
Continuous Area Sweeping: A Task Definition and
Initial Approach

Mazda Ahmadi and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500, Austin, TX 78712-0233
Email:fmazda,pstoneg@cs.utexas.edu

http://www.cs.utexas.edu/˜{mazda,pstone}

Abstract— As mobile robots become increasingly autonomous
over extended periods of time, opportunities arise for their use
on repetitive tasks. We define and implement behaviors for a
class of such tasks that we callcontinuous area sweeping tasks.
A continuous area sweeping task is one in which a robot (or
group of robots) must repeatedly visit all points in a fixed
area, possibly with non-uniform frequency, as specified by a
task-dependent cost function. Examples of problems that need
continuous area sweeping are trash removal in a large building
and routine surveillance. We present a formulation for this
problem and an initial algorithm to address it. The approach is
analyzed analytically and is fully implemented and tested,both
in simulation and on a physical robot.

I. I NTRODUCTION

Consider a robot whose goal it is to keep the floors clean in
a large office building. This task requires continual execution:
by the time the robot has cleaned the entire building once,
some parts have become dirty again. A first-cut approach
might lead the robot to simply clean the building from top to
bottom and then start over again. However, if the rate at which
areas of the building become dirty is non-uniform and possibly
even non-stationary, a more sophisticated solution is called
for. In particular, the robot should ensure that it cleans highly-
trafficked areas, such as the main entrance and the restrooms,
much more frequently than, say, the closets.

We define such a task to be an example ofcontinuous area
sweepingtask. A continuous area sweeping task is one in
which a robot (or group of robots) must repeatedly visit all
points in a fixed area, possibly with non-uniform frequency,
as specified by a task-dependent cost function.

Additional examples of continuous area sweeping tasks
include trash removal and, the task we consider in this paper,
routine surveillance. When performing surveillance, a robot
needs to continually traverse its environment in an effort
to detect some events of interest, such as gas leaks, water
dripping, lights on, open doors, etc. In the surveillance task,
a location can be “visited” by observing, rather than by
occupying it physically.

The goal of a continuous area sweeping task is not just to
sweep the area in the minimum time, but to sweep the area in
such a way as to minimize the average event detection time,
possibly weighted by the importance of different events.Event
detection time, is the time-period between event appearance

and its detection. Notice that since the event appearance time
is not known to the robot, this value is not computable by
the robot. The definition ofevent importanceis problem-
dependent. For example, in the trash collection task, the
importance of collecting food trash may be higher than that
of collecting paper goods. Minimizing the weighted average
event detection time will result in the sensible behavior of
visiting kitchens and other public areas more often than (most)
individual offices. For the surveillance task, one may define
the importance of identifying gas leaks as being higher than
finding lights on.

Continuous area sweeping tasks are closely related to the
security sweep[1], or sweeping [2] task. In the security
sweep or sweeping task, the robot(s) are tovisit the whole
environment in minimum time. Continuous area sweeping
is also related tocoverage path-planning[3], which “is a
new path planning approach that determines a path for a
robot to pass over all points in its free space.” [3] The
relevant differences are that in continuous area sweeping,the
sweep must be performed i) repeatedly (continuously), and ii)
non-uniformly, that is with more frequent attention given to
some areas than to others. As surveyed by Parker [4], most
previous approaches to surveillance assume ideal sensors and
no computational bounds. In contrast, in this paper we consider
solutions that are fully implementable (and implemented) on
a physical robot.

We propose a formulation of continuous area sweeping tasks
such that thestate(s 2 S) is defined as the robot’s position and
orientation discretized into a grid as well as a representation
of how recently each grid cell has been visited. The robot’s
actions (a 2 A) are defined in terms of the state to which
it will navigate (by the shortest possible path) next. Thecost
function is the average time-period between appearance and
detection of objects weighted by their importance. The robot’s
policy � is a mapping from states to actions,� : S 7! A.
The goal is to find the policy with minimumcost, which is
computed by the cost function.

