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Abstract

Supply chains are ubiquitous in the manufacturing of many
complex products. Traditionally, supply chains have been cre-
ated through the intricate interactions of human representatives
of the various companies involved. However recent advances
in planning, scheduling, and autonomous agent technologies
have sparked an interest, both in academia and in industry,
in automating the process. The Trading Agent Competition
Supply Chain Management (TAC SCM) scenario provides a
unique testbed for studying and prototyping supply chain man-
agement agents by providing a competitive environment in
which independently created agents can be tested against each
other over the course of many simulations. This paper presents
the features of TAC SCM from a planning and scheduling per-
spective and introduces TacTex-05, the champion agent from
the 2005 competition. TacTex-05 takes a predictive approach
to its many planning and scheduling decisions by estimating
future resource availability and constraints. This paper focuses
on these aspects of the agent and isolates their impact with
controlled empirical tests.

Introduction

In today’s industrial world, supply chains are ubiquitous in
the manufacturing of many complex products. Traditionally,
supply chains have been created through the intricate inter-
actions of human representatives of the various companies
involved. However, recent advances in planning, schedul-
ing, and autonomous agent technologies have sparked an in-
terest, both in academia and in industry, in automating the
process (Fox, Chionglo, & Barbuceanu 1993) (Sadeh et al.
1999) (Chen et al. 1999).

From a planning and scheduling perspective, supply chain
management simultaneously requires long-range inventory
management, mid-range customer negotiations, and short-
term factory scheduling, all of which interact closely.

One barrier to supply chain management research is that it
can be difficult to benchmark automated strategies in a live
business environment, both due to the proprietary nature of
the systems and due to the high cost of errors. The Trading
Agent Competition Supply Chain Management (TAC SCM)
scenario provides a unique testbed for studying and prototyp-
ing supply chain management agents by providing a compet-
itive environment in which independently created agents can
be tested against each other over the course of many simu-
lations in an open academic setting. In a TAC SCM game,
each agent acts as an independent computer manufacturer in
a simulated economy. The agent must procure components
such as CPUs and memory; decide what types of computers
to manufacture from these components as constrained by its
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factory resources; bid for sales contracts with customers; and
decide which computers to deliver to whom and by when.

One crucial challenge in supply chain management is that
decisions must often be made in the face of considerable un-
certainty. For instance, purchases of production resources
may need to be negotiated long before accurate information
about customer preferences becomes available. This chal-
lenge is particularly evident in TAC SCM, where sources of
uncertainty include the capacity of suppliers to deliver com-
ponents, the nature of customer demand, and the actions of
other agents as they compete for components and customers.

To address this uncertainty, our agent for TAC SCM,
TacTex-05, takes a predictive approach to its many planning
and scheduling decisions. In particular, TacTex-05 makes
predictions concerning the types and quantities of computers
that will be requested by customers, the capacities of compo-
nent suppliers and the prices they are likely to offer, and the
probability that an offer to a customer will be accepted at a
particular price. Planning and scheduling takes place using
these predictions.

The remainder of this paper is organized as follows. First,
we summarize the TAC SCM scenario emphasizing its fea-
tures and challenges from a planning and scheduling perspec-
tive. Next, we introduce TacTex-05, the champion agent from
the 2005 competition, paying special attention to its predic-
tive approach to its many planning and scheduling decisions.
We then isolate the impact of various agent components with
controlled empirical tests.

The TAC Supply Chain Management Scenario
In this section, we provide a summary of the TAC SCM sce-
nario. Full details are available in the official specification
document!'.

In a TAC SCM game, six agents act as computer manu-
facturers in a simulated economy that is managed by a game
server. The length of a game is 220 simulated days, with each
day lasting 15 seconds of real time. At the beginning of each
day, agents receive messages from the game server with infor-
mation concerning the state of the game, such as the customer
requests for quotes (RFQs) for that day, and agents have until
the end of the day to send messages to the server indicating
their actions for that day, such as making offers to customers.
The game can be divided into three parts: i) component pro-
curement, ii) computer sales, and iii) production and delivery
as expanded on below and illustrated in Figure 1.

Component Procurement

The computers are made from four components: CPUs,
motherboards, memory, and hard drives, each of which come

Ywww.sics. se/tac/tac05scmspec_v157.pdf
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Figure 1: The TAC SCM Scenario (from the official specs?!).

in multiple varieties. From these components, 16 different
computer configurations can be made. Each component has a
base price that is used as a reference point by suppliers mak-
ing offers.

Agents wanting to purchase components send requests for
quotes (RFQs) to suppliers indicating the type and quantity
of components desired, the date on which they should be de-
livered, and a reserve price stating the maximum amount the
agent is willing to pay. Agents are limited to sending at most 5
RFQs per component per supplier per day. Suppliers respond
to RFQs the next day by offering a price for the requested
components if the request can be satisfied. Agents may then
accept or reject the offers.

Suppliers have a limited capacity for producing compo-
nents, and this capacity varies throughout the game accord-
ing to a random walk. Suppliers base their prices offered in
response to RFQs on the fraction of their capacity that is cur-
rently free. When determining prices for RFQs for a partic-
ular component, a supplier simulates scheduling the produc-
tion of all components currently ordered plus those compo-
nents requested in the RFQs as late as possible. From the
production schedule, the supplier can determine the remain-
ing free capacity between the current day and any future day.
The price offered in response to an RFQ is equal to the base
price of the component discounted by an amount proportional
to the fraction of the supplier’s capacity free before the due
date. Agents may send zero-quantity RFQs to serve as price
probes. Due to the nature of the supplier pricing model, it
is possible for prices to be as low when components are re-
quested at the last minute as when they are requested well
in advance. Agents thus face an interesting rradeoff: they
may either commit to ordering while knowledge of future cus-
tomer demand is still limited (see below), or wait to order and
risk being unable to purchase needed components.

To prevent agents from driving up prices by sending RFQs
with no intention of buying, each supplier keeps track of a
reputation rating for each agent that represents the fraction
of offered components that have been accepted by the agent.
If this reputation falls below a minimum acceptable purchase
ratio (90% for CPU suppliers, and 45% for others), then the
prices and availability of components are affected for that

agent. Agents must therefore plan component purchases care-
fully, sending RFQs only when they believe it is likely that
they will accept the offers received.

