Continuous Area Sweeping: A Task Definition and
Initial Approach

Mazda Ahmadi and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
1 University Station C0500, Austin, TX 78712-0233
Email:{mazda,pstoneg@cs.utexas.edu
http://www.cs.utexas.edu/"{mazda,pstone}

Abstract— As mobile robots become increasingly autonomous and its detection. Notice that since the event appearamee ti

over extended periods of time, opportunities arise for theiuse js not known to the robot, this value is not computable by
on repetitive tasks. We define and implement behaviors for a the robot. The definition ofevent importances problem-
class of such tasks that we caltontinuous area sweeping tasks. . .
A continuous area sweeping task is one in which a robot (or _dependent. For example, in the trash CO”e_Ct'()n task, the
group of robots) must repeatedly visit all points in a fixed importance of collecting food trash may be higher than that
area, possibly with non-uniform frequency, as specified by a of collecting paper goods. Minimizing the weighted average
task-dependent cost function. Examples of problems that re@l event detection time will result in the sensible behavior of
continuous area sweeping are trash removal in a large builaig visiting kitchens and other public areas more often thansgino

and routine surveillance. We present a formulation for this . dividual offi For th il task defi
problem and an initial algorithm to address it. The approachis 'Mdividual offices. or the surveililance task, one may detiné

analyzed analytically and is fully implemented and testedpoth ~ the importance of identifying gas leaks as being higher than
in simulation and on a physical robot. finding lights on.

Continuous area sweeping tasks are closely related to the
security sweep[1], or sweeping[2] task. In the security

Consider a robot whose goal it is to keep the floors clean sweep or sweeping task, the robot(s) arevisit the whole
a large office building. This task requires continual execut environment in minimum time. Continuous area sweeping
by the time the robot has cleaned the entire building onds, also related tocoverage path-planning3], which “is a
some parts have become dirty again. A first-cut approanbw path planning approach that determines a path for a
might lead the robot to simply clean the building from top toobot to pass over all points in its free space.” [3] The
bottom and then start over again. However, if the rate atlwhicelevant differences are that in continuous area sweeftieg,
areas of the building become dirty is non-uniform and pdgsibsweep must be performed i) repeatedly (continuously), 8nd i
even non-stationary, a more sophisticated solution isedallnon-uniformly, that is with more frequent attention given t
for. In particular, the robot should ensure that it clearghlyi- some areas than to others. As surveyed by Parker [4], most
trafficked areas, such as the main entrance and the restrogmnsvious approaches to surveillance assume ideal sensors a
much more frequently than, say, the closets. no computational bounds. In contrast, in this paper we clemsi

We define such a task to be an exampleaftinuous area solutions that are fully implementable (and implementedl) o
sweepingtask. A continuous area sweeping task is one & physical robot.
which a robot (or group of robots) must repeatedly visit all We propose a formulation of continuous area sweeping tasks
points in a fixed area, possibly with non-uniform frequencguch that thetate(s € S) is defined as the robot'’s position and
as specified by a task-dependent cost function. orientation discretized into a grid as well as a represemtat

Additional examples of continuous area sweeping task§ how recently each grid cell has been visited. The robot’s
include trash removal and, the task we consider in this papactions (a € A) are defined in terms of the state to which
routine surveillance. When performing surveillance, aotobit will navigate (by the shortest possible path) next. Tost
needs to continually traverse its environment in an effoiynctionis the average time-period between appearance and
to detect some events of interest, such as gas leaks, walgtection of objects weighted by their importance. The tebo
dripping, lights on, open doors, etc. In the surveillancgkta policy 7 is a mapping from states to actions,: S — A.

a location can be “visited” by observing, rather than byhe goal is to find the policy with minimuroost which is
occupying it physically. computed by the cost function.