We tackle this problem by dividing it into two sub-problems:
1) Learn the rate at which each grid cell accumulates

reward potential. Theexpected rewardof visiting a cell
at any given time depends on this rate and the time at
which the cell was last visited.(learning)

2) Given these expected rewards and knowledge of the
robot’s (possibly stochastic) transition function, compute
a sequence of actions for the robot (policy) with mini-
mum cost.(planning)

The remainder of the paper is organized as follows. In
Section II we formalize the class of continuous area sweeping
tasks. Section III introduces an initial algorithmic solution to
this class of tasks. In Section IV we instantiate the formalism
and algorithms on the robot surveillance domain. Our methods
are fully implemented and tested both in simulation and on
a physical robot, the Sony AIBO ERS-7 4-legged robot.
Section V concludes the paper and discusses future works.

II. CONTINUOUS AREA SWEEPINGFORMULATION

In this section we specify our task of interest in detail. In a
continuous area sweeping task, the robot must repeatedly visit
all the points in its environment in an effort to detect or react
to different types of eventse 2 E. The events can in general
have varying degrees of importance,impe, and each event
may occur in different places with varying frequencies. In the
case that all points are equally likely locations for an event of
interest, the events are equally important, and the robot needs
to be physically present at the point to “visit” it, the problem
reduces to the traveling salesman problem. Thus, in general,
continuous area sweeping is NP-Hard, and we must rely on
approximate solutions.

We begin by dividing the robot’s environment into disjoint
grid-cellsG, with each event occurring in one grid-cell. We
consider time as a sequence of discrete steps. The orientation� 2 O = fNorth, South, East, Westg of the robot is also
considered as being one of 4 disjoint values. We also track
the last time a robot has visited each cellg 2 G in an arrayLV [G℄ by settingLV [g℄ = current-time whenever the robot
visits cell g.

The problem is defined as a tuple(S;A; Tsa; Peg ; CF),
where:� S = G �O � LV [G℄ is a set ofstates, representing the

position and orientation of the robot as well as the array
of last-visit times to each cell.� A is the set of possible actions. The actions in this
formulation are specified based on their destinations. In
particular, the environment is divided into acoarse grid
calledCG.1 Each actiona 2 A is defined as traversing
the path between the current position and the center point
of one of the coarse grid-cells inCG and at the end
turning to reach one of the four orientations. That is, there
arejCGj�jOj possible actions from each state. The time
complexity of the algorithm is highly dependent on the
number of actions, thus we usually wantCG to be coarser
thanG. Since the map of the environment is assumed to
be stationary, the shortest paths between all pairs of points
in CG can be computed upon initialization, for instance
using the Floyd-Warshall algorithm.

1CG need not be related toG in any way, though in general we expect it
to be coarser thanG.

� Tsa is the state transition probabilities. Based on the
current state and action, it gives the distribution over
the states that the robot will transition to. The transition
function is stochastic, because based on possible robot
localization errors, the robot may end up in grid-cellgj
when aiming for grid-cellgi.� Peg is the probability of appearance of evente in cellg per second. For example, ifPeg = 0.1, there is the
expectation of evente occurring every 10 seconds in cellg.� CF is thecost functionof thepolicy. It is not necessarily
known to the robot, but is nonetheless used to measure
the efficacy of the robot’s policy. The cost function that
we define for the continuous area sweeping problem is
the average time elapsed from appearance to detection
of the events, weighted by their importance of the event
(impe). While the importanceof the events is known
for the robot, the appearance time of each event is not
observable to the robot.

The goal of the robot is to find apolicy � : S 7! A which
minimizes the cost function. The policy determines which
action is chosen by the robot in each state.

When the goal is to maximize a reward signal that is observ-
able to the robot, the policy may be learned via reinforcement
learning using temporal difference methods [5]. In the next
section, we present a heuristic policy that does not rely on
environmental feedback.

