walk
Front_S

Walk
Back_S Kick

(b) A1

Turn
Walk
Side

Stand

Front_F
Walk

Walk
Front_S

Walk
Back_S Kick

(c) A2

Turn
Walk
Side

Stand

Front_F
Walk

Walk
Front_S

Walk
Back_S Kick

(d) A3

Turn
Walk
Side

Stand

Front_F
Walk Walk

Back_F

Walk
Front_S

Walk
Back_S Kick

(e) A4

Fig. 2. Constraints on transitions between skills represented as state diagrams. For Agent A0 neither the WalkFront S nor the WalkBack S skills is
optimized; the former is optimized (shown with thick border) under A1. Further skills are added and optimized subsequently under agents A2, A3, and
A4. Agent A5 is identical to A4, except for retuning thresholds and the logic for selecting and invoking our new learned skills.

We ran three sets of experiments, in which we measured

our agent both with respect to the time-to-score measure and

with respect to its actual game performance, and compared

the results with released binaries from RoboCup 2010. In the

first set of experiments we measured the progress achieved

by each step of our optimization process, which started from

the seed agent A0, continued by creating the agents A1-

A4 by optimizing one skill at a time, and finally tuned

A4 to be the final agent A5. Table II shows the results of

playing agents A0-A5 against each other. Each cell in the

table shows the mean goal difference along with the standard

error, averaged over 100 full games. It can be seen that every

agent plays better than its predecessors. This demonstrates

how our skills optimization process directly resulted in better

game performance.

In the second set of experiments we compared the time-

to-score performance of our initial agent A0, our final agent

A5, and a set of released agent binaries from RoboCup 2010.

In each experiment, we placed the ball in the middle of the

field, which is 9m from the goal, and then placed the agent

1 meter behind the ball. We then measured the time it takes

the agent to score a goal. Table III shows the mean time it

takes the agents to score from this position, averaged over

500 runs, along with the standard error. Our agent A5 is

ranked second with a mean time of 34.49 seconds, whereas

the top agent’s mean time to score is 31.08 seconds. Note

that A0 is ranked in the middle of the table with a time

of 63.52. Agents A1–A4, which are not shown in the table

achieved times that are between A0 and A5.

In the third set of experiments, we tested our agents A0

and A5 in playing full games against the released RoboCup

2010 agent binaries. The results are shown in Table IV. The

leftmost column shows the row agent’s rank in RoboCup

2010. The rightmost columns show the results achieved by

agents A0 and A5, when playing against RoboCup binaries.

Each cell shows the mean goal difference between a row

agent and a column agent, averaged over 100 full games,

along with the standard error. Note that negative values (in

bold) mean a positive goal difference for our agent, therefore

the bolded part of the table is where our agent performed

better than the row agent.

Two interesting facts can be observed in Table IV. The

first one is the correlation between the actual game perfor-

mance and the time-to-score measure (Table III). An agent,

whether our agent or another team’s agent, with good game

TABLE II

GAME RESULTS BETWEEN AGENTS A0 THROUGH A5. ENTRIES SHOW

THE GOAL DIFFERENCE (ROW − COLUMN) FROM 10 MINUTE GAMES.

A0 A1 A2 A3 A4

A5 2.11(.10) .77(.10) .70(.10) .58(.09) .48(.08)

A4 1.66(.10) .46(.08) .15(.07) .03(.07)
A3 1.67(.10) .28(.08) .01(.08)
A2 1.33(.10) .20(.07)
A1 1.23(.10)

performance usually had good time-to-score performance.

Recall that while optimizing our agent’s skills, we used

the time-to-score measure along with the DriveBallToGoal()

behavior as a less-noisy alternative for measuring real game

performance. Here we confirmed that while doing so, much

of the complexities of real game scenarios that are relevant

to skills execution were still retained. Therefore the time-

to-score measure is both effective, as it correlates with

game performance, and efficient, due to the reduced noise.