The goal of a continuous area sweeping task is not just toWe tackle this problem by dividing it into two sub-problems:
sweep the area in the minimum time, but to sweep the area ifl) Learn the rate at which each grid cell accumulates
such a way as to minimize the average event detection time, reward potential The expected rewaraf visiting a cell
possibly weighted by the importance of different eveBtgent at any given time depends on this rate and the time at
detection timeis the time-period between event appearance which the cell was last visitedlearning)

|I. INTRODUCTION

2) Given these expected rewards and knowledge of the. T, is the state transition probabilities. Based on the
robot’s (possibly stochastic) transition function, congu current state and action, it gives the distribution over
a sequence of actions for the robpblicy) with mini- the states that the robot will transition to. The transition
mum cost.(planning) function is stochastic, because based on possible robot

The remainder of the paper is organized as follows. In localization errors, the robot may end up in grid-cgl
Section Il we formalize the class of continuous area sweppin ~ When aiming for grid-cely;.
tasks. Section IIl introduces an initial algorithmic sedmtto = Peg is the probability of appearance of eventn cell
this class of tasks. In Section IV we instantiate the foremali g per second. For example, i, = 0.1, there is the
and algorithms on the robot surveillance domain. Our method ~ €Xpectation of evert occurring every 10 seconds in cell
are fully implemented and tested both in simulation and on 9-
a physical robot, the Sony AIBO ERS-7 4-legged robot. » CF is thecost functiorof the policy. It is not necessarily

Section V concludes the paper and discusses future works. ~ known to the robot, but is nonetheless used to measure
the efficacy of the robot’s policy. The cost function that

Il. CONTINUOUS AREA SWEEPING FORMULATION we define for the continuous area sweeping problem is

In this section we specify our task of interest in detail. Ina the average time elapsed from appearance to detection
continuous area sweeping task, the robot must repeatesity vi ~ Of the events, weighted by their importance of the event
all the points in its environment in an effort to detect oratea (¢mpe). While the importanceof the events is known
to different types of events € E. The events can in general ~ for the robot, the appearance time of each event is not
have varying degrees of importancepp,, and each event observable to the robot.
may occur in different places with varying frequencies.Hat The goal of the robot is to find policy = : S — A which
case that all points are equally likely locations for an éx&n minimizes the cost function. The policy determines which
interest, the events are equally important, and the robedsie action is chosen by the robot in each state.
to be physically present at the point to “visit” it, the prebi When the goal is to maximize a reward signal that is observ-
reduces to the traveling salesman problem. Thus, in generdlle to the robot, the policy may be learned via reinforcamen
continuous area sweeping is NP-Hard, and we must rely marning using temporal difference methods [5]. In the next
approximate solutions. section, we present a heuristic policy that does not rely on

We begin by dividing the robot’s environment into disjoinenvironmental feedback.
grid-cells G, with each event occurring in one grid-cell. We
consider time as a sequence of discrete steps. The or@ntati [1l. EXPLORATION ALGORITHM
6 € O = {North, South, East, Westof the robot is also |n this section, we present a detailed description of our
considered as being one of 4 disjoint values. We also tragiftial approach to continuous area sweeping tasks. Wenbegi
the last time a robot has visited each qgle G in an array by assuming that time is discretized intgclesrepresenting
LV[G] by setting LV[g] = current-time whenever the robotthe times at which the robot can make action decisions. For

visits cell g. _ _ the purposes of our algorithm, we define expected reward
The problem is defined as a tuple, A, Tsa, Peg, CF), of each grid-cellg at timet as the expected sum dfe event
where: importance valuepresent in gridg at timet.