III. E XPLORATION ALGORITHM

In this section, we present a detailed description of our
initial approach to continuous area sweeping tasks. We begin
by assuming that time is discretized intocyclesrepresenting
the times at which the robot can make action decisions. For
the purposes of our algorithm, we define anexpected reward
of each grid-cellg at time t as the expected sum ofthe event
importance valuespresent in gridg at time t.

The algorithm consists of two main modules:

1) Learning: Each cycle the robot updates the learned
expected rewardfor all cells g 2 G. That is, it aims
to learn

Pe Peg � impe in each cellg.
2) Planning: If the robot is in the middle of performing

an action, it continues with that action. Otherwise, using
theexpected reward, it aims to find apolicy� that mini-
mizes theestimated cost, defined as the average expected
reward (weighted detection time) of the grid-cells over
time. It then executes the first action from the policy.
Notice that we arenot looking for a policy that gains
minimum expected reward, but a policy that sustains a
minimum expected reward summed over all grid cells.
When a cell is visited, the expected reward of that cell
is set to zero. Thus an action which visits the cells
with highest expected rewards, maximallydecreasesthe
average expected reward.

The details of these two steps of the algorithm are presented
in the Section III-A and III-B. In Section III-C we show

that this approach approximately minimizes the cost function
defined in Section II, which is the goal in the problem
formulation.

A. Learning the expected reward

The aim of learning is to approximate theexpected reward
for visiting a cell at any given time. Expected reward is defined
as the expected sum of importance values of the events present
in grid g at timet. In Section III-C we show how minimizing
the estimated cost (average expected reward) will result in
minimizing the averagedetection time(i.e. maximizing the
policy’s value). A greedy approach to minimizing the expected
reward is presented in Section III-B.

Formally expected reward is defined as:exp rewardgt =Xall e(t� LV [g℄)� Peg � impe (1)

WhereLV [g℄ is the last time that cellg has been visited
before timet. Notice that the value of(t�LV [g℄) is known to
the robot and is independent of the rest of the equation. Thus,
it is only needed to approximate the value of

Pall e(Peg �impe). We refer to this quantity as thepotential rewardof cellg. Note that the potential reward of cellg is independent of
time: it is the sum of the importance values of the expected
events for cellg per second.

The high-level pseudo-code of the algorithm which esti-
mates potential reward for cellg is given in Figure 1. For each
grid-cell g, the reward potentialpot rewardg is initialized to� > 0 (in our case� = 1). By initializing thepot rewardg ’s to
a non-zero constant value, we are assuming that all grid-cells
have an equal positive probability of all events occurring.That
is, we start with the assumption that8e; g; g0; Peg = Peg0 > 0.
If we have prior knowledge that some grid-cells have a higher
importance event possibility than others, potential reward for
those grid-cells can be initialized to a higher value.� = 0.9 (learning rate)
for all grid-cells ’g’ do

initialize pot rewardg := 1
in each cycle do

t[g] = current-time - LV[g]
for each detected event e in grid g dopot rewardg := (1-�)*pot rewardg + �* impe/t[g];
for each visited g with no eventpot rewardg := pot rewardg * 0.99;

end for

Fig. 1. High level pseudo-code for learning the reward potential.

It is assumed that after an appearance of a rewarding event
in grid-cell g, the event will remain there until the robot visitsg. Thus, if grid-cell g is visited aftertg time-units and the
robot visits the events with sum of importance values ofIMP,
it can be assumed that with a higher probability every� tg
time-units, an event with the importance value ofIMP appears
in grid-cell g. Whenever a non-empty set of events with sum

of event importancevalues ofIMP are visited in grid-cellg,
the following update happens:pot rewardg (1� �) � pot rewardg + � � IMPt�LV [g℄

Where, � is a learning rate, which in our experiments
is set to0:9. The update rule presented above, changes the
estimation ofpotential rewardg to be closer toIMPtg , which
is the assumed sum of events importance values per time
for grid-cell g. The estimation of reward potential forg will
become more accurate after more visits to grid-cellg.

