
Defining and Using Ideal Teammate and Opponent Agent Models

Peter Stone
AT&T Labs — Research

180 Park Ave., room A273
Florham Park, NJ 07932
pstone@research.att.com

http://www.research.att.com/˜pstone

Patrick Riley and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

fpfr,velosog@cs.cmu.edu
http://www.cs.cmu.edu/f˜pfr,˜mmvg

Abstract
A common challenge for agents in multiagent systems is try-
ing to predict what other agents are going to do in the fu-
ture. Such knowledge can help an agent determine which of
its current action options is most likely to achieve its goals.
There is a long history in adversarial game playing of using a
model of an opponent which assumes that it always acts op-
timally. Our research extends this strategy to adversarial do-
mains in which the agents have incomplete information, noisy
sensors and actuators, and a continuous action space. We
introduce “ideal-model-based behavior outcome prediction”
(IMBBOP) which models the results of other agents’ future
actions in relation to their optimal actions based on an ideal
world model. Our technique also includes a method for re-
laxing this optimality assumption. IMBBOP was a key com-
ponent of our successful CMUNITED-99 simulated robotic
soccer application. We define IMBBOP and illustrate its use
within the simulated robotic soccer domain. We include em-
pirical results demonstrating the effectiveness of IMBBOP.

Introduction
A common challenge for agents in multiagent systems is try-
ing to predict what other agents are going to do in the future.
Such knowledge can help an agent determine which of its
current action options are most likely to help it achieve its
goals.

Ideally, an agent could learn a model of other agents’ be-
havior patterns via direct observation of their past actions.
However, that is only possible when agents have many re-
peated interactions with one another.

We explore the use of agent models in an application
where extensive interactions with a particular agent are not
possible, namely robotic soccer. In robotic soccer tourna-
ments, such as RoboCup (Kitanoet al. 1997), a team of
agents plays against another team for a single, short (typi-
cally 10-minute) period. The opponents’ behaviors are usu-
ally not observable prior to this game and there are not
enough interactions during the game to build a useful model.

In this paper, we introduce “ideal-model-based behav-
ior outcome prediction” (IMBBOP). This technique predicts
an agent’s future actions in relation to the optimal behav-
ior in its given situation. This optimal behavior is agent-
independent and can therefore be computed based solely on

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a model of the world dynamics. IMBBOP does not assume
that the other agentwill act according to the theoretical opti-
mum, but rather characterizes its expected behavior in terms
of deviation from this optimum.

The Application: Goal-Scoring in Soccer

Our IMBBOP implementation is carried out in the sim-
ulated robotic soccer domain using the RoboCup soccer
server (Cortenet al. 1999; Nodaet al. 1998). In this do-
main, there are 22 agents, each acting up to 10 times per
second. Each agent gets local, incomplete perceptory infor-
mation, making it impossible to determine another agent’s
impression of the world state based only upon the actual
world state. Sensors, actuators, and world dynamics are all
noisy. However, both the ball and players have maximum
speeds enforced by the simulation.

Over the past several years, we have created teams of
soccer-playing agents for use in the RoboCup simulator. The
teams are all called “CMUnited-XX,” where “XX” indicates
the year in which they first participated in the RoboCup in-
ternational simulator tournament. For example, the most re-
cent incarnation, “CMUNITED-99,” was introduced at the
RoboCup-99 tournament in Stockholm, Sweden which was
held in August of 1999.

Although CMUNITED-98 (Stone, Veloso, & Riley 1999),
the champion of RoboCup-98, out-scored its opponents by
a combined score of 66–0, it failed to score on many op-
portunities in which it had the ball close to the opponent’s
goal, especially against the better opponents. Similarly,
when playing against itself, there are many shots on goal,
but few goals (roughly one by each team every 3 games).
Since CMUNITED-98 became publicly available after the
1998 competition, we expected there to be several teams
at RoboCup-99 that could beat CMUNITED-98, and indeed
there were. In order to improve its performance, we intro-
duced IMBBOP into the CMUNITED-99 team, specifically
to improve its goal-scoring ability.

IMBBOP is used in several ways in CMUNITED-99.
Most significantly in terms of performance, it is used to de-
cide when to shoot and when to pass when an agent has
the ball very near to the opponent’s goal. It is also used by
agents to determine when the opponents are likely to be able
to steal the ball from them. The remainder of this section

motivates the specific robotic soccer tasks to which IMB-
BOP has been applied.