Note that the correlation is not expected to be perfect: in

real games there are factors like decision-making strategies,

formations, defensive tactics and more, that affect the game

performance but do not reflect in the DriveBallToGoal()

behavior. The second interesting fact is that our final agent,

A5, was ranked in the table among the top 8 teams of

RoboCup 2010. As this ranking was achieved mainly using

our skill optimization process, with some additional tuning,

this demonstrates the effectiveness of our suggested method

of optimizing skills under constraints.

VI. SUMMARY AND DISCUSSION

In several practical tasks an agent’s behavior is com-

posed of qualitatively distinct components. Can this natural

decomposition be used as a means to scale learning to

complex tasks? In this paper we presented a successful

case study of doing so in the context of humanoid robot

soccer. In particular we focused on the intermediate “skills”

layer of a soccer agent’s architecture. Together, the skills

of a soccer agent constitute a rich and complex aspect of

behavior, which it would be impractical to optimize as a

single monolithic block. We carefully engineered skills and

rules for transitions, and showed that optimizing components

in an incremental manner could significantly improve perfor-

mance. Each skill has 10–20 parameters; overall the number

of parameters optimized is around 100–150.

We believe our case study is a compelling example for the

methodology of decomposing a large learning problem into

TABLE III

TIME TO SCORE ON AN EMPTY FIELD, STARTING THE CENTER OF THE

FIELD. EACH ROW CORRESPONDS TO A0, A5 OR AN AGENT FROM THE

ROBOCUP 2010 COMPETITION. AVERAGES ARE OVER 500 RUNS.

Agent Time-To-Score/s

Apollo3d 31.08 (1.46)

A5 34.49 (0.89)

RoboCanes 36.18 (1.40)

NaoTH 36.75 (1.63)

UTAustinVilla 37.20 (0.89)

FCPortugal 47.54 (1.94)

SEURedSun 52.11 (2.49)

A0 63.52 (1.05)

Little Green Bats 71.02 (1.96)

FutK 77.89 (4.19)

BeeStanbul 98.56 (3.63)

Nexus3D 152.76 (5.15)

RoboPub 291.86 (1.17)

NomoFC 295.48 (1.32)

Bahia3D 300.01 (0.00)

Alzahra 300.01 (0.00)

TABLE IV

FULL GAME RESULTS, AVERAGED OVER 100 GAMES. EACH ROW

CORRESPONDS TO AN AGENT FROM THE ROBOCUP 2010

COMPETITIONS, WITH ITS RANK THEREIN ACHIEVED. THE TWO

RIGHTMOST COLUMNS CORRESPONDS TO OUR BASE AGENT A0 AND

FINAL AGENT A5. ENTRIES SHOW THE GOAL DIFFERENCE (ROW −

COLUMN) FROM 10 MINUTE GAMES. GOAL DIFFERENCES IN FAVOR OF

A0 AND A5 ARE SHOWN IN BOLD.

Rank Team A0 A5

1 Apollo3d 4.29 (.17) 1.88 (.13)

2 NaoTH 3.79 (0.14) 1.85 (0.10)

4 BoldHearts 3.15 (0.13) 0.08 (0.11)

5-8 SEURedSun 1.93 (0.13) 1.16 (0.1)

5-8 RoboCanes 1.81 (0.12) 0.38 (0.09)

5-8 FCPortugal 1.57 (0.11) -0.43 (0.09)

9-16 UTAustinVilla 1.54 (0.09) -0.9 (0.09)

9-16 FutK 0.23 (0.06) -2.14 (0.1)

9-16 BeeStanbul -0.76 (0.07) -4.08 (0.11)

9-16 Nexus3D -1.67 (0.06) -4.08 (0.09)

9-16 Little Green Bats -1.84 (0.08) -5.0 (0.11)

9-16 NomoFC -3.62 (0.09) -7.07 (0.09)

17-20 Bahia3D -3.59 (0.08) -7.49 (0.1)

17-20 RoboPub -5.25 (0.08) -7.92 (0.1)

17-20 Alzahra -6.39 (0.08) -10.59 (0.09)

components and devising informative objective functions.

