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Abstract

Hierarchical decomposition promises to help
scale reinforcement learning algorithms naturally
to real-world problems by exploiting their under-
lying structure. Model-based algorithms, which
provided the first finite-time convergence guaran-
tees for reinforcement learning, may also play an
important role in coping with the relative scarcity
of data in large environments. In this paper, we
introduce an algorithm that fully integrates mod-

actions allow agents to reason above the level of primi-
tive actions (Barto & Mahadevan, 2003). The advantages
of such methods include the ability to incorporate prior

knowledge and the creation of opportunities for state ab-
straction. Recent work in the automatic discovery of hi-

erarchy has focused on the ability to focus exploration in
novel regions of the state space (Simsek & Barto, 2004).

The second branch is model-based RL, which directly es-
timates a model of the environment and then plans with
this model. Early work demonstrated that summarizing an

ern hierarchical and model-learning methods in
the standard reinforcement learning setting. Our
algorithm, RMAXQ, inherits the efficient model-
based exploration of the RAX algorithm and
the opportunities for abstraction provided by the
MAXQ framework. We analyze the sample com-
plexity of our algorithm, and our experiments in
a standard simulation environment illustrate the
advantages of combining hierarchies and models.

agent's experience into a model could be an efficient way
to reuse data (Moore & Atkeson, 1993), and later work uti-
lized the uncertainty in an agent’s model to guide explo-
ration, yielding the first (probabilistic) finite bounds dret
amount of data required to learn near-optimal behaviors in
the general case (Kearns & Singh, 1998; Kakade, 2003).

Few RL researchers have tried to combine these two ap-
proaches, despite the intuitive appeal of learning hi@iarc
cal models of the world. Prior work includes adaptations
to the average-reward formulation (Seri & Tadepalli, 2002)
and to deterministic domains (Diuk et al., 2006). In this pa-
per, we introduce an algorithm that fully integrates modern
Reinforcement Learning (RL) algorithms tackle a very hjerarchical-decomposition and model-learning methods i
challenging problem: how to find rewarding behaviors inthe standard setting of discounted rewards and stochastic
unknown environments (Sutton & Barto, 1998). Animpor- dynamics. Section 2 details how we decompose high-level
tant goal of RL research is to generalize these algorithms tehodels into lower-level models. Section 3 presents our al-
structured representations and to learn from limited exper gorithm, which joins our model decomposition with the R-
ence. In this paper, we develop an algorithm that integrategiax approach to learning primitive models. In Section 4,
two important branches of RL research that, despite theijye formally analyze our algorithm, RaxQ. Section 5
popularity, have rarely been studied in tandem. describes our empirical results. In Section 6 we discuss

The first of these two branches is hierarchical RL. Humand€lated work more fully, and in Section 7 we conclude.
cope with the extraordinary complexity of the real world in

part by thinking hierarchically, and we would like to imbue 2, Hierarchies of Models

our learning algorithms with the same faculty. In the RL ] o ) ) ]
community, this impetus has taken shape as work on temiVe begin by describing our recursive action decomposi-

poral abstraction, in which temporally extended abstracion: Which defines how we plan at the high level given
learned models of primitive actions. Section 3 presents a

Appearing inProceedings of the&5" International Conference complete algorithm obtained by combining this decompo-

on Machine LearningHelsinki, Finland, 2008. Copyright 2008  gjtion with a particular way of learning primitive models.
by the author(s)/owner(s).
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We adopt the standard semi-Markov decision proces€'%(s,a’), whereC® is acompletion functiorthat estimates
(SMDP) formalism for describing temporally extended ac-the reward obtained after executingbut before complet-
tions (Sutton et al., 1999), but we modify the notation toing a. It recursively queries the child action fdt®" and
better reflect the recursive nature of hierarchical RL. WelearnsC* locally using model-free stochastic approxima-
define an SMDP as the conjunctiofi, A) of a finite state  tion. Using the learned®, it simultaneously learns an ex-
spaceS and a finite action sefl. Each actiorm € A is  ternal version ofC“ that doesn't include the internal goal
associated with a transition functid?f* and a reward func-  rewardsR?, so thaia can reportR® to its own parents.