When to Shoot

One of the most important offensive decisions in robotic soc-
cer is the decision of when to shoot the ball towards the
goal. In CMUNITED-98, decisions about when to shoot
were made in one of three ways:
� Based on the distance to the goal

� Based on the number of opponents between the ball and
the goal

� Based on a decision tree.
All of these methods have significant problems in this do-
main. Distance to goal completely ignores how the oppo-
nents are positioned. The number of opponents between the
ball and the goal does not accurately reflect in howgoodof
a position the defenders are. Lastly, the decision tree was
trained for passing(Stone 2000), so its performance on the
related but different behavior of shooting is questionable.

Empirically, these methods were not effective when play-
ing against good opponents, as indicated by the low number
of goals scored by CMUNITED-98 both against itself and
against the closest two competitors at the RoboCup-98 com-
petition.

When to Pass Near the Goal

When near the opponent’s goal, an agent may often be faced
with the decision of whether to shoot the ball or to pass to
a teammate. CMUNITED-98 agents never passed the ball
when near the opponent’s goal under the assumption that an
agent should always shoot when given the opportunity.

However, we observed several situations in which an
agent shot the ball from a bad angle and missed, even though
there was a nearby teammate with a much better angle at
which to shoot. In order to remedy this situation, it is nec-
essary to equip the agents with a method for evaluating
whether passing the ball would lead to a higher chance of
scoring than would shooting.

Breakaways

An important idea in many team ball sports like soccer is the
idea of abreakaway. Intuitively, this is when some number
of offensive players get the ball and themselves past the de-
fenders, leaving only perhaps a goalie preventing them from
scoring. Shooting and passing at the proper time is particu-
larly important on breakaways. If the agent shoots too early,
the goalie will have plenty of time to stop the ball. If the
agent shoots too late, then the goalie may have time to get
the ball before the kick is complete.

When on a breakaway, an agent must decide when to
shoot the ball. Therefore, by improving upon the solution to
the shooting problem described above, the resulting break-
away performance can also be improved. The empirical re-
sults in this paper are based on performance statistics when
using different shooting strategies on breakaways.

Cycles to Steal
CMUNITED-99 makes use of teammate and opponent mod-
els most prominently in the situations described above.
However, it also makes use of opponent models to determine
whether or not an agent can keep control of the ball without
an opponent stealing it. Such an ability is a prerequisite for
an agent being able to safelydribble (interleave short kicks
and dashes in a given direction so that the agent in effect
moves with the ball). As such, it also impacts on the agent’s
ability to execute breakaways and score goals.

IMBBOP
IMBBOP is designed for situations in which an agentX
has a goalG to be achieved by timeT . X must determine
whether agentY can prevent (if an “opponent”) or achieve
(if a “teammate”)1 G afterX takes actionA. In particular,
X must determine which of its possible actionsA1; : : : ; An

is most likely to achieveG by timeT .
IMBBOP makes the following assumptions:

� X must select an action from amongA1; : : : ; An to be ex-
ecuted immediately. It then ceases to affect the achieve-
ment ofG.

� Whether or notY can achieve or preventX ’s goal de-
pends onT . That is,9t s.t. Y could achieveG by, or
preventG from being achieved by, timet.

� X has a model of the world dynamics.

� X has incomplete information regardingY ’s current state.

� X has an incomplete model ofY ’s capabilities (how it can
affect the world). That is,X knows (through the world
model) what actionsY can take, but has no model of how
Y chooses its action. However, based on the world model,
X can deduce an upper bound onY ’s capabilities in terms
of the minimum time necessary to execute tasks. For ex-
ample, the world model could specify a maximum possi-
ble agent speed.
Given these assumptions, IMBBOP works as follows.

1. Using the model of world dynamics and the resultant up-
per bounds on agent capabilities, determine analytically
the minimumt such thatY could prevent or achieveG by
time t afterX takes actionA.

