
In ICAPS-07 Workshop on AI Planning and Learning (AIPL-07),
Providence, RI, September 2007.

Accelerating Search with Transferred Heuristics

Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone
Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

{mtaylor, kuhlmann, pstone}@cs.utexas.edu

Abstract

A common goal for transfer learning research is to show that a learner

can solve a source task and then leverage the learned knowledge to

solve a target task faster than if it had learned the target task directly.

A more difficult goal is to reduce the total training time so that learn-

ing the source task and target task is faster than learning only the target

task. This paper addresses the second goal by proposing a transfer hi-

erarchy for 2-player games. Such a hierarchy orders games in terms of

relative solution difficulty and can be used to select source tasks that

are faster to learn than a given target task. We empirically test transfer

between two types of tasks in the General Game Playing domain, the

testbed for an international competition developed at Stanford. Our

results show that transferring learned search heuristics from tasks in

different parts of the hierarchy can significantly speed up search even

when the source and target tasks differ along a number of important

dimensions.

Introduction
If you cannot solve the proposed problem try to solve first some re-

lated problem. Could you imagine a more accessible related problem?

. . . Could you solve a part of the problem? (Polya 1945, p. xvii)

Polya’s 1945 book How To Solve It motivates the general prin-

ciple behind transfer learning (TL). In this machine learning

paradigm, a learner first solves a source task and then uses its

knowledge to solve a target task. Rather than learning a difficult

target task directly, consider the following three-step TL process:

1. The learner must find or construct a source task that is relevant to,

but simpler than, a target task. Full details of the specific target

task may or may not be available during this phase.

2. The learner must solve the simple source task with relatively little

effort compared to solving the full target task.

3. The learner must transfer the knowledge gained from the source

task and utilize it to solve the target task.

A typical goal in TL research is to reduce the time needed to

learn a target task after first learning a source task, relative to learn-

ing the target task without transfer. This target task goal can be

achieved whenever the learner can transfer useful information from

the source task into the target task. The majority of TL research to

date has focused on this goal (step # 3), demonstrating both the fea-

sibility of transfer and the many dimensions along which the source

and target may differ while still allowing transfer. In these TL sce-

narios the relevant source task or tasks are generally provided to the

learner for each target task.

A more difficult goal is to reduce the total training time so that

learning the source task and target task is faster than learning the tar-

get task directly. The total time goal is attainable only if the source

Copyright c© 2007, Association for the Advancement of Artificial Intelli-

gence (www.aaai.org). All rights reserved.

task (called an auxiliary problem by Polya) is faster to solve than the

target task, and the speedup in target task training time overcomes

the time spent on learning the source task. To achieve this goal the

learner must reason about all three steps. This paper takes a first

step at the difficult problem of discovering appropriate source tasks

by proposing a transfer hierarchy. Such a structure defines types of

games that require more or less information to solve and thus may

be used to order tasks by their relative solution complexity.

Such an ordering can be used to identify source tasks that will

take significantly less time to solve than a particular target task, re-

ducing the impact of source task training on the total training time.

In the future we hope that such a transfer hierarchy will be used to

help automate the transfer learning process by assisting in the selec-

tion of a source task for a given target task. In this paper we begin

to evaluate the effectiveness of our proposed hierarchy by manu-

ally constructing source tasks for a specified target task, where the

selection of source task are motivated by the transfer hierarchy.

To empirically demonstrate transfer between source and target

task taken from our transfer hierarchy, we utilize the game of

Mummy Maze. This game is an appropriate choice for two rea-

sons. First, it has been released as a sample domain in the General

Game Playing (Genesereth & Love 2005) (GGP) contest, an inter-

national competition developed independently at Stanford. Second,

the Mummy Maze task is easily modifiable so that it can conform

to each task type in our transfer hierarchy. Our results show that

a transferred heuristic is able to improve the speed of search by as

much as 34%, meeting the target time goal, even if our source tasks

differ from the target tasks along a number of dimensions. Addi-

tionally, we demonstrate how the total training time goal may also

be met for this particular pair of source and target types, depending

on information gathering costs.