tion R*. For convenience, we useanaulti-timemodel (Sut-
ton et al., 1999), sP¥(s,s’) = > ro, v Pr(k, s | s, a),
wherey € (0,1) is a discount factor anBtr(k, s’ | s, a) is
the probability that executing actiane A in states € S
will take exactlyk time steps and terminate in statec S.
Similarly, R%s) = E[> 7 ,~v*r,], wherery, is the one-
step reward earned during thth time step executing.

The key idea behind our model-based approach is to as-
sume that a composite actiarcan query a child’ for not

just R% but alsoP“". Then the only unknown quantity in
Equation 1 isV*, which can be computed using standard
dynamic programming methods and stored locally. To sat-
isfy our assumption, each actien whether primitive or
composite, must be able to compute b&thand P*. Prior

If a € Ais aprimitive action then it will always terminate research into option models (Sutton et al., 1999) defined
after exactly one time step, 9o,,, P%(s,s’) = ~ for all Bellman-like equations, for all € S andxz € T*:

s € S. Since we may construe a discount factoryods

equivalent to terminating a trajectory with probability- RY(s) = R™)(s) + > P™)(s,s")R(s) (4)
after each time step, the “missing” transition probability s'€S\Te

corresponds to the probability of termination. P(s,a) = Pﬁa(s)(s,m) n ZP”“(S)(S, S)Ps 7). (5)

In the RL setting, eac® and R* is initially unknown, but s'eS\Te

for eacha € A that is acomposite actionwe assume the

agent is given a set of terminal stafes c S, aset of child ~and for alls € S andz € S\ T, P%(s, z) = 0. SinceP*
actionsA®, and a goal reward functioR® : 7¢ — R. A is a multi-time model, note that_ , P(s,s") < v < 1,
composite action may be invoked in any statec S\ 7%, ~ Where the “missing” transition probability corresponds to
and upon reaching a statec 7 it terminates and earns an the cumulativel — ~ probability of terminating (the entire
internal reward of?%(s’). It executes by repeatedly choos- trajectory, not just) marginalized over the random dura-
ing child actionsa’ € A® to invoke. The child actions’ tion of the execution of.. A key strength of our algorithm
may be primitive or composite. Wheti terminates (and is that it takes advantage of models to solve Equations 4
assuming: does not terminate), thenselects another child and 5 directly using dynamic programming, instead of us-
action. (In contrast to the original MAXQ framework, a ing these equations to define update rules for stochastic ap-
composite actiom only tests for termination upon the ter- proximation, as in prior work with option models.

mination of a child actiom’.) A composite actiom selects
child actions to maximize the expected sum of the child
action rewards?®’ and the goal rewardg®.

Our decomposition provides a way to compute policies
and therefore high-level transition and reward modelsrgive
lower-level transition and reward models. To ground out
Given the transition and reward functions for each of thethis process, models of the primitive actions must be avail-
child actions, the optimal policy for the composite action able. However, ifR* and P¢ are available for each primi-
may be computed using the following system of Bellmantive actiona, note that we could compute the optimal policy

equations, for alk € S anda’ € A% of the system using standard (non-hierarchical) planning
algorithms. Nevertheless, we empirically demonstrate the
Q%s,d') = Ra’(s) + Z pa/(& s"V(s") (1)  benefit of using hierarchies in Section 5. The next section
e first presents our learning algorithm.
Vas) — R%(s), if seT® @ _
max, ¢ 40(5) Q%(s,a’), otherwise 3. TheR-MAXQ Algorithm
(s) g
N / Equations 1-5 show how to compute abstract models from
ay I ! a !/ a

where A%(s) = {_a € A | primitive(a’) Vs ¢ T } primitive models, but a complete model-based RL algo-
Then the optimal policyr® : S — A is, foralls € St rithm must specify how to estimate the primitive models.
N o We propose combining our hierarchical model decompo-