2. Use a threshold onT � t to predict whether or not action
A will succeed: the greaterT � t, the more likelyY is to
be able to prevent or achieveG by timeT . Thus,T � t is
an indication of the likelihood that actionA will result in
goalG being achieved by timeT .
In step 1, such an analysis is made possible under the

simplifying assumption that the world dynamics and a time-
based bound on the action capabilities ofY are known. In
addition,X fills in missing information aboutY with best-
case values fromY ’s perspective (i.e., ifY could be in one
of n states,X assumes thatY is in the state from which it

1Here we consider an agent to be a teammate if it also has the
goalG and to be an opponent if it has the goal of preventingG. We
assume thatX knows which agents are teammates and which are
opponents.

could most quickly achieve or preventG). Note that there is
no guarantee thatY couldactuallyachieveG by timet.

For example, ifY is currently located at location(x1; y1)
and must get to location(x2; y2) in order to preventG, then,
using a theoretical maximum speed ofs, X could compute
analytically thatY cannot get to location(x2; y2) in time

less than
p

(x2�x1)2+(y2�y1)2

s
. In actual fact, it may be un-

likely that Y could actually arrive at(x2; y2) so quickly
given the time necessary for it to figure out that it needs to
get there and possibly accelerate to the maximum speed.

In practice,X will execute actionA based on whether or
notT � t exceeds some threshold.

IMBBOP in CMUNITED-99
This section details the application of IMBBOP to the
specific robotic soccer tasks laid out above. The
CMUNITED-99 simulated robotic soccer team includes all
of these applications.

While IMBBOP is principally concerned with predicting
the outcomes of other agents’ behaviors, it also makes use
of a model of the agent’s own action outcomes. In general,
it is possible to predict an agent’s own action outcomes via
empirical testing. For example, we determined empirically
that an agent can generally position the ball and kick it with
high power in a chosen direction in 4 or fewer simulator
cycles. While 4 is not a hard upper bound on the number of
cycles due to the noise in the simulator, it is an empirically
reliable estimate and is used in our estimate of the number
cycles it will take an opponent to steal the ball.

When to Shoot
As mentioned above, CMUNITED-98’s methods for decid-
ing when to shoot were ineffective against good opponents.
CMUNITED-99 makes this decision in a more principled
way by using a model of an “optimal” opponent goalie. That
is, we use a model of a goalie that reacts instantaneously to
a kick, moves to exactly the right position to stop the ball,
and catches with perfect accuracy.

When deciding whether to shoot, the agent first identifies
its best shot target. It generally considers two spots, just
inside each of the two sides of the goal. The agent then
considers the lines from the ball to each of these possible
shot targets.shot-targetis the position whose line is further
from the goalie’s current position.

The agent then predicts, given a shot atshot-target, the
ball’s position and goalie’s reaction using the optimal goalie
model. We use the following predicates:
blocking-point The point on the ball’s path for which an

optimal goalie heads.

ball-to-goalie-cyclesThe number of cycles for the ball to
get to theblocking-point

goalie-to-ball-cyclesThe number of cycles for the goalie to
get to theblocking-point

shot-margin =ball-to-goalie-cycles�goalie-to-ball-cycles

better-shot(k) Whether teammatek has a better shot than
the agent with the ball, as judged byshot-margin

The value ofball-to-goalie-cyclescorresponds toT in
our definition of IMBBOP, whilegoalie-to-ball-cyclescor-
responds tot. The valueshot-marginis a measure of the
quality of the shot. The smaller the value ofshot-margin, the
more difficult it will be for the goalie to stop the shot. For ex-
ample, for a long shot, the ball may reach theblocking-point
in 20 cycles (ball-to-goalie-cycles= 20), while the goalie
can get there in 5 cycles (goalie-to-ball-cycles= 5). This
gives ashot-marginof 15. In terms of IMBBOP,T = 20,
t = 5, andT � t = 15. This is a much worse shot than if it
takes the ball only 12 cycles (ball-to-goalie-cycles= 12) and
the goalie 10 cycles to reach theblocking-point(goalie-to-
ball-cycles= 10). The latter shot has ashot-marginof only
2 (T = 12, t = 10, T � t = 2). Further, ifshot-margin< 0
(T � t < 0), then the “optimal” goalie could not reach the
ball in time, and the shot should succeed.

When to Pass Near the Goal
Using a model of opponent behavior gives us a more re-
liable and adaptive way of making the shooting decision.
We can also use it to make better passing decisions via
a model of teammate behavior outcomes. As mentioned
above, CMUNITED-98 never passed the ball when near the
opponent’s goal. In CMUNITED-99, the agent with the ball
simulates the situation in which its teammate is controlling
the ball, using the goalie model to determine how good a
shot the teammate has. If the teammate has a much better
shot, then the predicatebetter-shot(k) will be true, indicat-
ing that the agent should pass rather than shooting itself.