e S=G x 0 x LV[G] is a set ofstates representing the The algorithm consists of two main modules:

position and orientation of the robot as well as the array 1) Learning: Each cycle the robot updates the learned

of last-visit times to each cell. _ o expected rewardor all cells g € G. That is, it aims
» A is the set of possible actions. The actions in this 5 leamy> P,, imp, in each cellg
e Pe :

formulation are specified based on their destinations. In2) Planning: If the robot is in the middle of performing

particular, 1the environment is divided intocaarse grid an action, it continues with that action. Otherwise, using
called CG.* Each actiona € A is .d_efmed as traversing the expected rewardt aims to find apolicy 7 that mini-

the path between the cur_rent pos!tlon and the center point nizes theestimated costlefined as the average expected
of one of the coarse grid-cells i and at the end reward (weighted detection time) of the grid-cells over

turning to reach one of the four orientations. Thatis, there {ime. It then executes the first action from the policy.
are|CG| x |O] possible actions from each state. The time Notice that we arenot looking for a policy that gains
complexity of the algorithm is highly dependent on the inimum expected reward, but a policy that sustains a
number of actions, thus we usually waié to be coarser minimum expected reward summed over all grid cells.
than. Since the map of the environment is assumed ©0 \when a cell is visited, the expected reward of that cell
be stationary, the shortest paths between all pairs ofpoint s set to zero. Thus an action which visits the cells

in CG can be computed upon initialization, for instance with highest expected rewards, maximailgcreaseshe
using the Floyd-Warshall algorithm. average expected reward.

LCG need not be related 16 in any way, though in general we expect it The detail_s of these two steps of the a_lgorithm are presented
to be coarser thart. in the Section llI-A and IlI-B. In Section IlI-C we show

that this approach approximately minimizes the cost famcti of event importancealues ofIMP are visited in grid-celly,
defined in Section Il, which is the goal in the problenthe following update happens:

formulation.

A. Learning the expected reward
The aim of learning is to approximate tleepected reward

IMP

pot_reward, < (1 — a) * pot_reward, + o * LV

Where, a is a learning rate, which in our experiments
is set t00.9. The update rule presented above, changes the

for visiting a cell at any given time. Expected reward is defin gstimation ofpotential reward, to be closer to 2 which

as the expected sum of importance values of the events preggnhe assumed sum of events importance values per time
in grid g at time¢. In Section I1I-C we show how minimizing for grid-cell g. The estimation of reward potential fgrwill

the estimated cost (average expected reward) will result i8come more accurate after more visits to grid-gell

minimizing the averageletection time(i.e. maximizing the
policy’s value). A greedy approach to minimizing the exgelct
reward is presented in Section III-B.

Formally expected reward is defined as:

exp_rewardg = Z (t — LVI]g]) X Peg x impe (1)

all e

Where LVg] is the last time that cely has been visited
before timet. Notice that the value oft — LV [g]) is known to

the robot and is independent of the rest of the equation., Th

it is only needed to approximate the value ¥, (P x
impe). We refer to this quantity as theotential rewardof cell
g. Note that the potential reward of cellis independent of

time: it is the sum of the importance values of the expect

events for cellg per second.

The high-level pseudo-code of the algorithm which estj- , X .
h Importance values of the events present in gjidat time

mates potential reward for cgjlis given in Figure 1. For eac
grid-cell g, the reward potentighot_reward, is initialized to
e > 0 (in our case = 1). By initializing thepot_reward,’s to

a non-zero constant value, we are assuming that all grid-c

have an equal positive probability of all events occurrifigat
is, we start with the assumption théd, g, g', Pey = Peyr > 0.

If we have prior knowledge that some grid-cells have a highgr

importance event possibility than others, potential relfar
those grid-cells can be initialized to a higher value.

a = 0.9 (learning rate)
for all grid-cells 'g’ do
initialize pot_reward, := 1
in each cycle do
t[g] = current-time - LV[g]
for each detected event e in grid g do
pot_reward, = (1-a)*pot_rewardy + a*impe/t[g];
for each visited g with no event
pot_reward, = pot_reward, * 0.99;
end for

Fig. 1. High level pseudo-code for learning the reward ptiten

It is assumed that after an appearance of a rewarding evgnt
in grid-cell g, the event will remain there until the robot visits—

g. Thus, if grid-cellg is visited aftert, time-units and the
robot visits the events with sum of importance values\d®,
it can be assumed that with a higher probability every,
time-units, an event with the importance valudldP appears

