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Abstract of previous research using similar techniques in other do-
mains (Liu & Stone, 2006; Taylor & Stone, 2005). The
intention is to reuse portions of the value-function space
that are independent of the game in our chosen domain.
However, a common problem with value-function learning
is that the size of the state space can be overwhelming. Our
second approach is designed not only to address that, but
also to enhance transfer. We automatically identify if a
given target game is a board game, and if so identify what
kind of symmetries are presentirsmall versiorof the tar-

get game. We then use this structural symmetry informa-
tion to compact the value function space in the full-size tar
get game by aliasing states that are identical by symmetry.
Alternatively, we can look at this as exploiting symmetry
to simultaneously update multiple states that are symmet-
ric variations of each other, leading to faster learning.

We present value function transfer techniques for
General Game Playing (GGP) by Reinforcement
Learning. We focus on 2 player, alternate-move,
complete information board games and use the
GGP simulator and framework. Our approach is
two-pronged: first we extract knowledge about
crucial regions in the value-function space of any
game in the genre. Then for each target game, we
generate a smaller version of this game and ex-
tract symmetry information from the board setup.
The combined knowledge of value function and
symmetry allows us to achieve significant trans-
fer via Reinforcement Learning, to larger board
games using only a limited size of state-space by
virtue of exploiting symmetry.

1. Introduction

We present two basic techniques for value function transfer
in the General Game Playing (GGP) domain (Pell, 1993).

This domain allows description of a wide range of games in

a uniformlanguage, called the Game Description Language
(GDL). The challenge is to develop a player that can com+igure Llllustration of featuref’ in Tic-tac-toe, Connect-3 and
pete effectively in arbitrary games presented in the GDLC@ptureGo. Note that in Tic-tac-toe, it also matchgs

format (Genesereth & Love, 2005). In this paper we focus o

on the problem of building a learning agent that can use2. Feature extraction in value space

knowledge gained from previous games to learn faster i
new games in this framework.

"Bur learning agent uses a private simulator based on the
given game description, to lookahead a few levels of
We use afterstate Q-learning (Watkins & Dayan, 1992) asnoves. This is not a strong assumption since novice hu-
the basic learning mechanism. We use two approaches toan players routinely use this capability but they stillchee
knowledge transfer: first we learn the values of some handb learn from experience to become better players. We cur-
generated structures (with intuitive meaning, see Figlire 2rently use four handcraftefg@aturesthat serve to warn the

in the game-tree, that we cédlatures We use the Q-values player if a terminal (either favorable or not) state is in the
tialize (some) Q-values in other games. This approach ifour features are

not limited to board games, but only to 2-player, alternate

move, complete information games. It belongs to the Iinepl: Mark to win

Appearing in thé’roceedings of the ICML Workshop on Structural
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F5: Mark to block opponent from winning

F3: Fail to block opponent from winning
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S,a matches "Mark to win" S,a matches "Block opponent”

S, * matches "Fail to block opponent" S,a matches "Create fork"

Figure 2lllustration of featured, ..., Fy in a game’s search tree. Circular (green) nodes represetedimer’s states, square (red)
nodes are the opponent’s states. Faces are terminal stdtesl&explanatory.

F,: Create a fork fer mechanism is to save the cost of a few value-backup
steps near terminal states (i.e., when the states gaircpredi
FeatureF; is illustrated in Figure 1 in 3 different games. tive potential) and thus guide exploration to focus more in
Figure 2 shows the common game tree structure of theste regions where foresight is not usually available. Is thi
features. None of the features require a deeper lookup thamay, our transfer learner behaves more like human learners.