A Transfer Hierarchy for Games
Mapping problem characteristics to the correct solution type is an

important open problem for AI. For instance, given a control prob-

lem, should the solution be solved optimally or approximately? Is

planning or reinforcement learning (Sutton & Barto 1998) (RL)

more appropriate? If RL, should the solution be model-based or

model-free? This work assumes that such an appropriate mapping

exists; given certain characteristics of a game, we propose an ap-

propriate solution method. The characteristics we select are based

on the amount of information provided to a player about the game’s

environment and opponent.

For instance, if a learner has a full model of the effects of ac-

tions and knows how its opponent will react in any situation, the

learner may determine an optimal solution by “thinking” through

the task using dynamic programming (Bellman 1957) (DP). At the

other extreme, a learner may have to make decisions in a task where

the opponent’s behavior is initially unknown and possibly stochas-

tic. In this more difficult scenario, the solution strategy must work

to sample the environment and opponent’s policy repeatedly, which

suggests an RL approach.

Interactions with the environment and an opponent accrue cost:

simulators use computational resources, physical robots may take

significant amounts of wall-clock time, and opponents think before

making decisions. When using DP, the only cost is cycles spent de-

termining an optimal policy. When using RL, one must account for

both interactions with the environment and opponent. By consider-

ing these differences in resource requirements, we propose a hierar-

chy to define game characteristics which require more resources to

solve. We then leverage the solution hierarchy to find an appropriate

type of source task to transfer from, given a target task.

Suppose that a learner could make some simplifying assumptions

about a target game so that it could derive a simpler version of the

task. For instance, in 2-player maze task, the agent could gener-

ate a series of randomly constructed mazes, with some approximate

model for the opponent’s behavior. The source tasks could be solved

very quickly using DP. When the “real” target mazes are presented,

the learner should be able to leverage its source task knowledge to

solve the target mazes more quickly than if it had not used transfer.

In this work, we consider two-player games set against a spe-

cific, fixed opponent. A game is defined as a set of states, a set of

(possibly state-dependent) actions for each player, a reward func-

tion for each player, and a transition function that maps a state and

the players’ actions to a next state. To define the transfer hierarchy,

we consider four characteristics of the game in question:

1. Is the transition function known? If the effect of actions are

known, the learner may not have to interact with the environment

to determine a good policy.

2. Is the opponent’s policy known? Can the player anticipate the

opponent’s action in any state?

3. Is the opponent queryable? Is the opponent willing to answer

the question, “What would you do in this state?” If so, we can

assume that there is some cost to querying the opponent, but we

may jump to different locations in a game tree rather than being

forced to play each game from start to end.

4. Is the opponent deterministic? A stochastic policy must be

sampled repeatedly while a deterministic policy need only be ex-

perienced once in each state. 1

Given these task characteristics, we construct a hierarchy of so-

lution methods in Figure 1a. The method Transition Learner con-

centrates on only learning the effect of moves in the given task since

the opponent’s policy is completely known. It is difficult to imag-

ine such a scenario where the opponent’s strategy is defined but

the learner does not know the transition model (none of the games

commonly played by humans fall into this category). Another less

familiar solution method is Active RL (Mihalkova & Mooney 2006).

In this scenario the learner uses reinforcement learning, but may fo-

cus on sections of the MDP with the most uncertainty.

In addition to mapping task characteristics to possible solution

methods, Figure 1a also defines a Transfer Hierarchy. Learners that

have more information are able to solve tasks with fewer environ-

mental or opponent interactions. Given a target task with little infor-

mation, the learner may be able to generate similar tasks but give the

1We do not consider non-stationary opponents (e.g., learning opponents)

and leave this extension to future work.

learner more information. A central hypothesis for this work is that

a learner may train relatively quickly on a simpler source task and

then use its learned information to speed up learning the target task

which must use a more complex solution method (i.e., one to the

left of the source task method which has less information available

to the learner). In this paper we empirically test one such pairing:

we first learn a series of constructed source tasks via DP to speed

up learning a target task via best-first search.