Several practical systems resemble a soccer agent’s control

hierarchy, and often are indeed evaluated ultimately through

success (win) and failure (loss). This paper also leads to

recommendations for an optimization framework and exper-

imental support for the CMA-ES algorithm, which can serve

as a useful starting point for related undertakings.

The RoboCup 3D simulation environment engenders the

novel research question of developing a suite of interacting

humanoid robotic skills, a relatively unexplored question

in the literature, which this paper addresses. Our demon-

stration specifically finds appeal for developing humanoid

robot soccer teams by investing significantly in learning and

optimization. Our detailed experimental results provide con-

clusive evidence for the improvements achieved with each

incremental optimization, and the final agent we develop

ranks among the top eight teams from the RoboCup 2010

competitions. The human labor involved in developing our

agent is relatively low compared to the CPU time spent

optimizing skills, which is on the order of 100,000 hours.

In future work we intend to further extend the scope of

learning within our agent by replacing currently hand-coded

components (such as fine positioning and getting up). For

our basic locomotion skills, it is also relevant to consider

alternative parameterizations that involve closed-loop control

and inverse kinematics. Such approaches are likely to even-

tually extend the reach of our learning paradigm to hardware

platforms when using simulators that more precisely model

physical robots.

ACKNOWLEDGEMENTS

We thank Suyog Dutt Jain for his contributions to early versions of this
work. This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF (IIS-
0917122), ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812), and
the FHWA (DTFH61-07-H-00030). This research was also supported in
part by the NSF under CISE Research Infrastructure Grant EIA-0303609.

REFERENCES

[1] Aldebaran Humanoid Robot Nao. http://www.

aldebaran-robotics.com/eng/.
[2] Open Dynamics Engine. http://www.ode.org/.
[3] RoboCup. http://www.robocup.org/.
[4] SimSpark. http://simspark.sourceforge.net/.
[5] S. Behnke, M. Schreiber, J. Stückler, R. Renner, and H. Strasdat. See,

walk, and kick: Humanoid robots start to play soccer, 2006.
[6] P. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A

tutorial on the cross-entropy method. Annals of Operations Research,
134(1):19–67, February 2005.

[7] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng.
Learning cpg-based biped locomotion with a policy gradient method:
Application to a humanoid robot. Int. Journal of Robotics Research,
27(2):213–228, 2008.

[8] N. Hansen. The CMA Evolution Strategy: A Tutorial, January 2009.
[9] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and

H. Hirukawa. Biped walking pattern generation by a simple
three-dimensional inverted pendulum model. Advanced Robotics,
17(2):131–147, 2003.

[10] Shivaram Kalyanakrishnan and Peter Stone. Learning complementary
multiagent behaviors: A case study, 2009. To appear.

[11] D. Katić and M. Vukobratović. Survey of intelligent control tech-
niques for humanoid robots. Journal of Intelligent Robotic Systems,
37(2):117–141, 2003.

[12] N. Kohl and P. Stone. Machine learning for fast quadrupedal
locomotion, 2004.

[13] Ç. Meriçli and M. Veloso. Biped walk learning through playback and
corrective demonstration, 2010. To Appear.

[14] J. Morimoto and C. G. Atkeson. Nonparametric representation
of an approximated poincaré map for learning biped locomotion.
Autonomous Robots, 27(2):131–144, 2009.

[15] J. E. Pratt. Exploiting Inherent Robustness and Natural Dynamics in

the Control of Bipedal Walking Robots. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, June 2000.

[16] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement
learning for robot soccer. Autonomous Robots, 27(1):55–73, 2009.

[17] N. Shafii, L. P. Reis, and N. Lao. Biped walking using coronal and
sagittal movements based on truncated fourier series, January 2010.

[18] P. Stone. Layered Learning in Multi-Agent Systems. PhD thesis,
School of Computer Science, Carnegie Mellon Univerity, Pittsburgh,
PA, USA, December 1998.

[19] M. Vukobratović and B. Borovac. Zero-moment point - thirty five
years of its life. Int. Journal of Humanoid Robotics, 1(1):157–173,
2005.