2 moves by the learner. Lookahead search has been shown to be an effec-

Note that the features reveal a hierarchical nature, ear, f tive technique in conjunction with Reinforcement Learn-
turesF, and F3 involve featureF; at the opponent level ing (Tesauro, 1994). Although we depend on handcrafted
(in terms of the opponent’s win), and similai®; involves  features, this work should be looked upon as a proof of
F3. Once the training episodes are complete in the sourceoncept that feature transfer can be effective. Existiolg-te
game, we extract feature information from the acquiredniques for automated feature discovery in games (Fawcett,
value-function space. This involves matching each statd 993) can be leveraged to strengthen feature transfer in fu-
from this space against each of these features using theare.

simulator for lookahead. If a statematches a feature, we

identify the candidate actiom and note the valué)(s, a) Characteristics of featuretransfer

against that feature. For feature 3, all available actidns o
the learner are candidate actions, so we note their averag@e fe_atgres do not depend on the exact game, as long as
Q-value. The value of a featut& is then calculated as Lis within the genre of chosen games. Specifically, the
size of the board, the number of available actions at each
val(F;) = avg{Q(s, a)|(s,a) matched;} level, and the semantics of terminal states and win/loss cri
teria have been effectively abstracted away by exploiting
the GDL. Consider the diverse natures of games in these as-
I{Jects: in Tic-tac-toe the number of available moves stgadil
diminishes, in Connect-4 it diminishes at intervals, winle
Othello it may actually increase. The winning criteria are
widely varying in these games; they are similar in Tic-tac-
toe and Connect-4 but completely different in Go or Oth-
ello. A key motivation behind this research is to develop
Qinit (s, a) = max{val(F;)|(s,a) matches;} simple techniques that can transfer knowledge effectively
‘ from one game to a markedly different game which is why

The states that remain uninitialized after this process arge have focused on such a high level of abstraction.
initialized to the default value. The idea behind this trans

It is possible that affis, ) matches multiple features (e.g.,
in Figure 1, left) and so each state can potentially conteibu
to multiple features. After the feature values have bee
computed, we use them to initialiZg(s, a) in the target
game for eacl(s, a) that matched;, i = 1...4. Here
again, an(s,a) may match multiple features, and we ini-
tialize as
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Prior to developing the feature transfer concept, we have

looked at the possibility of using a common feature space

where we do both learning and transfer. In other words, we

asked the question whether we can learn the quality values

of featuresQ(F;) directly (soF; forms the state space as

well) instead of first learnin@)(s, a) and then extracting

val(F;). We realized the futility of such an endeavor by Figure 3.Reflectional symmetry id x 4 Connect-3

posing a simple transfer problem that answered this ques-

tion in the negative. Consider the problenrole transfer  In addition to reflectional symmetry, square boards may ex-

i.e., learnto play a game as, say, the first mover and then uggbit rotational symmetry. An example for the CaptureGo

transferred knowledge to learn to play as the second movegames is shown in Figure 4. The four states that result from

A feature space in which we learn must be discriminativerotating the board 90 degrees at a time are all strategically

enough so as not to alias semantically different states, bidquivalent. We refer to the set of states that arise from a

then if it is so discriminative then it is more than likely tha board’s symmetric transformations to be the statgfame-

we can identify the role of the player by just looking at the try set

feature description. Now if the role is identifiable in a fea-

ture then the knowledge gained as the first mover would

be useless when moving second. Consequently, we looked

into different feature spaces for learning and transfeteNo

that our features are also independent of the learner’s role

but the state space used for learning is not. C

One concern when using complex feature spaces for trans-

fer is that the time overhead for computing transfer knowl-

edge should not overwhelm the learning time. By lim-

iting the number of features and the depth of lookahead,

we are ensuring a low computational complexity for trans-

fer knowledge. The limited lookahead depth also serves Figure 4.Rotational symmetry i3 x 3 CaptureGo

to keep the features quite indicative qf t.he .outpome of they prerequisite for identifying board symmetries in a game

subsequent MOVES. Note hoyvever, this |nd_|caF|on.|s not alfs recognizing that the game contains a board. The agent

ways unamblgu_ous, e.g., whilg andF; are |nd|c_at|ve of identifies boards on its own by examining the formal game

winning and losing the game respectivedy, provides N0 yaqerintion. A board is essentially identified as a ternary

clearcut indication. Win, loss or draw are all possible out-p e gicate with two ordered inputs and one output. The full

comes in this case. This ambiguity j.UStIers transfe_r learnyatails can be found in (Kuhlmann et al., 2006).