Test Domain
To test our transfer hypothesis we utilize the Mummy Maze task,

one of many games simulated in GGP. Specifically, we will focus

on a target task where the maze is unknown, the opponent’s policy

is unknown, and the opponent is both queryable and deterministic.

To speed up this task using best-first search (as described on the

following page), we first construct a series of source mazes and a

test opponent, solvable with DP.

General Game Playing

Creating programs that can play games at a high level has long

been a challenge and benchmark for AI. However, traditional game

playing systems are limited in that they play only one particular

game. In contrast, the General Game Playing (GGP) challenge mo-

tivates research on creating agents capable of playing many previ-

ously unseen games, given only a description of the game’s rules.

Since 2005, AAAI has held an annual GGP competition in which

agents designed by different researchers compete on a wide variety

of games.

In the Game Description Language (GDL) used in the compe-

tition, games are modeled as state machines. An agent can derive

its legal moves, the next state given the moves of all players, and

whether or not it has won by applying resolution theorem proving

on the rules of the game combined with the asserted facts for the

present state. The language is fairly low-level and is able to de-

scribe multiplayer, deterministic, perfect-information games. Syn-

tactically, GDL is a first-order logical description language based

on KIF (Genesereth 1991). The next section introduces the game

used in our experimental work, which is described in GDL.

Mummy Maze

Mummy Maze2 is a single player game in which the explorer at-

tempts to escape a maze. The opponent mummy follows a fixed

policy to attempt to stop the explorer. The explorer has 5 determin-

istic actions: moving one step in each of the four cardinal directions

{N, S, E, W} or staying put. The mummy has the same action set,

but takes two serial actions on each turn. The explorer and mummy

alternate moves and neither may transition through walls. The chal-

lenge for the explorer is to exploit the mummy’s fixed policy so that

he may reach the exit despite the speed disadvantage. The explorer

receives a reward of +100 if he reaches the exit and a reward of 0

if the mummy catches the explorer or if the explorer has taken 50

turns without reaching the exit.

A mummy following the vertical behavior policy will determin-

istically move towards the explorer on every move, preferring ver-

tical moves over horizontal moves when both types of move would

reduce the players’ distance. Figure 1b shows an example maze,

with the solution for the explorer. As the explorer moves to the grid

2The .kif file which fully describes the game in GDL may be found at

http://games.stanford.edu/gamemaster/games-mummy/

mummymaze1p-horiz.kif

Best−First SearchActive RL

Transition function known?

Deterministic Opponent?

NO YES

NO YES

NO YES

NO YES

RL

Queryable Opponent?

MiniMax DP

NO YES

Opponent policy known? Opponent policy known?

Transition Learner

Figure 1a: Characteristics of a given task define which solution

method is most appropriate. More knowledge leads to solution

methods which require fewer interactions with the environment

and/or opponent.

1E 1M

E

M

Figure 1b: This figure shows an example solu-

tion to a maze with vertical mummy behavior.

The explorer moves directly to the 1E space

and the mummy is trapped at 1M, allowing the

explorer to double back to the exit, denoted by

an ’X’.

1E

2M

1M

2E

4M

4E

3M 3E

M

E

Figure 1c: Solving the maze with horizontal

mummy behavior. If the explorer attempted the

previous solution, the mummy would catch the

explorer at the red circle. The explorer must

move to squares 1E-4E, trapping the mummy

at squares 1M-4M, before exiting the maze.

location 1E, the mummy moves North on each move until it moves

West and becomes trapped at 1M. Once the mummy is trapped in

the cul-de-sac, because it never moves away from the explorer, the

explorer may proceed South to the exit. A mummy that follows the

horizontal behavior policy prefers to move East or West towards the

explorer if possible. Figure 1c demonstrates how the explorer’s pol-

icy must change to exploit this mummy policy, given the same wall

configuration, start state, and goal state. Notice that if the explorer

attempted the previous solution path, the mummy would catch the

explorer at the cell marked by the red circle.

Mummy Maze is an appropriate choice for this work because we

can easily adjust the game definition so that each of the solutions

described in the transfer hierarchy is appropriate. For instance, if

the explorer is not told where the walls are located, the mummy’s

policy is unknown, and the mummy is not queryable, RL would be

the most appropriate solution strategy. The next section discusses

Mummy Maze formulations where DP and best-first search are ap-

plicable.