Since the frequency of event appearance may not be con-
stant over time, there is also a need to unlearn the reward
potentials. Thus, every time that the robot visits grid-cell g
with no event, it will perform the following update on reward
potentialpot rewardg :pot rewardg pot rewardg � f

Wheref is an unlearn factor and in our experiments is set to0:99. This update rule enables the robot to gradually unlearn
the one-time events. Notice that the learning of potential
reward for grid g happens only when there is an event ing. If no event is detected while visiting gridg, the above
unlearning update will be performed. Since a lasting influence
of a detected event is desired, The rate of learning is much
faster than unlearning

Expected reward is defined as the expected sum of the
importance values of the events present in gridg at timet. We compute it incrementally by adding potential reward
(expected reward per second) in each cycle. The pseudo code
for computing the expected reward for each grid-cell is shown
in Figure 2. In each cycle, if a grid-cell is being visited, the
expected reward for that grid-cell will be set to zero, otherwise
it will be incremented by the amount of the potential reward
of that grid-cell. As a result, the expected reward for cellg
will be equal to the potential reward ofg multiplied by the
amount of time thatg has not been visited.

for all grid-cells ’g’ doexp rewardg := 0
for each cycle do

for all grid-cells ’g’ do
if g is being visitedexp rewardg := 0;
elseexp rewardg += pot rewardg ;

Fig. 2. High level pseudo-code for computing expected reward for grid-cells
in each cycle. The potreward is computed in the Figure 1

B. Choosing actions

When choosing an action, the robot can move to the center
point of any cell in the coarse gridCG, and after reaching
the destination turn to face one of the four orientationsfNorth, South, East, Westg. We assume that the map of the
environment is already known and that the robot has a model

of its own (stochastic) motion. As an initial approach, we use
a form of greedy action selection.

The pseudo-code to choose the action is given in Figure 3.
For each action of going to point
g, the robot computes the
trajectory of going to that point. Computing this trajectory is
done for all pairs of points at initialization using the Floyd-
Warshall algorithm [6]. Each trajectory is divided into discrete
points, one point for each cell ofG, which is the center of
the line segment that passes throughG. For each one of the
discrete points of the trajectory, the grid-cells that willbe seen
from that point are computed as follows. We assume a 180-
degree field of view for the robot, and the robot computes 181
rays with origin at its position and with angles ranging from
-90 to 90 degrees from the robot’s orientation. For each one of
the lines, the cells that the line passes through before hitting
a wall are considered “visited”.

The expected reward of these visited grid-cells will be
summed up for all the points in the trajectory and the result
will be theexpected received rewardof performing the action.
After computing the expected reward values, the algorithm
greedily choose the action with the maximum expected reward.

The intuition behind this approach is that after the grid-cells
with high expected reward are visited, their expected reward is
set to zero, thus the estimated cost (average expected reward)
decreases. By choosing the action with maximum expected
received reward per time, we will have the maximum one-
step decrease in the estimated cost. It is possible to use more
complex planning approaches to achieve closer to optimal
solutions for this formulation, but the greedy approach is
sufficient to achieve a good result in this environment.

s: state of the robot
A: possible actions in the state s
obs[g]: temp array to avoid double counting
maxreward := minimumvalue
for each action a in A do

a reward := 0;
time a : time to perform a
for all g do obs[g] := false;
compute the trajectory T for a
for each point t in T do

for each g visited from t do
if (not obs[g])

a reward := a reward + exp rewardg ;
obs[g] := true;

end if
if a reward / timea > max reward

maxreward := a reward/timea;
bestaction := a;

end if
end for
perform bestaction;

Fig. 3. High level pseudo-code for choosing the best action in one cycle.