Since the frequency of event appearance may not be con-
stant over time, there is also a need to unlearn the reward
potentials. Thus, every time that the robot visits grid-gel
with no event, it will perform the following update on reward
potentialpot_reward,:

pot_reward, < pot_rewardy * f

Wheref is an unlearn factor and in our experiments is set to
0.99. This update rule enables the robot to gradually unlearn
H%e one-time events. Notice that the learning of potential
reward for gridg happens only when there is an event in
g. If no event is detected while visiting grid, the above
unlearning update will be performed. Since a lasting infbgen

%ﬁ a detected event is desired, The rate of learning is much

aster than unlearning
Expected reward is defined as the expected sum of the

t. We compute it incrementally by adding potential reward
(expected reward per second) in each cycle. The pseudo code

dpr computing the expected reward for each grid-cell is show

in Figure 2. In each cycle, if a grid-cell is being visitedeth
expected reward for that grid-cell will be set to zero, ottiee
will be incremented by the amount of the potential reward
of that grid-cell. As a result, the expected reward for ggell
will be equal to the potential reward gf multiplied by the
amount of time thay has not been visited.

for all grid-cells 'g’ do
exp_reward, :=0
for each cycle do
for all grid-cells 'g’ do
if g is being visited
exp_rewardg := 0;
else
exp_reward, += pot_reward,,

Fig. 2. High level pseudo-code for computing expected revi@r grid-cells
in each cycle. The paeward is computed in the Figure 1

Choosing actions

When choosing an action, the robot can move to the center
point of any cell in the coarse grid@G, and after reaching
the destination turn to face one of the four orientations
{North, South, East, WdstWe assume that the map of the

in grid-cell g. Whenever a non-empty set of events with surnvironment is already known and that the robot has a model

of its own (stochastic) motion. As an initial approach, we usC. correctness of the approach

a form of greedy action selection. In this subsection, we provide a proof that minimizing the
The pseudo-code to choose the action is given in Figureestimated cost will result in minimizing the cost functioh o
For each action of going to poimy, the robot computes the the problem formulation. For the sake of analysis, we assume

trajectory of going to that point. Computing this trajestas a finite horizon, with finite time and events.

done for all pairs of points at initialization using the Fiby = The cost function in the formulation is the average detectio
Warshall algorithm [6]. Each trajectory is divided intocliste time multiplied by the importance of the event. The goal is to
points, one point for each cell af, which is the center of minimize the cost function:

the line segment that passes throdgh For each one of the E
discrete points of the trajectory, the grid-cells that il seen minimize(Z(detect_timee X impe)) (2)
from that point are computed as follows. We assume a 180- e=1

degree field of view for the robot, and the robot computes 18%¥here £ is the number of events in our finite horizon,
rays with origin at its position and with angles ranging frometect_time. is the detection time of evert and imp, is

-90 to 90 degrees from the robot’s orientation. For each dnetbe importance value of event

the lines, the cells that the line passes through beformditt The goal in the presented approach is to minimize the

a wall are considered “visited". estimated cost over time. That is:
The expected reward of these visited grid-cells will be c |G|
summed up for all the points in the trajectory and the result minimize((zZea;p_rewardgt)) 3)

will be the expected received rewanf performing the action. =1 o1
After computing the expected reward values, the algorithm

greedily choose the action with the maximum expected reward Where,|G| is the number of gr@ﬁ Is the number of cycles
IN our horizon antezp_reward,; is the expected reward of

The intuition behind this approach is that after the gritlsce grid-cell g at timet.
with high expected reward are visited, their expected rewar By the definition of expected reward (Eq. 1), in the finite
set to zero, thus the estimated cost (average expecteddewgprizon we have:
decreases. By choosing the action with maximum expected B
received reward per time, we will have the maximum one- exp_rewardy = Z(t — LV[g]) X P.y x imp, (4
step decrease in the estimated cost. It is possible to use mor ot

complex planning approaches to achieve closer to optimalyherer,v[g] is the last time that grid-cell has been visited
solutions for this formulation, but the greedy approach i§afore timet andP,, is the probability of appearance of event

sufficient to achieve a good result in this environment. e in grid-cell g.