Mummy Maze Solution Methods

A number of strategies may be employed to solve Mummy Maze,

depending on the amount of information the explorer has. In this

paper we consider two cases:

1. The transition function is known (i.e. the placement of all the

walls in the maze is known) and the opponent’s policy is known.

2. The transition function and opponent’s policy are unknown, and

the opponent is both queryable (i.e. the explorer can ask the

mummy, “If I were here and you were there, how would you

act?”) and deterministic.

In the following sections we explain how Mummy Maze tasks can

be solved with dynamic programming, with best-first search, and

with transfer from dynamic programming to best-first search.

Dynamic Programming In its original construction, Mummy

Maze is a single player puzzle game, in which the mummy is con-

trolled by a known deterministic policy, specified as part of the en-

vironment. Given such a task, in which the transition function and

opponent behavior are deterministic and known, the optimal agent

policy may be found by simply enumerating all of the game’s states

and transitions between them. This instance of the general dynamic

programming algorithm is detailed as Algorithm 1.

The algorithm begins by enumerating all states in the game’s

state set, S. The goal(s) is the value of a state as determined by the

goal conditions described in the game’s GDL description. All termi-

nal states are marked as either wins or losses, based on this value.

Then, all non-terminal states that transition to a terminal state are

marked. The set next(s) contains all states resulting from legal ex-

plorer moves taken in state s. Any action leading to a win is a win.

If all actions lead to a loss, then the originating state is a loss. The

iteration continues, marking states that transition to states marked in

the previous iteration. The repeat loop terminates after marking the

states with the longest solution lengths. One can recover the policy

for the solution by simply adding some extra bookkeeping to record

the winning transitions between states.

Algorithm 1 DYNAMICPROGRAMMING (maze)

1: for all states s ∈ S do

2: if s is terminal then

3: mark s a WIN if goal(s) = 100

4: mark s a LOSS if goal(s) = 0

5: repeat

6: for all unmarked states s do

7: w ← 0, l← 0

8: for all states s′ ∈next(s) do

9: w ← w + 1 if s′ marked as a WIN

10: l← l + 1 if s′ marked as a LOSS

11: if w > 0 then

12: mark s a WIN

13: else if l = |next(s)| then

14: mark s a LOSS

15: until no new states marked

DP is able to find the optimal solution from all possible ini-

tial states for a given goal state. Although the algorithm is very

generally applicable, it is only practical on games with reason-

ably small state spaces. The running time of the algorithm is

O(l∗|A||S|) where l∗ is the longest solution length, in steps, and

A is the set of actions available to the agent. For Mummy Maze,

l∗|A||S| = 50 × 5 × 642, which is only about one million evalua-

tions.

Best-First Search In the second variation of Mummy Maze this

paper considers, we utilize a search to determine a (possibly sub-

optimal) solution to a given maze, if one exists. We utilize a learned

heuristic (as specified in the next section) to perform greedy best-

first search as specified in Algorithm 2. If we do not use a heuristic,

best-first search reduces to breadth-first search.

We modified the standard best-first search algorithm in a subtle

but important way to incorporate domain knowledge. In Mummy

Maze, a solution can be broken down into a series of subgoals, each

of which trap the mummy and allow the explorer to move to an-

other location. We capture this knowledge by prioritizing a state

not solely by its heuristic value, but by the sum of the values of its

ancestors (line 13). States with high heuristic values are likely sub-

goals and thus, search is guided to explore the children of states that

encounter subgoal states along the way.

In the worst case, best-first search must expand the entire game

tree. Thus, its running time is proportional to the number of states in

the game. Although the computational complexity of the algorithm

is less than that of Dynamic Programming, it has a significantly

higher constant factor. In each state it must query the opponent for

their move, which is an expensive operation.