m(s) = argmax, ¢ o5 Q“(s, @’). () sition, inspired by the MAXQ value function decomposi-

tion, with the primitive models defined by the ®ax al-
Dietterich's MAXQ framework compute)%(s,a’) by  gorithm (Brafman & Tennenholtz, 2002), yielding a new
decomposing this quantity int@%s,a’) = R*(s) +  algorithm we call RMAXQ.
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R-max defines the transition and reward models for prim-statess. Algorithm 1 is the main algorithm, invoked with
itive actions as follows. Lek(s,a) denote the number the root action in the hierarchy and the initial state of the
of times primitive actiona has executed in state Let  system. MAXQ recursively executes an actioim the cur-
n(s,a,s’) denote the number of times primitive action  rent states, returning the resulting staté € 7. Primitive
transitioned state to states’. Finally, letr(s,a) denote  actions execute blindly; composite actions first updati the
the cumulative one-step reward earned by each executigmolicy and then choose a child action to execute, until some
of primitive actiona in states. Then the primitive transi- child leaves it in a terminal state.

tion and reward models are given by:

r(s,a) Algorithm 1 R-MAXQ (a, )
o 2 if n(s,a) >m 5
R(s) = {;(3;;;1 therwi (6) if a is primitive then
» Otherwise Executeq, obtain reward-, observe state’
n(s.as) g n(s,a) >m r(s,a) —r(s,a) +r {record primitive dati
Pes,s") = n(s,a) = 7
(s,5") { 0, otherwise ) n(s,a) - n(s,a) + 1/
n(s,a,s') «—n(s,a,s)+1
whereV™2* is an upper bound on the optimal value func- t—t+1
tion andm is a threshold sample size Given sufficient Returns’

data, RmMAX uses the maximum likelihood model, but it  else {a is composité
otherwise uses an optimistic model that predicts a high- repeat

reward terminal transitiof By backing up these optimistic COMPUTEPOLICY(a, )

rewards through the value function, the learned policy ef- s «— R-MAXQ(7%(s), s) {recursive execution

fectively plans to visit insufficiently explored states. until s € T {or episode ends
Returns

R-MAXQ works in the same way, except it computes a
hierarchical value function using its model decomposi-
tion instead of a monolithic value function using the stan-

dard MDP model. Optimistic rewards propagate not onlya|gorithm 2 updates the policy for composite action
through the value functiol™® at a given composite action gijven that the agent is in state It first constructs glan-

a but also up the hierarchy, via each action’s computed abning envelopeall the states reachable frostat this node
stract reward functio®?*. Each local policy implicitly ex-  of the hierarchy) and thus relevant to the value.oDnce
ploits or explores by choosing a child action with high ap-the planning envelope has been computed and all the child
parent value, which combines the child’s actual value angyctions’ models have been updated on the envelope, the
possibly some optimistic bonus due to some reachable URsajye function and policy could be computed using value
known states. No explicit reasoning about exploration isiteration. Note that our implementation actually uses pri-
required at any of the composite actions in the hierarchy: agyitized sweeping (Moore & Atkeson, 1993) and aggres-
in R'MAX, the planning algorithm is oblivious to its role in sive memoization, not shown in our pseudocode, to ame-
balancing exploration and exploitation in a learning agentjiorate the computational burden of propagating incremen-

A key advantage of RAAXQ is that its hierarChy allows it tal model Changes throughout the hierarchy_
to constrain the agent’s policy in a fashion that may reduce

unnecessary exploratory actions, as illustrated in Seétio

end if

Algorithm 2 COMPUTEPOLICY(a, )

Algorithms 1-4 give the RWAXQ algorithm in detail. All if timestampa) < ¢ then
variables are global, except for the argumeatand s, timestampa) « ¢
which represent the action and state passed to each sub- envelopéa) «— 0
routine. All global variables are initialized to 0, excelpat end if

R%(s) is initialized tol™** for all primitive actionsa and PREPAREENVELOPHG, s)