In this case, the agent is using an optimal model of both
the teammateand the opponent goalie. Theshot-targetis
computed from the teammate’s perspective, and the speed at
which the teammate will be able to propel the ball towards
the goal is assumed to be as high as possible according to the
world model. Theblocking-point, ball-to-goalie-cycles, and
goalie-to-ball-cyclesare all computed from the teammate’s
and goalie’s current positions. Now, since we are primarily
predicting the teammate’s performance,T is thegoalie-to-
ball-cyclesandt is theball-to-goalie-cycles. The greater the
value ofT � t, the more likely the teammate is to succeed in
getting the ball past the goalie.

There is one complication here; it takes time to pass
the ball. In the time that elapses during a pass, the world
changes, and the receiving agent may then decide the orig-
inal agent has a better shot. This could lead to passing
loops where neither agent shoots. CMUNITED-99 does two
things to avoid this loop. First, the agent only passes to a
teammate with a better shot if, given the current state, the
goalie cannot stop the shot (T � t > 0). Secondly, the ex-
tra time difference between the passing and receiving agents
must be greater than some threshold (5 in CMUNITED-99).

Note that this analysis of shooting ignores the presence of
defenders. Just because the goalie can not stop the shot (as
judged by the optimal goalie model) does not mean that a
nearby defender can not run in to kick the ball away.

Breakaways
The above technique for using a model of teammates and
opponent goalies can be incorporated into a special-purpose

breakaway behavior. We precisely define a breakaway using
several predicates:
controlling-teammate Which teammate (if any) is cur-

rently controlling the ball. “Control” is judged by whether
the ball is in the area defined by the simulator within
which the player can physically kick the ball.

controlling-opponent Which opponent (if any) is currently
controlling the ball

opponents-in-breakaway-coneThe breakaway cone is
shown in Figure 1. The cone has its vertex at the player
with the ball and extends to the opponents goal posts.

teammates-in-breakaway-coneThe same as the previous
definition, but for the other side of the field. This is
used when judging whether the opponents currently have
a breakaway.

our-breakaway = (controlling-teammate6= None)
^ (controlling-opponent=None) ^ (opponents-in-
breakaway-cone�1)

their-breakaway = (controlling-opponent6= None)
^ (controlling-teammate=None) ^ (teammates-in-
breakaway-cone�1)

Goalie

Teammate Defender

Figure 1: The Breakaway Cone

Once the agent determines that it is on a breakaway (our-
breakawayis true), it starts dribbling the ball towards the op-
ponent’s goal (actually slightly across the front of the goal).
It continues to do so until deciding to shoot, at which point
it kicks the ball as hard as possible towards a corner of the
goal (shot-target). The decision of when to stop dribbling in
order to shoot is the key decision when on a breakaway.

We use the optimal model described above to help make
this decision. During a breakaway, the agent shoots when
either one of the following is true:
1. shot-margin(or T � t) gets below a certain threshold (1

cycle in CMUNITED-99)

2. The time that it would take for the goalie to proceed di-
rectly to the ball and steal it gets below a certain threshold
(6 cycles in CMUNITED-99). This time is again deter-
mined analytically using an optimal model of the goalie’s
movement capabilities (See the description of “cycles to
steal” that follows).
This skill was extremely effective in the competition, with

the vast majority of our goals being scored using the special-
ized breakaway code.

Cycles to Steal
CMUNITED-99 also makes use of opponent models to de-
termine whether or not an agent can keep control of the ball
without an opponent stealing it. In this case, it is necessary
to determine whether the nearest opponent could get to the
ball in less time than it would take to safely kick the ball

away. Thus,T is the time it would take to kick the ball
away. In CMUNITED-99, we use the constantT = 3 since
an agent can generally position the ball and kick it with high
power in a chosen direction in 3 simulator cycles.

The time (t) it would take the opponent to get to the ball’s
current position is computed based on the opponent’s current
position, the maximum speed of the opponent in the simula-
tor, and an estimate of how long it would take the opponent
to move around the agent to get to the ball (only if the agent
is between the ball and the opponent).