Algorithm 2 BESTFIRSTSEARCH (maze, heuristic)

1: Q← empty priority queue

2: add (initial state of maze, 0) to Q

3: while Q is not empty do

4: (s,priority)← get highest priority element of Q

5: for all actions a ∈ explorer’s legal moves in state s do

6: s′ ← NEXTSTATE(s, a)

7: a′ ← ask mummy what move will be taken in state s′

8: s′′ ← NEXTSTATE(s′, a′)

9: if ISWINNINGSTATE(s′′) then

10: return (solution found)

11: else if not ISLOSINGSTATE(s′′) then

12: δ ← heuristic(s′′)

13: add (s′′, priority+δ) to Q

14: return (NO solution found)

Transfer Methodology

In this paper we concentrate on learning a search heuristic for best-

first search by solving one or more source tasks with dynamic pro-

gramming. In this section we discuss how to construct a search

heuristic from source task solutions. In the following section, we

empirically verify that such a heuristic can speed up search in the

target task, even if the source task and target task differ in wall con-

figuration, opponent behavior, size, start state, or goal state.

The main insight for heuristic learning is that rather than learn

a heuristic for a particular source task, that is one for a particular

maze, we learn over a state abstraction. For this task, we chose

an abstract representation centered on the Mummy which considers

the walls adjacent to it and the direction from the mummy to the

explorer. The intuition is as follows. A state where the mummy

is in a corner or in a cul-de-sac and the explorer is on the opposite

side of the wall is a relatively good position for the explorer. On

the other hand, a state where the mummy is in an open area with

no walls is less desirable for the explorer because the mummy has

a high degree of mobility. In this simple abstraction there is no

notion of distance between the mummy and explorer, nor between

the explorer and the exit.

We use a function GETABSTRACTSTATE which takes the cur-

rent board configuration and returns the index for the mummy’s

current abstract state. There are 15 possible wall configurations

for the walls directly adjacent to the mummy3. There are 8 pos-

sible directions from the mummy to the explorer, which yields 128

possible abstract states, while a standard 8× 8 game has 4,096 true

states (64 explorer positions × 64 mummy positions). Although this

abstraction is hand coded, we would ideally like to use automated

abstractions (e.g., Jong and Stone (2005)) in the future.

After solving a source task, the number of wins and losses for

each abstract state is tallied. The win percentage (# wins
wins+# losses

)

for each abstract state is calculated, as well as the average win per-

centage and the standard deviation. When calculating the heuris-

tic for a state in the target task, we first find the corresponding ab-

stract state. If winPercentage ≥ aveWinPercentage + stDev then the

heuristic returns +1. If winPercentage ≤ aveWinPercentage - stDev

then the heuristic returns -1. Otherwise the heuristic returns 0. 4

Results

To test our transfer methodology we perform a number of experi-

ments in which the source and target tasks have different charac-

teristics. In every experiment we construct a set of target tasks and

record how many steps the best-first search takes to solve the task

with and without transfer. In this setup, the “steps taken” is equiva-

lent to how many times the Explorer must ask the Mummy, “What

action would you take in this state?” Alternatively, this is equiv-

alent to the number of connections the Explorer agent must make

to the GGP server to query for the opponent’s move. Each target

maze is solved 10 times as the best-first search breaks ties randomly.

Roughly 25% of the mazes constructed have no solution because of

the start state and/or wall configuration. Impossible tasks are ig-

nored in the evaluation as no search method could find a solution.

When using transfer, the source task mazes are randomly gener-

ated using the same wall-generation algorithm that the target tasks

are generated with and thus the mazes in the source and task are

drawn from the same distribution of possible mazes. However, be-

cause the opponent behavior is different in the two sets of tasks, the

distributions of source and target tasks are qualitatively different. 5

All source task mazes have the same start state and goal state, as

depicted in Figure 1b. Additionally, all source tasks utilize a hori-

zontal mummy behavior.