Computer Sales

Customers wishing to buy computers send the agents RFQs
consisting of the type and quantity of computer desired, the
due date, a reserve price indicating the maximum amount the
customer is willing to pay per computer, and a penalty that
must be paid for each day the delivery is late. Agents respond
to the RFQs by bidding in a first-price auction: the agent of-
fering the lowest price on each RFQ wins the order. Agents
are unable to see the prices offered by other agents or even
the winning prices, but they do receive a report each day in-
dicating the highest and lowest price at which each type of
computer sold on the previous day.

Each RFQ is for between 1 and 20 computers, with due
dates ranging from 3 to 12 days in the future, and reserve
prices ranging from 75% to 125% of the base price of the
requested computer type. (The base price of a computer is
equal to the sum of the base prices of its parts.)

The number of RFQs sent by customers each day depends
on the level of customer demand, which fluctuates throughout
the game. Demand is broken into three segments, each con-
taining about one third of the 16 computer types: high, mid,
and low range. Each range has its own level of demand. The
total number of RFQs per day ranges between roughly 80 and
320, all of which can be bid upon by all six agents. It is pos-
sible for demand levels to change rapidly, limiting the ability
of agents to plan for the future with confidence.

Production and Delivery

Each agent manages a factory where computers are assem-
bled. Factory operation is constrained by both the compo-
nents in inventory and assembly cycles. Factories are lim-
ited to producing roughly 360 computers per day (depending
on their types). Each day an agent must send a production
schedule and a delivery schedule to the server indicating its
actions for the next day. The production schedule specifies
how many of each computer will be assembled by the fac-
tory, while the delivery schedule indicates which customer
orders will be filled from the completed computers in inven-
tory. Agents are required to pay a small daily storage fee
for all components in inventory at the factory. This cost is
sufficiently high to discourage agents from holding large in-
ventories of components for long periods.

Summary

In summary, the TAC SCM scenario presents many interact-
ing planning and scheduling challenges. For example, an
agent’s strategy for component procurement necessarily de-
pends on current and predicted supplier prices as well the
agent’s predicted factory availability and customer demand.
Similarly, efficient factory scheduling depends on component
availability and projected orders; and the computer sales strat-
egy depends on current and projected customer demand as
well as projected factory output and supply availability. TAC
SCM is therefore a very valuable testbed domain for real-time
(iterative) planning and scheduling under uncertainty.
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Figure 2: An overview of the main agent components

Overview of TacTex-05
Given the detail and complexity of the TAC SCM scenario,
creating an effective agent requires the development of tightly
coupled modules for interacting with suppliers, customers,
and the factory. The fact that each day’s decisions must be
made in less than 15 seconds constrains the set of possible
approaches.

TacTex-05 is a fully implemented agent that operates
within the TAC SCM scenario. We present a high-level
overview of the agent in this section, and full details in the
sections that follow.

Agent Components

Figure 2 illustrates the basic components of TacTex-05 and
their interaction. There are five basic tasks a TAC SCM agent
must perform:

Sending RFQs to suppliers to request components;
Deciding which offers from suppliers to accept;

Bidding on RFQs from customers requesting computers;
Sending the daily production schedule to the factory;

. Delivering completed computers.

We assign the first two tasks to a Supply Manager module,
and the last three to a Demand Manager module. The Supply
Manager handles all planning related to component invento-
ries and purchases, and requires no information about com-
puter production except for a projection of future component
use, which is provided by the Demand Manager. The De-
mand Manager, in turn, handles all planning related to com-
puter sales and production. The only information about com-
ponents required by the Demand Manager is a projection of
the current inventory and future component deliveries, along
with an estimated replacement cost for each component used.
This information is provided by the Supply Manager.

We view the tasks to be performed by these two managers
as optimization tasks: the Supply Manager tries to minimize
the cost of obtaining the components required by the Demand
Manager, while the Demand Manager seeks to maximize the
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e Record information received from the server and update prediction modules

e The Supply Manager takes the supplier offers as input and performs the following:
— decide which offers to accept
— update projected future inventory
— update replacement costs

e The Demand Manager takes customer RFQs, current orders, projected inventory,
and replacement costs as input and performs the following:
— predict future customer demand using the Demand Model
— use the Offer Acceptance Predictor to generate acceptance functions for RFQs
— schedule production several days into the future
— extract the current day’s production, delivery, and bids from the schedule
- update projected future component use

e The Supply Manager takes the projected future component use as input and performs
the following:
— determine the future deliveries needed to maintain a threshold inventory
- use the Supplier Model to predict future component prices
— decide what RFQs need to be sent on the current day

Table 1: Overview of the steps taken each day by TacTex-05.

profits from computer sales subject to the information pro-
vided by the Supply Manager. In order to perform these tasks,
the two managers need to be able to make predictions about
the results of their actions and the future of the economy.
TacTex-05 uses three predictive models to assist the managers
with these predictions: a predictive Supplier Model, a predic-
tive Demand Model, and an Offer Acceptance Predictor.

The Supplier Model keeps track of all information avail-
able about each supplier, such as TacTex-05 ’s outstanding
orders and the prices that have been offered in response to
RFQs. Using this information, the Supplier Model can assist
the Supply Manager by making predictions concerning future
component availability and prices.

The Demand Model tracks the customer demand in each
of the three market segments, and tries to estimate the under-
lying demand parameters in each segment. With these esti-
mates, it is possible to predict the number of RFQs that will
be received on any future day. The Demand Manager can then
use these predictions to plan for future production.

When deciding what bids to make in response to customer
RFQs, the Demand Manager needs to be able to estimate the
probability of a particular bid being accepted (which depends
on the bidding behavior of the other agents). This prediction
is handled by the Offer Acceptance Predictor. Based on past
bidding results, the Offer Acceptance Predictor produces a
function for each RFQ that maps bid prices to the predicted
probability of winning the order.