The agent bases its decision of whether or not to dribble
based on a threshold of onT�t. In CMUNITED-99, players
only dribble whenT � t < 1. That is, they need to be fairly
certain that the opponent will not be able to steal the ball
before they are willing to dribble.

Results
In this section we present empirical results demonstrating
the effectiveness of IMBBOP in the robotic soccer domain.
First we evaluate the performance of an individual agent on
a breakaway when using IMBBOP. Second, we present evi-
dence of IMBBOP’s usefulness to the team as a whole.

Isolated Testing
In order to test the effectiveness of IMBBOP in simulated
robotic soccer, we ran simulations involving only 2 players:
a goalie and a striker. The striker and ball were repeatedly
placed 30m away from the goal. The goalie was placed next
to the goal. The task of the striker is to attempt to shoot the
ball past the goalie into the goal, while the goalie aims to
thwart the striker. This setup creates a breakaway situation.

In all cases, the striker dribbles the ball roughly towards
the goal until deciding to shoot.Meanwhile, the goalie must
decide when to start moving towards the ball in an attempt
to block it. At one extreme, it could wait until the player
shoots, thereby ensuring that it will no longer be able to
change the ball’s direction. At the other extreme, it could
immediately move towards the striker in an attempt to “cut
down the angle,” or reduce the amount of open goal from the
striker’s perspective.

The strategies we use for the goalie during testing are:
1. Wait for the striker to shoot the ball before trying to get it.

2. Once the striker gets to within 24m of the goal, run out to
try and catch the ball.

3. Once the striker gets to within 35m of the goal (effectively
immediately), run out to try and catch the ball.
Meanwhile, we tested several striker strategies with

IMBBOP and without against each of the possible goalie
strategies. As described in the previous section, the
CMUNITED-99 strikers use two different types of oppo-
nent models when executing breakaways: one based onshot-
margin(Condition 1 above) and one based on the predicted
number of cycles it would take the goalie to steal the ball
(Condition 2). Thus, the striker can use neither, either, or
both models when deciding when to shoot. When using nei-
ther model, it shoots purely based on its distance to the goal.

Thus, the strategies for the striker are:

1. Use both models to determine when to shoot (conditions 1
and 2).

2. Use only the stealing ball model (condition 2).

3. Use only theshot-marginmodel (condition 1).

4. Shoot as soon as within 17m of the goal.

5. Shoot as soon as within 25m of the goal.
Each striker strategy was tested against each goalie strat-

egy for 10,000 simulator cycles, which allows between 95
and 215 separate breakaway attempts. The percentage of
breakaways that result in goals for each of these combina-
tions of strategies is shown in Figure 2. The numbered goalie
strategy indicated on thex-axis corresponds the goalie strat-
egy as numbered above.

1 2 3
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 B

re
ak

aw
ay

s
th

at
 S

co
re

Goalie Strategy

1. All models
2. Goalie Steal Ball Model
3. Goalie Block Shot Model
4. Shoot from 17m
5. Shoot from 25m

Figure 2: The effectiveness of different types of models. The per-
centage of breakaways which result in a goal is shown for various
goalie strategies and uses of models. The numbered goalie strategy
indicated on thex-axis corresponds the strategy as numbered in the
text.

When using both models, the striker performs consis-
tently better than in all other cases regardless of the goalie’s
strategy. But when using only one of the models, the results
are sometimesworsethan shooting based just on distance. A
goalie has two basic ways to stop a shot (as reflected in the
two models): by getting in the way once the ball is kicked, or
by stealing the ball before the shot can be taken. Using only
one of the models only reflects one of these possibilities. On
the other hand, a distance threshold takes into account both
of these abilitiesfor a particular goalie strategy.

For any particular breakaway, there is some distance from
the goal at which the striker should shoot. This distance
depends mostly on the strategy which the goalie is using.
Therefore, for any particular goalie strategy,somedistance
threshold for shooting will probably perform quite well. The
importance of using the goalie models is that with the mod-
els, the agent can perform well no matter what strategy the
goalie uses. The players do not need to know the goalie
strategya priori, and if the goalie changes its strategy, the
agents will adapt effectively.