Based on equations 3 and 4, the goal of the proposed
s: state of the robot approach is to minimize the following equation:
A: possible actions in the state s E C |G|
obs[g]: temp array to avoid double counting Z Z Z((t — LVig]) x Py x imp) (5)
maxreward := minimumvalue e—1 t=1 g—1

for each action a in A do
areward := 0;
time.a : time to perform a
for all g do obs[g] := false;
compute the trajectory T for a

The average value oft — LV[g]) over time (average
detection time) is equal .57, whereT is the average time
between two visits of the robot to grid-cell Thus minimizing
the Eq. 5 results in minimizing this equation:

for each pointtin T do E_ 1G])
for each g visited from t do DD Ty x Peg x impc) (6)
if (not obs[g]) e=to=t
areward := areward + exp_rewardy; Notice Zl}i‘l (T, x P.4) is the expected detection timef
obs[g] := true; grid-cell g and sinceimp, is independent ofj, minimizing
end if the above equation will result in minimizing the cost fuoati
if a_reward / timea > maxreward (Eq. 2).
maxreward := a reward/timea; In this section, we showed that by achieving the goal of the
bestaction = a; proposed approach (i.e. minimizing the estimated cost over
end if time) the cost function of the problem formulation will be
end for minimized (which is the goal of the optimal policy). We are
perform besiaction; using a greedy approach to minimize the estimated cost over

time, which is not necessarily optimal, but given the proven
fact that minimizing estimated cost will result in minimmizj
the cost function, it is a reasonable approach.

Fig. 3. High level pseudo-code for choosing the best actionrie cycle.

IV. EXPERIMENTAL RESULTS with the robot is shown in Figure 6. The robot knows the

To test our approach, we have implemented and evalua{@ﬂations of the walls in the environment, t_)ut must decide fo
our algorithm on a physical robot in a representation of tHis€lf how to move so as to perform surveillance.
routine surveillance task. As our robot, we use a Sony ERS-7
four-legged AIBO robot (Figure 4). The robot’s sensor devic
for “visiting” locations in its environment is a camera maoedh
on the head of the robot. It can capture 208 60 frames of
pixels at roughly 30Hz. Due to the computational intensity
of image processing, our robots typically make decisions at
roughly 25Hz, thus the cycle defined in Section Il is set
to 0.04 second. By turning its head, the robot can gain a
180-degree field of view. It has 20 degrees of freedom and
a 576Mhz on-board processor.

Region 1 Region 2 Region 3

Fig. 5. Representation of configuratidn

Fig. 4. ERS-7 Sony AIBO robot

As baseline software, we use the UT Austin Villa code
base [7], which provides robust color-based vision, fast lo
comotion, and reasonably accurate localization within%2.

x 4.4m ared via a particle filtering approach. Even so, the
robot is not, in general, perfectly localized, as a result of Before appearance of the balls, the path that the robot found

both noisy sensations and noisy actions. The robot also H%Qath Lin Figure 7. It is the minimal path for uniformly

limited processing power, which limits the algorithms thah visiting the whole environment. After that, we star.ted towh .
be designed for it(: is equal to a 18< 15 grid, that is we the balls to the robot in region 1 and 2, but not region 3. Ia thi

discretize the robot’s environment into an £815 grid. CG, tnhe_w sn;;hatlonbtr:e T".‘;’Ot fOW‘a{h 2'3 I;gure 7 Ety tr?;]/ersg 9 d
which defines the available actions, is set to ax & grid. IS path, TObOL VISILS Tegion 1 an more often than 5 an