The steps taken each day by TacTex-05 as it performs the
five tasks described previously are presented in Table 1.

The Demand Manager

The Demand Manager handles all computation related to
computer sales and production. This section describes the
Demand Manager, along with the Demand Predictor and the
Offer Acceptance Predictor upon which it relies.

Demand Model

When planning for future computer production, the Demand
Manager needs to be able to make predictions about future
demand in each market segment. For example, if more RFQs
are expected for high range than low range computers, the



planned production should reflect this fact. The Demand
Model is responsible for making these predictions.

In order to explain its operation, further detail is required
about the customer demand model. The state of each demand
segment (high, mid, and low range computers) is represented
by parameters ()4 and 74 (both of which are internal to the
game server). Qg represents the expected number of RFQs
on day d, and 74 is the trend in demand (increasing or de-
creasing) on day d. The actual number of RFQs is generated
randomly from a Poisson distribution with Q)4 as its mean.
The next day’s demand, Qg41, is set to Qg7q, and 7441 is
determined from 7,4 according to a random walk.

To predict future demand, the Demand Manager estimates
the values of ()4 and 7, for each segment using an approach
first used by the agent DeepMaize in 2003 (Kiekintveld er al.
2004). Basically, this is a Bayesian approach that involves
maintaining a probability distribution over (Qg4, 74) pairs for
each segment. The number of RFQs received each day from
the segment represents information that can be used to update
this distribution, and the distribution over (Q 41, 74+1) pairs
can then be generated based on the game’s demand model.
By repeating this last step, the expected value of @); can be
determined for any future day ¢ and used as the number of
RFQs predicted on that day. Full details of the approach are
available in (Kiekintveld et al. 2004). 2

Offer Acceptance Predictor

In order to bid on customer RFQs, the Demand Manager
needs to be able to predict the orders that will result from
the offers it makes. A simple method of prediction would
be to estimate the winning price for each RFQ, and assume
that any bid below this price would result in an order. Alter-
natively, for each RFQ the probability of winning the order
could be estimated as a function of the current bid. This lat-
ter approach is the one implemented by the Offer Acceptance
Predictor. For each customer RFQ received, the Offer Ac-
ceptance Predictor generates a function mapping the possible
bid prices to the probability of acceptance. (The function can
thus be viewed as a cumulative distribution function.) In (Par-
doe & Stone 2004) we explored the possibility of learning to
generate this function based on past games. In TacTex-05,
however, we use a simpler approach, due to the observation
that the range between daily high and low winning prices for
a given computer tends to be fairly low when facing competi-
tive agents. This approach involves two components: a linear
heuristic for generating a function, and an adaptive means of
revising the heuristic’s predictions.

The linear heuristic is based on one used by the agent Bot-
ticelli in 2003 (Benisch e al. 2004) whereby the CDF gen-
erated for each RFQ depends only on the type of computer
requested and is generated using linear regression on six data
points. Specifically, for each of the past five days, the aver-
age price bid by TacTex-05 for the given type of computer is
determined, along with the fraction of offers accepted on that
day. Each pair results in one data point, and the sixth point
represents the highest winning price reported for the given

’The DeepMaize team has released their code for this ap-
proach: www.eecs.umich.edu/ ckiekint/downloads/
DeepMaize_CustomerDemand_Release.tar.gz

type of computer on the previous day along with an accep-
tance rate of zero. These points are fit using least squares lin-
ear regression to generate a linear function that will be used
for all RFQs requesting the given computer type.

The linear function is modified using values we call day
factors, which are designed to measure the effect of the due
date on offer acceptance. The due dates for RFQs range from
3 to 12 days in the future, and a separate day factor is learned
for each day in this range. Each day factor is set to the ra-
tio of actual orders received to orders expected based on the
linear heuristic, for all recent offers made. When an offer is
made on an RFQ, the Offer Acceptance Predictor computes
the probability of an order by multiplying the initial predic-
tion by the corresponding day factor. The day factors there-
fore serve both as a means of gauging the impact of due dates
on computer prices and as a mechanism for ensuring that the
number of orders received is roughly the number expected.

Demand Manager

The Demand Manager is responsible for bidding on cus-
tomer RFQs, producing computers, and delivering them to
customers. All three tasks can be performed using the same
production scheduling algorithm. As these tasks compete for
the same resources (components, completed computers, and
factory cycles), the Demand Manager begins by planning to
satisfy existing orders, and then uses the remaining resources
in planning for RFQs. The latest possible due date for an RFQ
received on the current day is 12 days in the future, meaning
the production schedule for the needed computers must be
sent within the next 10 days. The Demand Manager thus al-
ways plans for the next 10 days of production. Each day, the
Demand Manager i) schedules production of existing orders,
ii) schedules production of predicted future orders, and then
iii) extracts the next day’s production and delivery schedule
from the result. The production scheduling algorithm, these
three steps, and the means of predicting production beyond
10 days are described in the following sections.

Production Scheduling Algorithm The goal of the pro-
duction scheduler is to to take a set of orders and determine
the 10-day production schedule that maximizes profit, subject
to the available resources. The resources provided are:
e A fixed number of factory cycles per day;
e The components in inventory;
e The components projected to be delivered; and
e Completed computers in inventory.
The profit for each order is equal to its price (if it could be
delivered) minus any penalties for late delivery and the re-
placement costs for the components involved as specified by
the Supply Manager.

The scheduling algorithm used by the Demand Manager is
a greedy algorithm that attempts to produce each order as late
as possible. Orders are sorted by profit, and the scheduler tries
to produce each order using cycles and components from the
latest possible dates. If any part of the order cannot be pro-
duced, the needed computers will be taken from the existing
inventory of completed computers, if possible. The purpose
of scheduling production as late as possible is to preserve re-
sources that might be needed by orders with earlier due dates.
A record is kept of what production took place on each day
and how each order was filled.



It should be noted that the scheduling problem at hand
lends itself to the use of linear programming to determine
an optimal solution. We initially experimented with this ap-
proach, using a linear program similar to one designed for a
slightly simplified scenario by (Benisch et al. 2004). How-
ever, due to the game’s time constraints (15s allowed per
simulated day), the need to use the scheduler multiple times
per day (and in a modified fashion for bidding on customer
RFQs), and the observation that the greedy approach is close
to optimal, we chose to use the greedy approach.