Different Opponent Behavior

All transfer experiments in this paper utilize different mummy be-

haviors in the source and target tasks. As stated above, the source

tasks all use a horizontal behavior Mummy. In the target task the

Mummy uses a deterministic mixture of the horizontal and verti-

cal behaviors, denoted HV-behavior. HV-behavior specifies that the

mummy utilize horizontal behavior if its x and y cell coordinates

have the same parity (both are even or both are odd) and act like

a vertical mummy if the parity of its x and y cell coordinates are

3We do not allow a cell to be surrounded by four walls (i.e. to be un-

reachable).
4Rather than using the winPercentage directly as heuristic values, which

would tend to explore the states with the highest individual values first, we

instead cluster states into three categories: good, neutral, and bad. By doing

so, the priority of a state during best-first search is dominated by the number

of good states in its history rather than by how good those states are inde-

pendent of their history. We intend to explore using the continuous version

of this heuristic in future work.
5If the learner had access to the target task mazes and trained on them,

rather than using random mazes for the source task, transfer could be triv-

ially accomplished by memorizing the solution to each maze.

different. Thus the mummy’s behavior is deterministic but is quali-

tatively different from the source task’s mummy behavior.

To evaluate experiments in this domain, we define transfer per-

centage to be the ratio between the total number of steps to solve all

mazes with and without transfer:

100×

P

TargetMazes
(Steps to solve maze with transfer)

P

TargetMazes
(Steps to solve maze without transfer)

.

To test transfer between source tasks with a horizontal behavior

mummy and target tasks with an HV-behavior mummy, we first gen-

erate 200 HV-behavior target task mazes. Each is solved 10 times

without transfer. Next, 20 horizontal-behavior source tasks are an-

alyzed and the learned heuristic is used to solve each target task 10

times with transfer. We find that the transfer percentage is 73, which

means that, on average, using transfer results in a 27% reduction in

the number of queries the explorer must make of the GGP server. As

may be expected, we found that more difficult target tasks benefited

more from transfer on average.

Different Numbers of Source Tasks

To test the effect of the number of source tasks on transfer, we ran

experiments with different numbers of source tasks. The results

are reported in Table 1a, which shows that even with a very small

number of source tasks, transfer can significantly reduce the number

of steps needed to solve target tasks.

Comparison to a Simple Hand-coded Heuristic

In order to better evaluate our learned heuristic, we compared our

results to those generated from a simple hand-coded heuristic. If the

mummy was able to move in any direction we labeled the state as

bad and if the mummy was unable to move towards the explorer the

state was good. Using this metric we observed a transfer percent-

age of 75, which our learned heuristics either tied or beat (unless

fewer than 3 source tasks are used). This suggests that our algo-

rithm is not only able to learn a heuristic autonomously, but that the

learned heuristic captures more useful information than a simple

hand-coded heuristic.

Different Target Task Sizes

The 10 × 10 maze has 10,000 unique states and we expected that

our transfer percentage would improve when solving larger target

mazes. To test this theory, we again generated 20 8 × 8 source

task mazes, but the target task mazes were 10 × 10. We found the

resulting transfer percentage to be 66, a slight improvement over 73.

Different Start State

Up to this point all source and target tasks have been generated such

that the mummy and explorer always began at the same coordinates

and the exit was in the same location. To evaluate how dependent

our method was on the start state, we kept the source task start state

fixed but allowed the target task start state to be chosen randomly.

We found that the transfer percentage was effectively unchanged, as

it now averaged 69 (as compared to 73 when the target tasks’ start

states were fixed).

Different Start State and Goal State

Our final test allowed both the start state and the exit to vary in the

target tasks. Our setup allowed the exit to be anywhere on the board,

which resulted an average transfer percentage 92.

We hypothesized this was because our abstract states did not ac-

count for relative placement of the exit. Thus our heuristic learned

a bias that favored the explorer’s mobility towards the Southwest

corner of the board, and when the exit was in a different location,

this bias was less helpful (although it was still better than search-

ing without a heuristic). To test this, we then allowed random start

states and exit positions, but constrained the exit to be in the South-

west quadrant of the board (thus reducing the number of possible

exit locations by a factor of four). With the bias now restored, the

resulting transfer was 70. This and other experiments are summa-

rized in Table 1b.

Total Time Metric

The results in this paper have focused on the target task metric,

as the transfer percentage we report ignores time spent solving

the source tasks. However, as suggested previously, this transfer

method may also reduce the total time because the source and tar-

get are selected from different task types in our transfer hierarchy.