1The original Prioritized Sweeping algorithm (Moore & Atke- while not convergedio {value iteration
son, 1993) used the same optimistic one-step model, but its ~ for al s’ € envelopga) do
name became identified with its method for propagating changes for all a’ € A%s’) do
throughout the value function. The primary contribution of the SetQ%(s’,a’) using Eq. 1
R-MAX algorithm was a derivation of the appropriate valuerof end for
given the desired error bounds. SetV%(s') using Eq. 2

2In effect, setting all the transition probabilities to 0 in Equa- etV“(s’) using Eq.
tion 5 gives the “missing” probability all to the implicit terminal end for
state. This trick works properly with the Bellman equations since end while
the terminal s@a}te .has. value.O; the optimism is reflected in the re- wa(s) — argma)&,eAa(s)Qa(s, a’) {Eq, 3}
ward for transitioning into this state.
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Algorithm 3 computes the planning envelope for compos-state-actionn times. By computing a value function from

ite actiona by examining the given state’s successors undethis optimistic model, the resulting policy implicitly tlas

any applicable child action’s transition model and recur-off exploration (when the value computed for a given state

sively adding any new states to the envelope. This compuincludes optimistic rewards) and exploitation (when the

tation requires that these models be updated, if necessaryalue only includes estimates of the true rewards). Kakade
(2003) bounded the sample complexity of RL by first show-

Algorithm 3 PREPAREENVELOPEa, s) ing that RMAX probably only spends a finite number of
if s ¢ envelopéa) then Fime steps attemp.ting to reach optimistic reward; (explor-
envelopéa) «— envelopéa) U {s} ing). For_the remaining (unbounded) numbgr of time steps,
for all a’ € A(s) do the algorithm exploits its learned model, but its expladat
COMPUTE-MODEL(d’, 5) is near-optimal only if this model is sufficiently accurate.
for all s’ € S| P(s,s') > 0 do Kakade then bounded the valuesmeinecessary to ensure
PREPAREENVELOPHa, s') the accuracy of the model with high probability.
end for To be precise, let an MDP with finite state spatand fi-
eqd for nite action spacd be given. Let be a desired error bound,
end if § the desired probability of failure, andthe discount fac-

tor. Then RMAX applied to an arbitrary initial state will
Algorithm 4 updates the model for an actieat some state Spendo(m\SHAlL log IS\J\A\) time steps exploring, with
s. For composite actions, this requires recursively comput- o e
ing the policy and then solving Equations 4 and 5. probability greater tham — §, whereL = O( = ) Fur-

thermore, there exists an < O('S|L2l og 'S”A‘) such

Algorithm 4 COMPUTEMODEL(a, s)
if a is primitive then
if n(s,a) > mthen

that when the agent is not exploring? (s;) — V7(s;) g
= (R — R™in) with probability greater than — ¢,
Wherest andm,; are the current state and policy at time

a r(s,a)
R(s) — n(s,a) {Eq. & and R™a* and R™™* bound the reward function.
for all s € Sdo ) ) N
Pi(s, s') — n(s,a,s") {Eq. 7} The hierarchical decomposition used byMAxQ com-
end for n(s,a) plicates an analysis of its sample complexity, but essen-
end if tially the same argument that Kakade used provides a loose

bound. We refer the interested reader to the proof of
Kakade (2003) for the gross structure of the argument,
and we merely sketch the necessary extensions here. A
key lemma is Kakade's-approximation condition (Lemma

else {a is composité
COMPUTE-POLICY(a, $)
while not convergedio {dynamic programminjg
for all s € envelopéa) do

SetR%(s') using Eq. 4 8.5.4).. Th_e transition modeP fqr an action is ane-
for all 2 € T do approximation for the true dynamid3if for all statess €
SetP(s’, ) using Eq. 5 5,3 ves ‘P(& s') = P(s, s’)‘ < €. Thee-approximation
end for condition states that if a model has the correct reward func-
end for tion but only arc-approximation of the transition dynamics
end while for each action, then for all policies and states € S,
end if ‘Vﬂ(s) — V”(s)‘ < 16va'