Handling Existing Orders The Demand Manager plans
for the production of existing orders in two steps. Before
starting, the production resources are initialized using the val-
ues provided by the Supply Manager. Then the production
scheduler is applied to the set of orders due in one day or
less. All orders that can be taken from inventory (hopefully
be all of them to avoid penalties) are scheduled for delivery
the next day. The production scheduler is next applied to the
remaining orders. No deliveries are scheduled at this time,
because there is no reward for early delivery.

Bidding on RFQs and Handling Predicted Orders The
goal of the Demand Manager is now to identify the set of
bids in response to customer RFQs that will maximize the ex-
pected profit from using the remaining production resources
for the next 10 days, and to schedule production of the re-
sulting predicted orders. The profit depends not only on the
RFQs being bid on on the current day, but also on RFQs that
will be received on later days for computers due during the
period. If these future RFQs were ignored when selecting the
current day’s bids, the Demand Manager might plan to use up
all available production resources on the current RFQs, leav-
ing it unable to bid on future RFQs. One way to address this
issue would be to restrict the resources available to the agent
for production of the computers being bid on. Instead, the
Demand Manager generates a predicted set of all RFQs, us-
ing the levels of customer demand predicted by the Demand
Model, that will be received for computers due during the pe-
riod, and chooses bids for these RFQs at the same time as the
actual RFQs from the current day.

Once the predicted RFQs are generated, the Offer Accep-
tance Predictor is used to generate an acceptance prediction
function for every RFQ, both real and predicted. The Demand
Manager then considers the production resources remaining,
the set of RFQs, and the set of acceptance prediction func-
tions and simultaneously generates a set of bids on RFQs and
a production schedule that produces the expected resulting
orders. As this process is described fully in (Pardoe & Stone
2004) , we provide only a summary here.

The key to the process is the simplifying assumption that
the expected number of computers ordered for each RFQ will
be the actual number ordered. In other words, we pretend
that it is possible to win a partial order, so that instead of
winning an entire order with probability p, a fraction p of an
order is won with probability 1. With this notion of partial
orders, the problem of bid selection is transformed into the
problem of finding the most profitable set of partial orders that
can be filled with the resources available. This problem can
be solved using a variation of the greedy production sched-
uler described above. Instead of scheduling the production

of complete orders, the scheduler considers the production of
partial orders resulting from RFQs.

Completing Production and Delivery After applying the
production scheduler to the current orders and RFQs, the De-
mand Manager is left with a 10-day production schedule, a
record of how each order was filled, and a set of bids for the
actual and predicted RFQs. The bids on actual RFQs can be
sent directly to customers in their current form, and comput-
ers scheduled for delivery can be shipped. The Demand Man-
ager then considers modifications to the production schedule
to send to the factory for the next day. If there are no cycles
remaining on the first day of the 10-day production schedule,
the first day can be sent unchanged to the factory. Otherwise,
the Delivery Manager shifts production from future days into
the first day so as to utilize all cycles, if possible.

Production Beyond 10 Days The components purchased
by the Supply Manager depend on the component use pro-
jected by the Demand Manager. If we want to allow the possi-
bility of ordering components more than 10 days in advance,
the Demand Manager must be able to project its component
use beyond the 10-day period for which it plans production.
One possibility we considered was to extend this period and
predict RFQs farther into the future. Another was to pre-
dict future computer and component prices by estimating our
opponents’ inventories and predicting their future behavior.
Neither method provided accurate predictions of the future,
and both resulted in large swings in projected component use
from one day to the next. The Demand Manager thus uses a
simple and conservative prediction of future component use.

The Demand Manager attempts to predict its component
use for the period between 11 and 40 days in the future. Be-
fore 11 days, the components used in the 10-day production
schedule are used as the prediction, and situations in which
it is advantageous to order components more than 40 days in
advance appear to be rare. The Demand Model is used to
predict customer demand during this period, and the Demand
Manager assumes that it will win, and thus need to produce,
some fraction of this demand. While this method of project-
ing component use yields reasonable results, improving the
prediction is a significant area for future work.

The Supply Manager

The Supply Manager is responsible for purchasing compo-
nents from suppliers based on the projection of future compo-
nent use provided by the Demand Manager, and for informing
the Demand Manager of expected component deliveries and
replacement costs. In order to be effective, the Supply Man-
ager must be able to predict future component availability and
prices. The Supplier Model assists in these predictions.

Supplier Model

The Supplier Model keeps track of all information sent to and
received from suppliers. This information is used to model
the state of each supplier, allowing predictions to be made.
The Supplier Model performs three main tasks: predicting
component prices, tracking reputation, and generating probe
RFQs to improve its models.

Price Prediction To assist the Supply Manager in choosing
which RFQs to send to suppliers, the Supplier Model predicts



the price that a supplier will offer in response to an RFQ with
a given quantity and due date. The Supplier Model requires
an estimate of each supplier’s existing commitments in order
to make this prediction.

Recall that the price offered in response to an RFQ request-
ing delivery on a given day is determined entirely by the frac-
tion of the supplier’s capacity that is committed through that
day. As a result, the Supplier Model can compute this frac-
tion from the price offered. If two offers with different due
dates are available, the fraction of the supplier’s capacity that
is committed in the period between the first and second date
can be determined by subtracting the total capacity commit-
ted before the first date from that committed before the sec-
ond. With enough offers, the Supplier Model can form a rea-
sonable estimate of the fraction of capacity committed by a
supplier on any single day.

For each supplier and supply line, the Supply Manager
maintains an estimate of free capacity, and updates this es-
timate daily based on offers received. Using this estimate,
the Supplier Model is able to make predictions on the price a
supplier will offer for a particular RFQ.

Reputation When deciding which RFQs to send, the Sup-
ply Manager needs to be careful to maintain a good reputa-
tion with suppliers. Each supplier has a minimum acceptable
purchase ratio, and the Supply Manager tries to keep this ratio
above the minimum. The Supplier Model tracks the offers ac-
cepted from each supplier and informs the Supply Manager of
the quantity of offered components that can be rejected from
each supplier before the ratio falls below the minimum.