C. correctness of the approach

In this subsection, we provide a proof that minimizing the
estimated cost will result in minimizing the cost function of
the problem formulation. For the sake of analysis, we assume
a finite horizon, with finite time and events.

The cost function in the formulation is the average detection
time multiplied by the importance of the event. The goal is to
minimize the cost function:minimize(EXe=1(dete
t timee � impe)) (2)

Where E is the number of events in our finite horizon,dete
t timee is the detection time of evente and impe is
the importance value of evente.

The goal in the presented approach is to minimize the
estimated cost over time. That is:minimize((CXt=1 jGjXg=1 exp rewardgt)) (3)

Where,jGj is the number of grids,C is the number of cycles
in our horizon andexp rewardgt is the expected reward of
grid-cell g at time t.

By the definition of expected reward (Eq. 1), in the finite
horizon we have:exp rewardgt = EXe=1(t� LV [g℄)� Peg � impe (4)

WhereLV [g℄ is the last time that grid-cellg has been visited
before timet andPeg is the probability of appearance of evente in grid-cell g.

Based on equations 3 and 4, the goal of the proposed
approach is to minimize the following equation:EXe=1 CXt=1 jGjXg=1((t� LV [g℄)� Peg � impe) (5)

The average value of(t � LV [g℄) over time (average
detection time) is equal to0:5Tg, whereTg is the average time
between two visits of the robot to grid-cellg. Thus minimizing
the Eq. 5 results in minimizing this equation:EXe=1 jGjXg=1(Tg � Peg � impe) (6)

Notice
PjGjg=1(Tg � Peg) is the expected detection timeof

grid-cell g and sinceimpe is independent ofg, minimizing
the above equation will result in minimizing the cost function
(Eq. 2).

In this section, we showed that by achieving the goal of the
proposed approach (i.e. minimizing the estimated cost over
time) the cost function of the problem formulation will be
minimized (which is the goal of the optimal policy). We are
using a greedy approach to minimize the estimated cost over
time, which is not necessarily optimal, but given the proven
fact that minimizing estimated cost will result in minimizing
the cost function, it is a reasonable approach.

IV. EXPERIMENTAL RESULTS

To test our approach, we have implemented and evaluated
our algorithm on a physical robot in a representation of the
routine surveillance task. As our robot, we use a Sony ERS-7
four-legged AIBO robot (Figure 4). The robot’s sensor device
for “visiting” locations in its environment is a camera mounted
on the head of the robot. It can capture 208� 160 frames of
pixels at roughly 30Hz. Due to the computational intensity
of image processing, our robots typically make decisions at
roughly 25Hz, thus the cycle defined in Section III is set
to 0.04 second. By turning its head, the robot can gain a
180-degree field of view. It has 20 degrees of freedom and
a 576Mhz on-board processor.

Fig. 4. ERS-7 Sony AIBO robot

As baseline software, we use the UT Austin Villa code
base [7], which provides robust color-based vision, fast lo-
comotion, and reasonably accurate localization within a 2.9m� 4.4m area2 via a particle filtering approach. Even so, the
robot is not, in general, perfectly localized, as a result of
both noisy sensations and noisy actions. The robot also has
limited processing power, which limits the algorithms thatcan
be designed for it.G is equal to a 18� 15 grid, that is we
discretize the robot’s environment into an 18� 15 grid.CG,
which defines the available actions, is set to a 6� 5 grid.
There is just one type of event in the environment, which is
the appearance of an orange ball that the robot can recognize
from anywhere on the field provided that it has an unobstructed
view. We test two different configurations of the world with
the real robot. One other configuration is tested in a custom-
built AIBO simulator [7]. The simulator, though abstract with
respect to locomotion, provides a reasonable representation of
the Aibo’s visual and localization capabilities, and allows for
a more through experimentation, particularly with regardsto
testing different distributions of ball appearances.