Essentially, this condition relates the error bounds in the
4. Analysis of R-MAXQ model approximation to the resulting error bounds in the

computed value function. It allows the analysis ofMAx
We now provide a very rough sketch of our main theoret-o determine a sufficient value of to achieve the desired
ical result: RMAXQ probably follows an approximately degree of near optimality. We must extend this condition
optimal policy for all but a finite number of time steps. Un- iy two ways to adapt the overall proof to RAXQ. First,
fortunately, this number may be exponential in the size ofR_yaxq violates Kakade's assumption of deterministic re-
the hierarchy. This section closes with a brief discussion o\yard functions. Define a model reward functi@rto be a
the implications of this result. A-approximation of the true reward functiaR if for all

The original Rmax algorithm achieves efficient explo- statess € .5, ‘R(s) —R(s)‘ < A. Then it is straightfor-

ration by using an optimistic model. Its model of any ward to adjust Kakade’s derivation of theapproximation
given state-action pair is optimistic until it samples that
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condition to show that the computed value function forany , [ G
given policy satisfies € S, |V(s) — V7(s)| < 2= + . ;o

Second, for a given composite actian we must relate
error bounds in the approximations & and P* for

()

each childa’ € A“ to error bounds in the approxima- : (pickup) N RED.

tions of R* and P*. Since R” is just the value func- 0 | Y B

tion for 7 but without the goal rewards (Equation 4), o1 2 3 4 west
we immediately obtain that the estimatét will be an () (b)

(IE_L7 + )\)-approximation. Equation 7 illustrates that for

everys’ € T4, P%(-, s') can be thought of as a value func- Figure 1.(a) Taxi domain, and (b) an action hierarchy for Taxi

tion estimating the expected cumulative discounted proba-

bility of transitioning intos’. The total error inP%(s, -) Wi|! 5. Experiments

be bounded by the sum of the errors for eath 7%, so it

can be shown tha®® is anO ( 'Tla"EL)—approximation. This section presents our empirical results, which showv tha
- R-MAXQ outperforms both of its components,ax and

These results bound the errors that propagate up from tHAXQ-Q. We discuss our findings in detail, to reveal how

primitive actions in the hierarchy, but these bounds seenprecisely our algorithm benefits from combining model-

quite loose. In particular, these bounds can't rule out thebased learning and hierarchical decomposition.

possibility that each level of the hierarchy might multiply
ol

For our experiments, we use the familiar Taxi domain (Di-

the ap;t)rofx(;mtatlon e_rrodr by_a fact;)hr -6 " Since thfsf etterich, 2000). This domain consists of & 5 gridworld
amount ot data required varies as the Inverse squara with four landmarks, labeled ed, bl ue, green, and

R_MAX. requiresm §amples of each action at each'stateyel | ow, illustrated in Figure 1a. The agent is a taxi that
to achieve a certain error bound, NaXQ may require

o must navigate this gridworld to pick up and deliver a pas-
m = O(m (%) ) samples of each primitive action senger. The system has four state variables and six primi-
gye actions. The first two state variablesandy, give the
coordinates of the taxi in the grid. The thigassenger,
gives the current location of the passenger as one of the four
andmarks or as axi , if the passenger is inside the taxi.
he final state variablglest i nat i on, denotes the land-
mark where the passenger must go. Four primitive actions,
nort h, sout h, east, andwest , each move the taxi in
By adapting the remainder of Kakade’s proof, we can esthe indicated direction with probability 0.8 and in each-per
tablish that RMAXQ will probably converge to a (recur- pendicular direction with probability 0.1. The ckup ac-
sively) near-optimal policy, although this guarantee re-tion transfers the passenger into the taxi if the taxi is at th
quires exponentially more data thannRx in the worst indicated landmark. Thput down action ends an episode
case. We note that this guarantee applies to any choice diffthe passenger is in the taxi and the taxi is at the desired
hierarchy. It remains to be seen whether it might be posdestination. Each episode begins with the taxi in a random
sible to derive tighter bounds for specific classes of actiorlocation, the passenger at a random landmark, and a des-
hierarchies. Furthermore, as Kakade (2003) notes in hiination chosen randomly from the remaining landmarks.
derivation, the--approximation condition is perhaps unnec- Each action incurs a1 penalty, except that unsuccessful
essarily stringent, since it gives the worst possible démra pi ckup andput down actions cost-10, and a successful
tion in approximation quality over all possible policies. put down action earns a reward of 20.