Price Probes The Supply Manager will often not need to
use the full five RFQs allowed each day per supplier line. In
these cases, the remaining RFQs can be used as zero-quantity
price probes to improve the Supplier Model’s estimate of a
supplier’s committed capacity. For each supplier line, the
Supplier Model records the last time each future day has been
the due date for an offer received. Each day, the Supply
Manager informs the Supplier Model of the number of RFQs
available per supplier line to be used as probes. The Supplier
Model chooses the due dates for these RFQs by finding dates
that have been used as due dates least recently.

Supply Manager

The Supply Manager’s goal is to obtain the components that
the Demand Manager projects it will use at the lowest pos-
sible cost. This process is divided into two steps: first the
Supply Manager decides what components will need to be
delivered, and then it decides how best to ensure the delivery
of these components. These two steps are described below,
along with an alternative means of obtaining components.

Deciding What to Order The Supply Manager seeks to
keep the inventory of each component above a certain thresh-
old. This threshold is 800, or 400 in the case of CPUs, and
decreases linearly to zero between days 195 and 215. Each
day the Supply Manager determines the deliveries that will
be needed to maintain the threshold on each day in the fu-
ture. Starting with the current component inventory, the Sup-
ply Manager moves through each future day, adding the de-
liveries from suppliers expected for that day, subtracting the

amount projected to be used by the Demand Manager for that
day, and making a note of any new deliveries needed to main-
tain the threshold. The result is a list of needed deliveries that
we will call intended deliveries. When informing the De-
mand Manager of the expected future component deliveries,
the Supply Manager will add these intended deliveries to the
actual deliveries expected from previously placed component
orders. The idea is that although the Supply Manager has not
yet placed the orders guaranteeing these deliveries, it intends
to, and is willing to make a commitment to the Demand Man-
ager to have these components available.

Because prices offered in response to short term RFQs
can be very unpredictable, the Supply Manager never makes
plans to send RFQs requesting delivery in less than five days.
(One exception is discussed later.) As discussed previously,
no component use is projected beyond 40 days in the future,
meaning that the intended deliveries fall in the period between
five and 40 days in the future.

Deciding How to Order Once the Supply Manager has de-
termined the intended deliveries, it must decide how to ensure
their delivery at the lowest possible cost. We simplify this
task by requiring that for each component and day, that day’s
intended delivery will be supplied by a single order with that
day as the due date. Thus, the only decisions left for the Sup-
ply Manager are when to send the RFQ and which supplier to
send it to. For each individual intended delivery, the Supply
Manager predicts whether sending the RFQ immediately will
result in a lower offered price than waiting for some future
day, and sends the RFQ if this is the case.

In order to make this prediction correctly, the Supply Man-
ager would need to know the prices that would be offered by
a supplier on any future day. Although this information is
clearly not available, the Supplier Model does have the abil-
ity to predict the prices that would be offered by a supplier
for any RFQ sent on the current day. To enable the Supply
Manager to extend these predictions into the future, we make
the simplifying assumption that the price pattern predicted on
the current day will remain the same on all future days. In
other words, if an RFQ sent on the current day due in ¢ days
would result in a certain price, then sending an RFQ on any
future future day d due on day d + ¢ would result in the same
price. This assumption is not entirely unrealistic due to the
fact that agents tend to order components a certain number of
days in advance, and this number generally changes slowly.
Essentially, we are saying, “Given the current ordering pat-
tern of other agents, prices are lowest when RFQs are sent
days in advance of the due date, so plan to send all RFQs z
days in advance.”

The resulting procedure followed by the Supply Manager
is as follows. For each intended delivery, the Supplier Model
is asked to predict the prices that would result from send-
ing RFQs today with various due dates requesting the needed
quantity. A price is predicted for each due date between 5
and 40 days in the future. If there are two suppliers, the lower
price is used. If the intended delivery is needed in ¢ days,
and the price for ordering ¢ days in advance is lower than
that of any smaller number of days, the Supply Manager will
send the RFQ. Any spare RFQs will be offered to the Supplier
Model to use as probes.



The final step is to predict the replacement cost of each
component. The Supply Manager assumes that any need for
additional components that results from the decisions of the
Demand Manager will be felt on the first day on which com-
ponents are currently needed, i.e., the day with the first in-
tended delivery. Therefore, for each component’s replace-
ment cost, the Supply Manager uses the lowest price found
when considering the first intended delivery of that compo-
nent, even if no RFQ was sent.

For each RFQ, a reserve price somewhat higher than the
expected offer price is used. Because the Supply Manager
believes that the RFQs it sends are the ones that will result
in the lowest possible prices, all offers are accepted. If the
reserve price cannot be met, the Supplier Model’s predictions
will be updated accordingly and the Supply Manager will try
again the next day.

3-Day RFQs As mentioned previously, the prices offered
in response to RFQs requesting near-immediate delivery are
very unpredictable. If the Supply Manager were to wait until
the last minute to send RFQs in hopes of low prices, it might
frequently end up paying more than expected or be unable
to buy the components at all. To allow for the possibility of
getting low priced short-term orders without risk, the Supply
Manager sends RFQs due in 3 days, the minimum possible,
for small quantities in addition to what is required by the in-
tended deliveries. If the prices offered are lower than those
expected from the normal RFQs, the offers will be accepted.

The size of each 3-day RFQ depends on the need for com-
ponents, the reputation with the supplier, and the success of
past 3-day RFQs. Because the Supply Manager may reject
many of the offers resulting from 3-day RFQs, it is possible
for the agent’s reputation with a supplier to fall below the ac-
ceptable purchase ratio. The Supplier Model determines the
maximum amount from each supplier that can be rejected be-
fore this happens, and the quantity requested is kept below
this amount.

The Supply Manager decides whether to accept an offer
resulting from a 3-day RFQ by comparing the price to the re-
placement cost and the prices in offers resulting from normal
RFQs for that component. If the offer’s price is lower than
any of these other prices, the offer is accepted. If the quantity
in another, more expensive offer is smaller than the quantity
of the 3-day RFQ, then that offer may safely be rejected.