Our first experiment solves an 8 × 8 target task taking an aver-

age of 127 best-first search steps to solve without transfer. On

each step the learner must query the central GGP server for the

next state because the learner does not have the transition func-

tion. Furthermore, the GGP server must query the opponent to de-

termine its action for a given state. Solving a target task is dom-

inated by the communication delay and opponent’s response time:

127 × (4 × (communication time) + (opponent response time)).

The transfer learner first completely solves 20 source tasks tak-

ing roughly 20.5 million evaluations. The time for solving the

source tasks is bounded by the time to simulate taking an ac-

tion in the environment and then simulating the opponent’s ac-

tion: 20.5 × 105 × (internal next state time). The average solu-

tion length of an 8 × 8 maze is 93 steps after transfer from 20

source tasks. Thus the total time for solving a target task with

transfer is 20.5 × 105 × (internal next state time) + 93 × (4 ×
(communication time + opponent response time)).

When connecting to the Stanford Game Manager, the time to

compute the next state is about 0.1 seconds, the average communi-

cation time with the remote server. Using our own inference engine,

we can simulate an average of 5.51 × 104 next states per second

on a 3.4 GHz machine. Assuming the opponent responds instantly,

transfer would reduce the total time if DP could simulate 1.52×106

next states per second, which may be possible if we use a compiled

implementation of the domain to avoid the need for inference.

Solving a 12 × 12 maze takes an average of 370 steps with-

out transfer and 197 steps after transferring from ten 8 × 8 source

tasks, on average. Thus, DP needs to simulate only 1.5 × 104

next states per second to reduce the total time for a 12 × 12 target

task, which our current implementation achieves. Such an analysis

demonstrates that it is likely when using larger target tasks, or if the

opponent takes some time to choose its move, total time can be re-

duced by using the transfer hierarchy to select source tasks. Transfer

requires solving extra source tasks, but the speed-up achieved in the

target task may overcome this overhead.

Future and Related Work

In this work we concentrate on tasks where the source task opponent

and target task opponent have slightly different policies. In prelimi-

nary experiments there were not qualitatively different results when

using identical policies (horizontal behavior to horizontal behavior)

or more dissimilar policies (horizontal behavior to vertical behav-

ior). We speculate that this is because all of these policies are simi-

lar enough that transfer can provide a useful heuristic. One direction

Source Tasks Transfer Percentage

1 97
2 79
3 74
5 73
10 75
20 73
50 71

100 70
200 71
400 73

Table 1a: Results show significant transfer

benefit, even with few source tasks.

Target Task Hand-coded Target Task Target Task Transfer

Size Heuristic? Random Start State? Random Goal State? Percentage

8× 8 Yes No No 75

8× 8 No No No 73

10× 10 No No No 66

8× 8 No Yes No 69

8× 8 No Yes Yes (anywhere) 92

8× 8 No Yes Yes (SW quadrant) 70

Table 1b: Summary of results comparing searching without transfer to searching after analyzing

20 source tasks. All source tasks are 8 × 8 with H mummy behavior, with fixed start and goal

states. Results are averaged over 200 target tasks with HV-behavior mummy behavior.

for future work would be to consider more dissimilar policies, such

as an opponent policy that allowed the mummy to escape from a

cul-de-sac with a certain probability.

The abstract state representation could also be enhanced in future

work. For instance, in the Mummy Maze domain it may make sense

to explicitly include the direction from the explorer to the goal, the

distance from the mummy to the explorer, or the explorer to the

goal. Additionally, such an abstraction would ideally be learned au-

tomatically rather than hand-coded. Likewise, rather than using the

transfer hierarchy to selecting a type of source tasks for a given tar-

get task, it should be possible to have a TL learner use the hierarchy

to automatically construct a source task, given a target task.

Other future work involves utilizing the proposed transfer hierar-

chy for different combinations of tasks. For instance, we have tried

using a heuristic learned with DP to speed up RL in Mummy Maze,

but thus far do not have positive transfer results. The intuition we

have attempted to leverage is that RL must use some exploration

strategy and a learned heuristic should be able to guide the learner

more efficiently than random exploration. We hope that such an ap-

proach will represent a second method for leveraging different types

of tasks within the transfer hierarchy to reduce learning times.