There is just one type of event in the environment, which }Qat{;tsef iie?rlmr:ble?(ri?ilri:ént we stopped showina anv balls
the appearance of an orange ball that the robot can recog iz% P PP g any

from anywhere on the field provided that it has an unobstwctrgbtohte :233;'" A\?vei trgzg:(t tcc))f ut::i?orf%rgeittllrc])?agg;):geﬁ; the
view. We test two different configurations of the world wit 9 y P

the real robot. One other configuration is tested in a custo jgure 7). Finally, we again started to show the baI_I, tl".m'
. . . . In regions 2 and 3. The path that the robot found in this new
built AIBO simulator [7]. The simulator, though abstractthvi . =2 " - 4
X . . situation ispath 3in Figure 7
respect to locomotion, provides a reasonable representati
the Aibo’s visual and localization capabilities, and alfofer B. Configuration/I with real robots

a more through experimentation, particularly with regatals As a follow-up to this initial experiment, we created a more
testing different distributions of ball appearances. complex environment as is illustrated in Figure 8 and pidur

Fig. 6. Picture of configuratiod with the real robot

A. Configuration/ with real robots 3Videos of the robot in action in this environment are avadafrom

.. . . , . . inVi D=
As an initial experiment, we configured the robot’s enviroritP:/www.cs.utexas.edu/AustinVilla/?p=research/
surveillance , hamed configuratiod part 1

ment as shown in Figure 5. A picture of the actual environment, yigeo of the robot forgetting what it has learned before and
re-learning the new distribution of the ball appearances aigilable
2The field is as specified in the 2004 rules of the RoboCup Feggkd at http://www.cs.utexas.edu/ AustinVilla/?p=research/
Robot Leaguehttp://www.tzi.de/4legged surveillance , hamed configuratiod part 2

Region 1 Region 2 Region 3

Fig. 9. Configuration/I with real robot

Fig. 7. The path the robot traverses in configuration
c Region 2
Region 1]
in Figure 9.
B
Region 2 A
Region 1]
Region 3
Region 4
D
Region 3 Fig. 10. The path that the robot traverses in uniform digtiim of the
Region 4 appearance of the ball.
C. Simulation
Fig. 8. Representation of configuratidd We use our custom-built AIBO simulator to test our ap-

proach. The architecture of our AIBO code is designed in two
Before the appearance of the balls, the path that the roltayters. The lower layer is responsible for managing theatisu
finds is very similar to the path shown in Figure 10, whickensor and translating high-level commands to robot motor
is the minimal path for the uniform appearance of the ballsommands, while the upper layer reasons about the visual
Because of the noise in the environment, the robot does igieuts and issues high-level motion commands. Our simulato
exactly follow that path, but the path is very close to thd$ designed to take the place of the environment and the lower
one. After showing the ball for several times in regions 1 arléyer, providing abstract visual input to the control coded
3, the path that the robot finds is close to the one shown sinulating robot motions. Full details of the code orgatiara
Figure 11.5 As is apparent from the path, because of th@nd simulator interface can be found in our technical refagrt
higher probability of appearance of the ballsregion 1and With this simulator platform, we are able to run identical
3, those regions are visited more frequently. upper-level code both on the robot and on the simulator.dJsin
The robot experiments verify that our approach can rdhe simulator, we are able to control precisely the distrdou
in real time on a computationally limited platform, and tha®f locations at which the ball appears, and we are able to run
the robot can operate using the same algorithm in multipi&periments much more quickly.
environments. The robot is made aware of the locations ofln our simulation experiments, we test four different dis-
the walls, but given that information is able to recompuse itributions of ball appearances in configuratiéh from the
actions from scratch. However, due to the time-consumitigal robot experiments (Figure 8). In all the distributiotie
nature of running experiments in the real world, we furthdrall appears in each cell with probability P., * 50 every
validate our approach in simulation. 50 seconds. In particular, this means that a ball can appear i
more than one cell before the robot sees any of them, and that
Sa . .) _ . there can be more than one ball in the same place by the time
A video of this experiment is available Bbttp://www.cs.utexas.
edu/"AustinVilla/?p=research/surveillance , hamed configu- the ro_bot visits that place, is different in each one of the
ration I1 experiments.