ing; if merely looking ahead would give a concrete idea of

the ultimate outcome of playingin states, then we could Once the board has been identified, the agent tests it for

well have initialized the correspondir@value in the tar-  €ach type of symmetry. For a board to exhibit a certain kind

get game to the known value of that outcome. of symmetry, it must satisfy two conditions. First, for each
terminal state, every state in its symmetry set must have

3. Symmetry transfer the same outcome. Second, for every tranlsition from non-
terminal states via actiona to resulting state’, executing

Many games that humans enjoy playing take place on #e symmetric transformation efin the transformed state

rectangular grid or board. These games often exhibit som#or s results in the transformation ef.

kind of symmetry that makes the game simpler t0 reasomqte that this symmetry identification method requires the

about. One type |Baflect|0nalsymm‘<‘et_ry, Wh’lych_means that onmeration of every valid state in the game. For large

for every state, the boar_o_l can be_ flipped” without Ch_ang'games, this would not be feasible. An important observa-

ing the value of th‘fﬂ position for either !olayer.. Reflgctlbna_ tion is that the symmetries exhibited by a smaller version

symmetry may exist across the board's vertical axis, horix¢ the same game are very likely to be the ones exhibited

zontal axis, or both. An example of reflectional symmetryj, e |arger game. Therefore, the agent can use a smaller

about the vertical axis is shown in Figure 3fo_r t_he Conr_‘eCt'version of the target game it is going to learn to identify

3 game. Note that Conn_ect-3 doe_s not exhibit reflectionay, game’s symmetries and transfer that knowledge to the

symmetry about the horizontal axis. In fact, for the Statelarger game.

shown in the figure, the state that results from a flip about

the horizontal axis is not even a valid state. The agent uses symmetry knowledge transferred from the
smaller source task to speed up learning on the target task.
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By treating symmetric states as identical, the agent avoids %0 |
the need to learn about the same situation multiple times. 80
By requiring the agent to learn fewer values in its value
function, the hope is that it will be able to learn more effi- 0 0
ciently. @ 60

(3]

g sl
4, EXperlmental Results z 40 7/'"‘ Feature Transfer

/ Symmetry Transfer -

We conducted a set of experiments to measure the impact 30 | Baseline
of each type of transfer on learning speed. We tested the 20 ‘ ‘ ‘ ‘ ‘
transfer methods on two different target games: Connect-3 0 1000 2000 3000 4000 5000
and CaptureGo. For both games, we compared the learn- Number of Training Games

ing speeds of daselinelearner to learners that use trans-
ferred knowledge from other tasks. The baseline learner
uses afterstate Q-learning with a value function initidiz

Figure 5.Results ford x 4 Connect-3

symmetry transfer in this game are more pronounced than

,Lén'fo_r mlly to r:hebdef?ult lvalue. Theymmhetryle‘la\rn?r 'S" " in Connect-3. Also the advantage of symmetry transfer in
identical to the baseline learner except that value functio o cring the state-space is compelling.

updates are performed for all afterstates that are in the sym
metry set for the current afterstate. Finally, tfeature

learner uses the same backups as baseline, but initializes 100

its value function to the values transferred from the source 90 t

game. We do not report results from the combined (feature | A

+ symmetry) learner since they were not found to be signif- g B

icantly improved over the feature learner, given the skallo (g»’ 70

goals in these games. § ny

Both of the target tasks take place o & 4 board. For ALl —
symmetry transfer, th8 x 3 versions of the games were ‘ Baseline -
chosen as the source games. The values for feature transfer 0 ‘ ‘ ‘ ‘ ‘
were learned from standard tic-tac-toe as the source task. 0 50000 100000 150000 200000 250000

. . Number of Training G
For both domains, the learner competes against an oppo- umber of fraining ames

nent that takes winning moves and avoids losing moves by

. . Figure 6.Results fod x 4 CaptureGo
looking ahead one full turn, but otherwise plays randomly. 9 P
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