A. ConfigurationI with real robots

As an initial experiment, we configured the robot’s environ-
ment as shown in Figure 5. A picture of the actual environment

2The field is as specified in the 2004 rules of the RoboCup Four-Legged
Robot League:http://www.tzi.de/4legged

with the robot is shown in Figure 6. The robot knows the
locations of the walls in the environment, but must decide for
itself how to move so as to perform surveillance.

Region 1 Region 2 Region 3

Fig. 5. Representation of configurationI

Fig. 6. Picture of configurationI with the real robot

Before appearance of the balls, the path that the robot found
is path 1 in Figure 7. It is the minimal path for uniformly
visiting the whole environment. After that, we started to show
the balls to the robot in region 1 and 2, but not region 3. In this
new situation the robot foundpath 2in Figure 7. By traversing
this path, robot visits region 1 and 2 more often than 3 and
that is a desirable result.3

Later in the experiment we stopped showing any balls
to the robot. As a result of the forgetting parameter, the
robot gradually went back to uniform exploration (path 1 in
Figure 7). Finally, we again started to show the ball, this time
in regions 2 and 3. The path that the robot found in this new
situation ispath 3 in Figure 7.4

B. ConfigurationII with real robots

As a follow-up to this initial experiment, we created a more
complex environment as is illustrated in Figure 8 and pictured

3Videos of the robot in action in this environment are available from
http://www.cs.utexas.edu/˜AustinVilla/?p=research/
surveillance , named configurationI part 1

4A video of the robot forgetting what it has learned before and
re-learning the new distribution of the ball appearances isavailable
at http://www.cs.utexas.edu/˜AustinVilla/?p=research/
surveillance , named configurationI part 2

Region 1 Region 2 Region 3

BA

Path 1

Path 3

Path 2

Fig. 7. The path the robot traverses in configurationI
in Figure 9.

Region 1

Region 2

Region 3

Region 4

Fig. 8. Representation of configurationII
Before the appearance of the balls, the path that the robot

finds is very similar to the path shown in Figure 10, which
is the minimal path for the uniform appearance of the balls.
Because of the noise in the environment, the robot does not
exactly follow that path, but the path is very close to that
one. After showing the ball for several times in regions 1 and
3, the path that the robot finds is close to the one shown in
Figure 11.5 As is apparent from the path, because of the
higher probability of appearance of the balls inregion 1 and
3, those regions are visited more frequently.

The robot experiments verify that our approach can run
in real time on a computationally limited platform, and that
the robot can operate using the same algorithm in multiple
environments. The robot is made aware of the locations of
the walls, but given that information is able to recompute its
actions from scratch. However, due to the time-consuming
nature of running experiments in the real world, we further
validate our approach in simulation.

5A video of this experiment is available athttp://www.cs.utexas.
edu/˜AustinVilla/?p=research/surveillance , named configu-
ration II

Fig. 9. ConfigurationII with real robot

Region 1

Region 2

Region 3

Region 4

A B

C

D

Fig. 10. The path that the robot traverses in uniform distribution of the
appearance of the ball.

C. Simulation

We use our custom-built AIBO simulator to test our ap-
proach. The architecture of our AIBO code is designed in two
layers. The lower layer is responsible for managing the visual
sensor and translating high-level commands to robot motor
commands, while the upper layer reasons about the visual
inputs and issues high-level motion commands. Our simulator
is designed to take the place of the environment and the lower
layer, providing abstract visual input to the control code,and
simulating robot motions. Full details of the code organization
and simulator interface can be found in our technical report[7].

With this simulator platform, we are able to run identical
upper-level code both on the robot and on the simulator. Using
the simulator, we are able to control precisely the distribution
of locations at which the ball appears, and we are able to run
experiments much more quickly.

In our simulation experiments, we test four different dis-
tributions of ball appearances in configurationII from the
real robot experiments (Figure 8). In all the distributions, the
ball appears in each cellg with probability Peg � 50 every
50 seconds. In particular, this means that a ball can appear in
more than one cell before the robot sees any of them, and that
there can be more than one ball in the same place by the time
the robot visits that place.Peg is different in each one of the
experiments.