Region 2 that path is55 440 + 55 4+ 50 = 200. Thus, it takes between 0
Region 1) and 200 seconds to detect each event, and the averageatetecti
time is 100 seconds. Thus, our approach igt% margin of
error, which is quite close to optimal, with the error coming
mainly from action noise. The path that the robot found is not
exactly the one in Figure 10, since for example the robot does
not always go to the exact grid-cell of poidt Rather, to visit
Region 3 regionl, it goes to one of the grid-cells close #h The exact
motion of the robot is visible in our on-line videos.

b This initial experiment verifies that our greedy algorithm
can produce the optimal solution in the most benign case.

2) Always in One Region DistributionAs a second test,
we created a distribution such that the ball only appeared in
region2. The path that the robot finds is approximately the one
shown in Figure 12. It took the robot only one pass through
the field to approximately follow the path in Figure 12.

The approximate time needed (in seconds) for walking
between each pair of points is given in Table I, as measured c Region 2
on the physical robot. Notice that the time it takes to walk Region 1
straight across the field — even the long way fradnto B —
is less than the time it takes to move between adjacent points
such asB and D. The reason for the difference is that the

Region 4

Fig. 11. The path that the robot finds when there is severatappces of
the ball in region 1 and 3

robot takes significant time to turn. A B
Point 1 | Point 2 | Time needed to traverse Region 3

A B 50 - 9

A [® 55 Region 4 u

A D 55 D

B ¢} 55

B D 55

C D 40

Fig. 12. The path the robot traverses when the ball alwaysapgn region
TABLE | 2.
APPROXIMATE TIME IN SECONDS NEEDED TO WALK BETWEEN EACH PAIR)]]
OF POINTS IN CONFIGURATIONIT. On average, every ball is noticdd + 1.3 seconds after its

appearance. In the experiment 100 balls were shown to the
robot. Of course, the optimum solution here is for the robot t
In the following subsections, we discuss the results in eastay close to regiofi and visit the balls right after it appears,
of four distributions: a uniform distribution; a distribab in but our algorithm enforces the constraint that the robotikho
which the ball only appears in one place; a biased distobuyti continually visit the whole environment at least periotlican
and a non-stationary distribution. case new events occur. With the condition that we want td visi
1) Uniform Distribution: In our first experiment, the ball the whole environmentontinually, 47 seconds is reasonable.
appears with identical probability in each of the four regio In particular, learning the distribution has gained us a 50%
Notice that were the ball to appear anywhere else in tlperformance improvement: without learning the robot would
environment, the optimal policy would not be affected sigraverse the environment uniformly, resulting in an averag
nificantly, since almost all of the actions visit the centartp detection time of 106 seconds or ideally 100 seconds. Notice
of the environment. The path that the robot finds after legynithat the average detection time in uniformly traversing the
is approximately the path shown in figure Figure 10. environment and visiting each cell once in the full traverse
In order for the robot to visit all the regions it at least needf the environment is independent of the distribution ofrave
to go through the pointd, B, C andD or a small area around appearances. Because whatever the distribution, the gevera
them. Based on the travel times in Table I, the solution showdetection time for each event is constant and equal to tHe hal
in Figure 10 is optimal, which we can check by exhaustivef the whole traversing time.
search. 3) Biased Distribution: In our next experiment we tested
While following the path that the robot found, each balihe robustness of our approach in a scenario such that thse bal
was approximately visited after 1062.1 seconds. In the appear in all the regions but with different probabilitiesthe
experiment, 100 balls were shown to the robot. The optimubiased distribution, with probability 60% the ball appears
average detection time is 100 seconds, which is the resultrefion 2, with probability 30% it appears in regioh, with
traversing the path in Figure 10. The whole traversing tiore fprobability 5% in 3, and with probability 5% in4 (P, =

.6/50, .3/50, .05/50, and .05/50 respectively). The patt th V. CONCLUSION AND FUTURE WORKS

the robot traverses is approximately the one in Figure 13.