The main novelty of the experiments in this paper is to present a

method for heuristic learning via transfer learning. There is a grow-

ing body of work using transfer learning to learn sequentially pre-

sented tasks faster. For instance, our previous work (Taylor, Stone,

& Liu 2005) showed that it was possible to transfer a value function

between related reinforcement learning tasks.

The method of constructing different artificial source tasks is

similar in spirit to the Randomized Task Perturbation method pre-

sented by Sherstov and Stone (Sherstov & Stone 2005) which adds

noise into random states in the source task value functions so that

source task learning is made more general. Other work by Stone

and Veloso (Stone & Veloso 1994) discusses a related problem in a

planning context. This paper addresses the situation where a plan-

ner fails to solve a difficult problem but a simpler auxiliary problem

can be automatically constructed such that their solutions may guide

the planner on the full problem.

Although the state abstraction in our work was created manually,

prior planning research has demonstrated the possibility of gener-

ating state-space abstractions automatically from domain descrip-

tions. These methods may be divided into two forms. In relaxed

models (Sacerdoti 1974), abstractions are obtained by dropping con-

ditions of actions to make them applicable in more states. A differ-

ent approach is to generate a reduced model (Knoblock 1994), in

which certain terms are dropped entirely from the problem descrip-

tion. Although neither of these methods could produce our par-

ticular abstraction, it is possible that, if applied to Mummy Maze,

they may yield different useful abstractions. Generating abstrac-

tions automatically for use in our proposed transfer hierarchy is an

interesting area of future work.

Conclusion
This paper has proposed a transfer hierarchy which suggests appro-

priate pairs of tasks for transfer such that the total time needed to

solve a task may be reduced. Such a hierarchy is based on char-

acteristics of the tasks with the assumption that when given a diffi-

cult task, a simpler task with similar characteristics may be approx-

imated. We have also empirically demonstrated transfer between

one such pair of tasks, showing that a useful search heuristic may

be learned and then utilized to speed up a later task, even when

the source tasks have qualitatively different characteristics from the

target tasks.

Acknowledgments
We would like to thank Kristen Grauman and the anonymous re-

viewers for helpful comments and suggestions. This research was

supported in part by DARPA grant HR0011-04-1-0035, NSF CA-

REER award IIS-0237699, and NSF award EIA-0303609.

References
Bellman, R. E. 1957. Dynamic Programming. Princeton University Press.

Genesereth, M., and Love, N. 2005. General game playing: Overview of

the AAAI competition. AI Magazine 26(2).

Genesereth, M. 1991. Knowledge interchange format. In Principles of

Knowledge Representation and Reasoning: Proceedings of the Second

Intl. Conference (KR’91).

Jong, N. K., and Stone, P. 2005. State abstraction discovery from irrele-

vant state variables. In Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence, 752–757.

Knoblock, C. A. 1994. Automatically generating abstractions for planning.

Artificial Intelligence 68(2):243–302.

Mihalkova, L., and Mooney, R. 2006. Using active relocation to aid rein-

forcement learning. In Proc. of the 19th International FLAIRS Conference.

Polya, G. 1945. How to Solve It. Princeton, NJ: Princeton University Press.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Arti-

ficial Intelligence 5:115–135.

Sherstov, A. A., and Stone, P. 2005. Improving action selection in MDP’s

via knowledge transfer. In Proceedings of the Twentyeth National Confer-

ence on Artificial Intelligence.

Stone, P., and Veloso, M. 1994. Learning to solve complex planning prob-

lems: Finding useful auxiliary problems. In Technical Report of the AAAI

1994 Fall Symposium on Planning and Learning: On to Real Applications.

Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement Learn-

ing. MIT Press.

Taylor, M. E.; Stone, P.; and Liu, Y. 2005. Value functions for RL-based

behavior transfer: A comparative study. In Proceedings of the Twentieth

National Conference on Artificial Intelligence.