Region 1

Region 2

Region 3

Region 4

A B

C

D

Fig. 11. The path that the robot finds when there is several appearances of
the ball in region 1 and 3

The approximate time needed (in seconds) for walking
between each pair of points is given in Table I, as measured
on the physical robot. Notice that the time it takes to walk
straight across the field — even the long way fromA to B —
is less than the time it takes to move between adjacent points
such asB andD. The reason for the difference is that the
robot takes significant time to turn.

Point 1 Point 2 Time needed to traverse
A B 50
A C 55
A D 55
B C 55
B D 55
C D 40

TABLE I

APPROXIMATE TIME IN SECONDS NEEDED TO WALK BETWEEN EACH PAIR

OF POINTS IN CONFIGURATIONII .

In the following subsections, we discuss the results in each
of four distributions: a uniform distribution; a distribution in
which the ball only appears in one place; a biased distribution;
and a non-stationary distribution.

1) Uniform Distribution: In our first experiment, the ball
appears with identical probability in each of the four regions.
Notice that were the ball to appear anywhere else in the
environment, the optimal policy would not be affected sig-
nificantly, since almost all of the actions visit the center part
of the environment. The path that the robot finds after learning
is approximately the path shown in figure Figure 10.

In order for the robot to visit all the regions it at least needs
to go through the pointsA, B, C andD or a small area around
them. Based on the travel times in Table I, the solution shown
in Figure 10 is optimal, which we can check by exhaustive
search.

While following the path that the robot found, each ball
was approximately visited after 106�2:1 seconds. In the
experiment, 100 balls were shown to the robot. The optimum
average detection time is 100 seconds, which is the result of
traversing the path in Figure 10. The whole traversing time for

that path is55+40+55+50 = 200. Thus, it takes between 0
and 200 seconds to detect each event, and the average detection
time is 100 seconds. Thus, our approach is in4% margin of
error, which is quite close to optimal, with the error coming
mainly from action noise. The path that the robot found is not
exactly the one in Figure 10, since for example the robot does
not always go to the exact grid-cell of pointA. Rather, to visit
region1, it goes to one of the grid-cells close toA. The exact
motion of the robot is visible in our on-line videos.

This initial experiment verifies that our greedy algorithm
can produce the optimal solution in the most benign case.

2) Always in One Region Distribution:As a second test,
we created a distribution such that the ball only appeared in
region2. The path that the robot finds is approximately the one
shown in Figure 12. It took the robot only one pass through
the field to approximately follow the path in Figure 12.

Region 1

Region 2

Region 3

Region 4

B

D

A

C

Fig. 12. The path the robot traverses when the ball always appears in region2.

On average, every ball is noticed47� 1:3 seconds after its
appearance. In the experiment 100 balls were shown to the
robot. Of course, the optimum solution here is for the robot to
stay close to region2 and visit the balls right after it appears,
but our algorithm enforces the constraint that the robot should
continually visit the whole environment at least periodically in
case new events occur. With the condition that we want to visit
the whole environmentcontinually, 47 seconds is reasonable.
In particular, learning the distribution has gained us a 50%
performance improvement: without learning the robot would
traverse the environment uniformly, resulting in an average
detection time of 106 seconds or ideally 100 seconds. Notice
that the average detection time in uniformly traversing the
environment and visiting each cell once in the full traverse
of the environment is independent of the distribution of event
appearances. Because whatever the distribution, the average
detection time for each event is constant and equal to the half
of the whole traversing time.

3) Biased Distribution: In our next experiment we tested
the robustness of our approach in a scenario such that the balls
appear in all the regions but with different probabilities.In the
biased distribution, with probability 60% the ball appearsin
region 2, with probability 30% it appears in region1, with
probability 5% in 3, and with probability 5% in4 (Peg =

.6/50, .3/50, .05/50, and .05/50 respectively). The path that
the robot traverses is approximately the one in Figure 13.