Region 2
Region 1

Region 3

Region 4

Fig. 13. The path that the robot traverses in the face of abidsstribution,
where the chance of the ball appearance is 60% in regjd0% in region
1 and 5% in region8 and4.

In this paper, the problem afontinuous area sweeping
introduced. The problem is defined as one in which a robot
must repeatedly visit every part of the environment in otder
detect a set of events of interest. The frequency of the svent
can possibly be non-uniform, thus the robot should visit the
points with non-uniform frequency. Examples of continuous
area sweeping tasks are surveillance and cleaning.

In this paper, we formalize the problem and introduce an
initial approach that non-uniformly visits the environnhen
to minimize the estimated cost. The approach is analyzed
analytically and is tested both in simulation and on reabisb

Our on-going research agenda includes expanding the robot
behavior to include non-greedy planning and cooperative
multi-robot interactions.

Although there is a good deal of uncertainty in the object
recognition on the Aibo, we currently do not express it
explicitly other than by folding it into the estimate,,. Note
that we do represent state transition uncertainty within the
function T'. Representing object detection noise explicitly is

The time needed for the robot to change its path from thgsg 3 direction for future work.
uniform case to the path shown in Figure 13 is based on
how fast it can learn the distribution, which itself is based ACKNOWLEDGMENT
on frequency of ball appearances. In our experiment, everyThe authors would like to thank the members of the UT

50 seconds an average of 1 ball appeared. In this setti

Raistin Villa team for their efforts in developing the softvea

the robot took 9 complete traverses (1734 seconds or 35 h@kd as a basis for the work reported in this paper. Special

appearances) to start traversing the shown path.

thanks to Greg Kuhimann for developing the simulator. This

After the 1734 seconds, when the robot learned the distribgsearch was supported in part by NSF CAREER award IIS-

tion, on average every ball was visit@d + 1.2 seconds after
its appearance. In the experiment, 200 balls were showreto
robot. This result is significantly better than uniform eesal

0237699 and ONR YIP award N00014-04-1-0545.

th
REFERENCES

which results in average detection time of 106 or ideally 108l N- Kalra, A.T. Stentz, and D. Ferguson, “Hoplites: A metrramework

seconds.

4) Changing Distributions: In our final experiment we
tested the robustness of the approach to changing distri

for complex tight coordination in multi-agent teams,” Rtibs Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CIRUTR-04-
41, August 2004.
52& J. A. T. Y. E. Kurabayashi, D. Ota, “Cooperative sweeplngmultiple
“mobile robots,” inProc. of IEEE International Conference on Robotics

tions. In particular, we consider a scenario in which at some & Automation (ICRA)1996.
unknown point in time the probability of appearance of thB]l H. Choset, “Coverage for robotics; a survey of recentites Annals of

Mathematics and Atrtificial Intelligengevol. 31, no. 1-4, pp. 113-126,
2001.

[4] L. E. Parker, “Distributed algorithms for multi-robotbeervation of
multiple moving targets,’Autonomous Robatwol. 12, no. 3, pp. 231
255, 2002.

[5] R. S. Sutton and A. G. BartdReinforcement Learning: An Introduction
Cambridge, MA: MIT Press, 1998.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stelntroduction to
Algorithms 2nd ed. The MIT Press, 2001.

[7] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, Githknann,
M. Sridharan, and D. Stronger, “The UT Austin Villa 2004 RGhp
four-legged team: Coming of age,” The University of TexasAastin,
Department of Computer Sciences, Al Laboratory, Tech. REBAI-

balls changes abruptly. The initial distribution of the lbal TR-04-313, October 2004.
appearance was the same as the biased case discussed in

previous section, that is 60% in regi@y 30% in regionl,

5% in region3, and 5% in4. After 100 ball appearances, the

distribution changes to the uniform appearance of the ball.

The path that the robot found with the starting distribution
is the same as the one in Figure 13. It took the robot about
1820 seconds or 36 ball appearances to adapt to the second

distribution and approximately follow the path in Figure. 10