The 3-day RFQs enable the agent to be opportunistic in tak-
ing advantage of short-term bargains on components without
being dependent on the availability of such bargains.

2005 Competition Results
Out of 32 teams that initially entered the 2005 TAC SCM
competition, 24 advanced past a seeding round to participate
in the finals, held over three days at IJICAI 2005. On each
day of the finals, half of the teams were eliminated, until six
remained for the final day. Game outcomes depended heavily
on the six agents competing in each game, as illustrated by
the progression of scores over the course of the competition.
In the seeding round, TacTex-05 won with an average score of
$14.9 million, and several agents had scores above $10 mil-
lion. Making a profit was much more difficult on the final day
of competition, however, and TacTex-05 won with an average
score of only $4.7 million. The second highest average score

was $1.6 million, and three agents (each of which averaged at
least $6 million in the seeding round) lost money 3.

Due to the complexity of the TAC SCM scenario and the
vast number of decisions that must be made during a single
game, it is difficult to isolate the factors that contributed to
TacTex-05’s success by analyzing game results. When com-
paring purchases of individual component types or sales of
individual computer types on a day-by-day basis*, it does not
appear that TacTex-05 obtained significantly lower purchase
prices or significantly higher sales prices than other compet-
itive agents. This fact suggests the possibility that TacTex-
05 was better able to focus on the types of computer that were
most profitable at any point in time given the component and
computer prices then present in the market. Two observations
potentially related to this hypothesis are that TacTex-05 tends
to carry smaller component inventories throughout the game
than many of its competitors, and also appears more flexible
in its choice of when to buy components, showing a willing-
ness to purchase components only a short time in advance of
their use. An agent that buys components at the last possible
moment may be better able to match its purchases to current
customer demand. There is the risk, however, that the agent
might wait too long and be unable to purchase components at
a reasonable price, or at all. This tradeoff, and other possi-
ble factors related to TacTex-05’s success, are explored in the
next section.

Experiments

We now present the results of controlled experiments de-
signed to measure the impact of individual components of
TacTex-05 on its overall performance. In each experiment,
two versions of TacTex-05 compete: one unaltered agent
(which we will call the base agent) that matches the descrip-
tion provided previously, and one agent that has been modi-
fied in a specific way. Each experiment includes 30 games.
The other four agents competing — Mertacor, MinneTAC,
GoBlueOval, and RationalSCM — are taken from the TAC
Agent Repository’, a collection of agents provided by the
teams involved in the competition.

Experimental results are shown in Table 2. Each experi-
ment is labeled with a number. The columns represent the
averages over the 30 games of the total score (profit), percent
of factory utilization over the game (which is closely corre-
lated with the number of computers sold), revenue from sell-
ing computers to customers, component costs, storage costs,
penalties for late deliveries, and the percent of the games in
which the altered agent outscored the base agent. The final
column indicates whether the difference in score observed
between the two agents is statistically significant with 99%
confidence according to a paired t-test. The first row, experi-
ment 0, is provided to give perspective to the results of other
experiments. In experiment 0, two base agents are used, and
all numbers represent the actual results obtained. In all other
rows, the numbers represent the differences between the re-
sults of the altered agent and the base agent (from that exper-
iment, not from experiment 0). In general, the results of the

*Competition scores are available at http://www.sics.
se/tac/scmserver

4using the CMieux toolkit (Benisch et. al. 2005)

Shttp://www.sics.se/tac/showagents.php



base agents are close to those in experiment O, but there is
some variation due to differences between games (e.g. cus-
tomer demand), and due to the effects of the altered agent on
the economy.

We first present experiments designed to measure the im-
portance of prediction accuracy in our predictive planning ap-
proach. We then examine the sensitivity of our agent to some
of its parameters, particularly those related to the important
decision of when to purchase components.

The Three Predictor Modules

The first three sets of experiments probe the sensitivity of the
agent to changes in the predictor modules.

Offer Acceptance Recall that for each customer RFQ a
function is generated mapping a price offered to the probabil-
ity of acceptance. This function is generated by multiplying
the result of linear regression by a day factor. In experiment
1, no day factors are used, and the score decreases consid-
erably. In experiment 2, day factors are used, but instead of
using linear regression to find probabilities across prices, a
single price is chosen at which the RFQ is expected to be
won. The price chosen is the greater of 95% of the previous
day’s high price for the computer type, and the previous day’s
low price. This quantity corresponds roughly to the average
selling price of a computer. For any offer below this price,
the prediction is made that the offer will be accepted with
probability 1, before the day factor is applied. The results
show a small, non-significant difference between the use of
this heuristic and the use of linear regression, supporting the
claim made earlier that the difference between winning prices
is small enough to limit the value of learning a detailed accep-
tance function.

It appears that the use of day factors is the key to the suc-
cess of the Order Acceptance Predictor. The day factors serve
two roles, however: measuring the impact of due date on offer
acceptance, and serving as a feedback mechanism to ensure
that the number of orders received is in line with the predic-
tions. To measure the relative importance of these two roles,
we replace the day factors in experiment 3 with a single mul-
tiplier to be used regardless of an RFQ’s due date. Like an
all-inclusive day factor, the multiplier represents the ratio be-
tween all actual and expected orders (i.e. those predicted from
the previous days). Linear regression is used as before. The
results show the single multiplier to be less effective than the
day factors, but much more effective than nothing at all, as in
experiment 1. Thus, while considering due dates is of some
value in predicting offer acceptance, it appears the feedback
role is the more important aspect of the day factors.

Customer Demand In experiment 4, we investigate the
value of the Demand Model by ignoring its predictions and
instead assuming that the number of RFQs received on any
day in the future will be the same as the number received on
the current day. Surprisingly, this has an insignificant effect
on performance, and we have been unable to determine why.

Component Supply The predictions of prices that will be
offered in response to RFQs cannot simply be “turned off” as
the predictions were in the previous experiments, because the
behavior of the Supply Manager is dependent upon compar-
isons of prices. Instead, we perform experiments in the fol-

lowing section that modify the behavior of the Supply Man-
ager directly.