Full Games
IMBBOP has proven to be very useful to us in creating the
CMUNITED-99 team of soccer-playing agents (Stone, Ri-
ley, & Veloso 2000). While CMUNITED-98 could rarely
score when playing against itself (roughly 1 goal every 3

games), CMUNITED-99 scores about 9 goals per game
when playing against CMUNITED-98.

Since there were several improvements over
CMUNITED-98 incorporated into CMUNITED-99, it
is usually difficult to isolate a single change as being
responsible for the team’s overall improvement. However,
in this case, there is clear evidence that incorporating
IMBBOP into the agents’ breakaway strategy is itself
enough to lead to a significant improvement in the team’s
performance.

In order to demonstrate this claim, we played five ver-
sions of CMUNITED-99 against the CMUNITED-98 team.
The only difference among these 5 versions was that their
agents used the 5 different breakaway strategies listed
above. Each version played 9 10-minute games against
CMUNITED-98. Table 1 displays the mean goals per game
scored by each of these versions, as well as the standard de-
viation. CMUNITED-98 never scored a goal.

Breakaway Strategy
Goals/Game 1 2 3 4 5
Mean 8.9 10.6 8.6 3.6 3.6
Std. Dev. � 1.5 � 1.3 � 2.6 � 1.4 � 1.0

Table 1: Goals scored by CMUNITED-99 against CMUNITED-98
when using the different breakaway strategies. Each trial represents
9 10-minute games. CMUNITED-98 never scored.

The three strategies (1–3) using some form of IMBBOP
all performed significantly better than the two (4–5) which
do not. Note that the the CMUNITED-98 team used break-
away strategy 4 (always shooting from 17m). Although
breakaway strategy 2, which only uses one of the two types
of opponent models, outperforms strategy 1, which uses
both, the result is only borderline significant. In addition,
as noted above, each strategy will work againstsomespe-
cific goalie. When testing against different goalie types as
in the previous subsection, we found that breakaway strat-
egy 1 was most effective overall.

Since the RoboCup tournaments do not provide controlled
testing environments, we cannot make any definite conclu-
sions based on the competitions. However, when watch-
ing the games during RoboCup-99, we noticed many goals
scored as a result of well-timed shots and passes near the op-
ponent’s goal. In the end, CMUNITED-99 went on to win
the RoboCup-99 championship, outscoring its opponents,
many of which were ale to beat CMUNITED-98, by a com-
bined score of 110–0.

Related Work
There is a long history in adversarial game playing of using
a model of an opponent which assumes that it always acts
optimally. For example, in the minimax search algorithm,
one enumerates all the possible actions that the other agent
may take and then always assumes that the other agent takes
the action that is the ideal action from its own viewpoint,
which would be the worst action for us. This means that
minimax acts safely, but not opportunistically: it maximizes
worst-case performance. If the other agent does not perform

its ideal action, then minimax’s choice yields an outcome
better than predicted.

Minimax is designed for turn-taking adversarial domains
with complete information and discrete actions (such as
chess). In contrast, our research focuses on adversarial
domains in which the agents have incomplete information,
noisy sensors and actuators, and a continuous action space
(such as adversarial robotic control). Nonetheless, we are
able to build on one key feature of minimax—the use of a
model of the other agent’s future actions in relation to its
theoretical optimal actions—in our model-based technique,
IMBBOP. Our technique also includes a method for relaxing
this optimality assumption.

An alternative to minimax, in which other agents aren’t
necessarily assumed to act optimally, is the recursive mod-
eling method (RMM) (Gmytrasiewicz, Durfee, & Wehe
1991). Using RMM, an agent models the internal state and
action selection strategy of another agent in order to pre-
dict its actions. This method is recursive because the other
agent might similarly be modeling the original agent, lead-
ing to an arbitrary depth of reasoning (techniques for lim-
iting this depth have been studied (Durfee 1995; Vidal &
Durfee 1995)).

A limitation of both minimax and RMM is that they rely
on knowing the state of other agents and their action capa-
bilities in order to construct payoff matrices. In contrast, our
research is concerned with situations in which the agent’s
state and action capabilities may not be known (we do as-
sume a known upper bound on their capabilities).