Region 1

Region 2

Region 3

Region 4

B

D

A

C

Fig. 13. The path that the robot traverses in the face of a biased distribution,
where the chance of the ball appearance is 60% in region2, 30% in region
1 and 5% in regions3 and4.

The time needed for the robot to change its path from the
uniform case to the path shown in Figure 13 is based on
how fast it can learn the distribution, which itself is based
on frequency of ball appearances. In our experiment, every
50 seconds an average of 1 ball appeared. In this setting,
the robot took 9 complete traverses (1734 seconds or 35 ball
appearances) to start traversing the shown path.

After the 1734 seconds, when the robot learned the distribu-
tion, on average every ball was visited79� 1:2 seconds after
its appearance. In the experiment, 200 balls were shown to the
robot. This result is significantly better than uniform traversal
which results in average detection time of 106 or ideally 100
seconds.

4) Changing Distributions: In our final experiment we
tested the robustness of the approach to changing distribu-
tions. In particular, we consider a scenario in which at some
unknown point in time the probability of appearance of the

balls changes abruptly. The initial distribution of the ball
appearance was the same as the biased case discussed in
previous section, that is 60% in region2, 30% in region1,
5% in region3, and 5% in4. After 100 ball appearances, the
distribution changes to the uniform appearance of the ball.

The path that the robot found with the starting distribution
is the same as the one in Figure 13. It took the robot about
1820 seconds or 36 ball appearances to adapt to the second
distribution and approximately follow the path in Figure 10.

V. CONCLUSION AND FUTURE WORKS

In this paper, the problem ofcontinuous area sweepingis
introduced. The problem is defined as one in which a robot
must repeatedly visit every part of the environment in orderto
detect a set of events of interest. The frequency of the events
can possibly be non-uniform, thus the robot should visit the
points with non-uniform frequency. Examples of continuous
area sweeping tasks are surveillance and cleaning.

In this paper, we formalize the problem and introduce an
initial approach that non-uniformly visits the environment
to minimize the estimated cost. The approach is analyzed
analytically and is tested both in simulation and on real robots.

Our on-going research agenda includes expanding the robot
behavior to include non-greedy planning and cooperative
multi-robot interactions.

Although there is a good deal of uncertainty in the object
recognition on the Aibo, we currently do not express it
explicitly other than by folding it into the estimatePeg . Note
that we do represent state transition uncertainty within the
function T . Representing object detection noise explicitly is
also a direction for future work.

ACKNOWLEDGMENT

The authors would like to thank the members of the UT
Austin Villa team for their efforts in developing the software
used as a basis for the work reported in this paper. Special
thanks to Greg Kuhlmann for developing the simulator. This
research was supported in part by NSF CAREER award IIS-
0237699 and ONR YIP award N00014-04-1-0545.

REFERENCES

[1] N. Kalra, A. T. Stentz, and D. Ferguson, “Hoplites: A market framework
for complex tight coordination in multi-agent teams,” Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-04-
41, August 2004.

[2] J. A. T. Y. E. Kurabayashi, D. Ota, “Cooperative sweepingby multiple
mobile robots,” inProc. of IEEE International Conference on Robotics
& Automation (ICRA), 1996.

[3] H. Choset, “Coverage for robotics; a survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126,
2001.

[4] L. E. Parker, “Distributed algorithms for multi-robot observation of
multiple moving targets,”Autonomous Robots, vol. 12, no. 3, pp. 231–
255, 2002.

[5] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

[7] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,
M. Sridharan, and D. Stronger, “The UT Austin Villa 2004 RoboCup
four-legged team: Coming of age,” The University of Texas atAustin,
Department of Computer Sciences, AI Laboratory, Tech. Rep.UT-AI-
TR-04-313, October 2004.