Experiments with the Supply Manager

The results to this point highlight the importance of the Offer
Acceptance Predictor within TacTex-05 and demonstrate that
the Demand Predictor is, at least in the economy under con-
sideration, not important. This section presents experiments
to delve deeper into the importance of the Supplier Model, in
part by examining TacTex-05’s sensitivity to several parame-
ters in the Supply Manager. Ultimately, we discover that the
Supplier Model is an important part of TacTex-05’s overall
planning. The experiments further suggest a new strategy for
enhancing our baseline agent.

3-day RFQs In experiment 5, 3-day RFQs are not used,
preventing the agent from taking advantage of bargains on
components requested in the short term. The resulting de-
crease in score indicates that 3-day RFQs are an important
factor in the agent’s ability to acquire components at low
prices. In addition, the decrease in factory utilization suggests
that components purchased from 3-day RFQs do not simply
take the place of components that would otherwise have been
purchased further in advance. Apparently the prices obtained
are sufficiently low to make additional production profitable.

Inventory Threshold The next set of experiments exam-
ines the impact of the inventory threshold used. Normally, the
Supply Manager attempts to maintain an inventory of at least
800 components of each type beyond the projected use. In ex-
periments 6, 7, 8, 9, and 10, inventory thresholds of 100, 200,
400, 1200, and 1600 are used, respectively. An agent able
to perfectly predict future component needs and availability
would have no need to maintain surplus inventory, and could
plan so that component deliveries would arrive just in time to
be used. Maintaining a large inventory can therefore be seen
as a way of dealing with inaccuracies in predictions, prevent-
ing the lost revenue and penalties that can come from compo-
nent shortages at the cost of higher storage costs and possibly
unnecessary component purchases. This tradeoff is clearly
seen in the results. As the inventory threshold increases, fac-
tory utilization and revenue increases and penalties decrease,
but storage costs increase, and the additional production is not
necessarily profitable.

This last fact is somewhat surprising, because it is not im-
mediately clear why simply holding a larger inventory would
cause an agent to sell computers at a loss. One possible ex-
planation is that component costs tend to decrease over the
course of a game, and therefore an agent that builds up a
large surplus inventory early in the game is buying these com-
ponents at their most expensive, but this cannot account for
the entire difference. An analysis of the game logs shows
that for the agents using a threshold below the standard 800,
the reduced factory utilization is usually caused by a short-
age of components, and not a voluntary decision to not pro-
duce. Component shortages can only occur when the agent
is unable to obtain components that it had planned to buy, in-
dicating that predictions of component availability were too
high. In this situation, predicted replacement costs would be
too low, possibly causing the agent to sell computers when
it is not actually profitable to do so. This idea is supported
by the observation that during times when the base agent is



l Experiment # ” Score | Util. | Revenue | Costs | Storage | Penalties | Win % | Significant? l
Table 2: Experimental results. In | 0 I $254M | 89% [ $111.25M [ $106.14M [ $1.9IM [ $.36M | - - |
each experiment, one altered ver- 1 2464265 | -1% 225 5.4 +.70 -20 0% Y
sion of TacTex-05 and one un- 2 -19 + .68 0% -.08 +17 +.01 -.08 30% N
altered version compete in 30 3 S75+£123 | 3% -4.57 -3.56 +.07 -30 20% Y
games, along with four addi- | 4 [ +05+128 | +1% |  +245 [ 4236 | +01 |  +02 [ 40% | N ]
tional agents. Columqs repre- | 5 [ 236x275 | 5% | 701 ] 418 4] w06 [ 7% | Y ]
sent the total score (with stan- 6 388474 | -44% 5224 47.97 _81 +50 7% Y
dard deviations), percent of fac- 7 +10+ 1.65 | -28% -31.80 3141 -.69 +33 | 53% N
tory utilization, revenue from cus- 8 +129+ 173 | -10% 1223 -13.07 -49 w17 | 87% Y
tomers, component costs, storage 9 166 £199 | +4% +4.65 +5.84 +.45 11 10% Y
costs, penalties, how often the al- 10 270302 | +4% +5.89 +7.62 +.86 18 3% Y
tered agent outscored the unaltered 11 4345453 | +6% +6.40 +10.12 +58 -20 0% Y
agent, and an indicator if the dif- 12 213+£323 | 31% 4001 3855 24 +95 13% Y
ference in score is statistically sig- 13 46 £383 | -18% 2594 2588 ~08 51| 50% N
nificant according to a paired t- 14 18 +£.80 | 0% -54 -43 -.03 +12 [ 40% N
test with 99% confidence. Num- 15 20+ 83 | +1% +151 +170 +.04 02 | 3% N
bers represent millions of dollars. 16 125+ 174 | +4% +5.47 +6.63 2 19| 10% Y
In experiment 0, provided to place 17 +03 £392 | -15% 2042 22,65 ~04 +23 | 70% N
other experiments’ results in per- 18 +T8E176 | 9% -12.26 -13.15 +03 +12 | 73% Y
spective, no alteration is made to 19 146+ 88 | 2% 314 358 04 01 | 73% Y
TacTex-05, and numbers represent 20 A1£ 89 | +1% +1.18 +1.51 +.04 .02 40% Y
the actual results. In all other ex- [ 21 [ +1r£273 [ 19% | 2485 2464 -45 +26 | 66% | N
periments, numbers represent the 2 676 £ 800 | -48% -66.96 -60.52 -38 +57 0% Y
difference between the altered and 3 2051229 | 4% S0 354 D 206 0% Y

unaltered agent.

producing computers and the altered agent is not, the base
agent’s score is often decreasing. The results of this experi-
ment thus suggest that improvements to the component price
predictions may be needed in certain situations.