Past approaches have examined methods for deduc-
ing agents’ action capabilities through observation (Wang
1996); deducing agent’s plans given their actions (Huber &
Durfee 1995); and deducing agents’ actions given incom-
plete observations of their states (Tambe 1995). All of these
approaches address situations in which an agent does not
have the information necessary to determine the optimal ac-
tions of other agents in the environment. IMBBOP addresses
similar situations, but differs from all of these approaches in
that it does not directly deduce an agent’s actions, plans, or
capabilities. Rather, it uses an idealized world model and
observable agent state information to estimate the agent’s
optimal action. It characterizes theactualcapabilities of the
agent in relation to this estimated optimal action.

Conclusion and Future Work
Ideal-model-based behavior outcome prediction is poten-
tially applicable and useful in any domain in which an
agent does not know the states and action capabilities of
other agents in the environment. By using a model of the
world dynamics to determine an upper-bound on agent per-
formance (the ideal), an agent’s actual performance can be
characterized in relation to this ideal.

The presentation of IMBBOP and its first application as
reported in this paper include engineered aspects that may
be specific to the robotic soccer domain. For example, the
time-based threshold and the particular parameter values and
predicates used to define the agent behaviors are tailored to
this domain. However, we hope to extend this technique to
additional domains in the future.

When evaluating whether a potential action is likely to
achieve an agent’s goal, an agent using IMBBOP uses a
time-based threshold (T�t) to represent the predicted maxi-
mum or minimum difference between another agent’s actual
performance and its ideal performance. Our work reported
in this paper uses hard-wired thresholds. However, the op-
portunity exists for on-line learning of these threshold val-
ues. Learning models, or adaptively modeling other agents,
is a part of our on-going and future research.

Meanwhile, our IMBBOP implementation has played a
significant role in our successful development of a team of
simulated robotic soccer-playing agents.

References
Corten, E.; Dorer, K.; Heintz, F.; Kostiadis, K.; Kummeneje,
J.; Myritz, H.; Noda, I.; Riley, P.; Stone, P.; and
Yeap, T. 1999. Soccer server manual, version 5.0.
Technical Report RoboCup-1999-001, RoboCup. At URL
http://ci.etl.go.jp/˜noda/soccer/server/Documents.html.
Durfee, E. H. 1995. Blissful ignorance: Knowing just enough to
coordinate well. InProceedings of the First International Confer-
ence on Multi-Agent Systems (ICMAS-95), 406–413. Menlo Park,
California: AAAI Press.
Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K. 1991.
A decision-theoretic approach to coordinating multiagent inter-
actions. InProceedings of the Twelfth International Joint Confer-
ence on Artificial Intelligence, 62–68.
Huber, M. J., and Durfee, E. H. 1995. Deciding when to com-
mit to action during observation-based coordination. InProceed-
ings of the First International Conference on Multi-Agent Systems
(ICMAS-95), 163–170. Menlo Park, California: AAAI Press.
Kitano, H.; Tambe, M.; Stone, P.; Veloso, M.; Coradeschi, S.;
Osawa, E.; Matsubara, H.; Noda, I.; and Asada, M. 1997. The
RoboCup synthetic agent challenge 97. InProceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence,
24–29. San Francisco, CA: Morgan Kaufmann.
Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998. Soc-
cer server: A tool for research on multiagent systems.Applied
Artificial Intelligence12:233–250.
Stone, P.; Riley, P.; and Veloso, M. 2000. The CMUnited-99
champion simulator team. In Veloso, M.; Pagello, E.; and Ki-
tano, H., eds.,RoboCup-99: Robot Soccer World Cup III. Berlin:
Springer Verlag.
Stone, P.; Veloso, M.; and Riley, P. 1999. The CMUnited-98
champion simulator team. In Asada, M., and Kitano, H., eds.,
RoboCup-98: Robot Soccer World Cup II. Berlin: Springer Ver-
lag.
Stone, P. 2000.Layered Learning in Multiagent Systems: A Win-
ning Approach to Robotic Soccer. Intelligent Robotics and Au-
tonomous Agents. MIT Press.
Tambe, M. 1995. Recursive agent and agent-group tracking in
a real-time , dynamic environment. InProceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95),
368–375. Menlo Park, California: AAAI Press.
Vidal, J. M., and Durfee, E. H. 1995. Recursive agent model-
ing using limited rationality. InProceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), 376–383.
Menlo Park, California: AAAI Press.
Wang, X. 1996. Planning while learning operators. InProceed-
ings of the Third International Conference on AI Planning Sys-
tems.