Reduced RFQ Flexibility As mentioned previously, flexi-
bility in the choice of how far in advance to buy components
appears to be a distinguishing characteristic of TacTex-05. In
experiments 11, 12, and 13, we remove this flexibility and
consider three simple alternative methods of deciding when
components should be ordered. In experiment 11, no attempt
is made to wait for the best day to send RFQs, and RFQs
are sent for all needed components immediately. In exper-
iment 12, components are always requested ten days in ad-
vance of anticipated need. In experiment 13, components are
requested five days in advance. None of these strategies ap-
pear effective. In experiment 11, components are purchased
in higher quantities and at higher prices than usual, resulting
in a very poor score. In experiments 12 and 13, the game
logs show that the prices paid for components are not much
higher than the prices paid by the base agent. Good prices
can apparently be found on these dates much of the time,
but not always, as indicated by the decreased factory utiliza-
tion. Somewhat surprisingly, component availability appears
higher when components are requested five days in advance
rather than ten, and the relatively small decrease in score in
experiment 13 despite the large decrease in factory utilization
suggests that the situations in which production is reduced
may be those in which it is least profitable, similar to the ef-
fect observed with the previous set of experiments.

Range of Days Considered As the choice of when to re-
quest components appears important, the next two sets of ex-
periments are designed to measure the effect of restricting the
number of days in advance in which the Supply Manager can

plan to request components, although to a lesser degree than
the previous experiments. Recall that the Supply Manager
will normally request components at least five days in ad-
vance of anticipated need, and at most 40 days in advance.
In experiments 14, 15, and 16, the minimum number of days
is changed to four, seven, and ten, respectively, and in ex-
periments 17, 18, 19, and 20, the maximum number of days
is changed to 10, 20, 30, and 50, respectively. From experi-
ments 14, 15, and 16, it appears that the best prices can often
be found by waiting until fewer than ten days remain. The
results of experiments 17 through 20 are somewhat more sur-
prising. It appears that ordering too far in advance, in par-
ticular beyond 20 days, is detrimental to performance. This
could be due either to incorrectly predicting long term prices,
or buying unneeded components due to incorrect projected
future component use. Data from the game logs suggests the
latter. Prices paid do not seem to differ significantly between
the base agent and altered agents. It appears that similarly
good prices can be found when ordering either a long or short
distance in advance, and that the agents that are restricted
from ordering far in advance are able to make purchases that
better reflect the current customer demand. Unlike the ex-
periments involving inventory thresholds, it appears that the
reduction in factory utilization is planned (not due to com-
ponent shortages) and occurs during periods of low customer
demand, while the base agent is busy using components it
purchased in advance before demand decreased.

The success of the changes made in experiments 8 and 18
prompt experiment 21, in which an inventory threshold of 400
and a maximum request distance of 20 days are used. From
the result, it appears that these two changes are not compli-
mentary, and that an agent that is unable to request compo-
nents far in advance may need a larger inventory threshold to



offset the risk of being unable to regularly obtain components.

The Effect of Opponent Strategies Based on the previous
experiments, it is tempting to conclude that any change that
results in TacTex-05 buying components a shorter distance in
advance of their use will be beneficial. Even the simple agent
in experiment 14 that is required to request all components
exactly five days in advance performs nearly as well as the
base agent. It is important to consider that the attractiveness
of short term purchasing may simply be a feature of the set
of agents competing. If all six agents attempted to use such
a short term strategy, would it remain effective? To test this,
we replaced the four additional agents previously used with
four copies of TacTex-05 modified to request components at
most ten days in advance. In experiment 22, the agent re-
stricted to requesting all components five days in advance is
tested in this environment, and in experiment 23, the agent
limited to requesting components at most 20 days in advance
is tested. In both cases, the results are much worse than the re-
sults against the previously used group of agents. Thus, there
must be some value in maintaining the option of long-term
component requests.

In light of these experiments, it would appear that the op-
timal strategy for the Supply Manager is to refrain from re-
questing components only as long as it appears that the com-
ponents can still be obtained at reasonable prices in the short
term. For some reason, the current strategy results in compo-
nents being requested before they need to be. One possible
solution would be to modify the current strategy so that in-
stead of sending a request as soon as the predicted price is at
its lowest point, the request is only sent when it is believed to
be unlikely that a reasonably close price can still be obtained.
Such a strategy could possibly be implemented by having the
Supplier Model predict a distribution over possible prices in-
stead of simply the prices themselves.

Related Work

A number of agent descriptions for TAC SCM have been
published presenting various approaches to the tasks faced
by an agent. Strategies used for bidding on customer RFQs
range from game-theoretic analysis of the economy (Kiek-
intveld et al. 2004) to fuzzy reasoning (He et al. 2005).
The approach described here, where probabilities of offer ac-
ceptance are predicted and used by the factory scheduler, is
also used by (Benisch et al. 2004). While attention has also
been paid to the problem of component procurement, much
of it has focused on an unintended feature of the game rules
(eliminated in 2005) that caused many agents to purchase the
majority of their components at the very beginning of the
game (Kiekintveld, Vorobeychik, & Wellman 2005). One ex-
ception is (Buffett & Scott 2004), in which the procurement
problem is modeled as a Markov Decision Process and dy-
namic programming is used to identify optimal actions.

Conclusions and Future Work

In this paper, we have presented the features of TAC SCM
as a challenge for planning and scheduling research. In ad-
dition, we have introduced and analyzed TacTex-05, a cham-
pion solution to this problem. TacTex-05 takes a predictive
approach to planning in a dynamic, uncertain environment by
actively projecting both future environmental conditions and

its own future behavior. The experiments presented indicate
the importance of various components of TacTex-05 and pro-
vide ideas for future development.

As noted earlier, the results of games depend heavily on
the agents participating. Since the experiments presented
were started, a number of additional agents have been made
available through the TAC Agent Repository. Preliminary ex-
periments against various agent combinations have produced
qualitatively similar results in most cases.

In this paper, we focus on predictive planning that is based
on observations from the current game. In some cases, how-
ever, it is also possible to base predictions on data from past
games. Indeed, during the final round of the TAC SCM com-
petition, when several games were played against the same set
of opponents, TacTex-05 used such adaptation to influence its
early and late game strategies. Analysis of TacTex-05’s adap-
tation between games is presented in (Pardoe & Stone 2006),
and improving this adaptation is an area of ongoing work.
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