at each state to achieve the same error bound at the root
the hierarchy, wher& is the maximum number of reach-
able terminal states for any composite action and the
height of the hierarchy: the number of composite tasks o
the longest path from the root of the hierarchy to a primitive
action (not including the root itself).

In practice, implementations of RAX use far smallerval- The structure of the Taxi domain makes it conducive for
ues ofm than would be required to achieve useful theoreti-research into hierarchical RL. The optimal policy may be
cal guarantees. In this vein, we note that runningtR%Q described abstractly in four steps. First, navigate to the
will result in no more time spent in exploration than run- landmark where the passenger is. Second, pick up the pas-
ning RmMAX with the same value fom. The hierarchical senger. Third, navigate to the destination landmark. Fi-
decomposition only weakens the guarantees on the neamally, put down the passenger. Navigation to each of the
optimality of the policy that RmaXQ exploits. The exper- landmarks constitute reuseable subtasks that hieratchica
iments described in the next section show that a good hierlgorithms can exploit. Dietterich (2000) expressed this d
archy can even reduce the amount of time spent exploringnain knowledge in the task hierarchy shown in Figure 1b.
with no appreciable deterioration in solution quality. This hierarchy defines a navigational composite action for
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Figure 2.(a) Cumulative and (b) asymptotic performance ofMRxQ, R-MAX, and MAXQ-Q on the Taxi domain, averaged over 100
independent trials. RtaAXQ and MAXQ-Q utilize the hierarchy shown in Figure 1b, but they do not uyeeaplicit state abstraction.

each of the four landmarks. These actions include the fouplan to explore might subsume the exploratory role that
primitive movement actions as children, and they terminateptions have played in many model-free RL implementa-
upon reaching the coordinates corresponding to the respetions (Simsek & Barto, 2004; Singh et al., 2005). Figure 2
tive landmark. TheSET andPUT composite actions each reveals that in fact the two algorithms exhibit very diffietre
have all four of their navigational composite actions atchi learning curves. In particular, although ¥ax requires
dren, as well api ckup or put down, respectivelyGET = many fewer episodes to converge to an optimal policy, R-
terminates when the passenger is in the taxi, Rd@ ter-  MAXQ earns much greater total reward.
minates only when the episode does. RGOT action only .
includesGET andPUT as children, and lik&UT it defines We had overl,ooked the fac_t that the hl_erarchy used by_ R-
. Do ; MAXQ doesn’t so much guide exploration as it constrains
no terminal states beyond those intrinsic to the domain. All . : .
. . ) . . it. In particular, note that the hierarchical agent can neve
goal reward functions give 0 reward; each action simply

L ) . attempt theput down action except at one of the four
minimizes the costs earned before reaching their SUbgoal?andmark locations, since tHeUT action only becomes

In our experiments with RuAx and RMAXQ we set the available when the agent is already at one of these loca-
threshold sample size at = 5. Preliminary experiments tions, and the four navigational actions keep the agent in
showed that larger values of did not signicantly improve this reduced set of states. The agent thus only attempts
the final policy, although of course they led to more timethe put down action in 12 incorrect states, instead of the
spent estimating the model. The only other parameter foB96 explored by RvAX . In addition, RMAX attempts the
these algorithms is the stopping criterion for the dynamicpi ckup action in 100 states in which RAXQ doesn't,
programming steps in Algorithms 2 and 4. In all cases, wevhen the passenger is already in the car. Since the penalty
ran value iteration until the largest change was smallar thafor incorrect usage of these actions is -10MRX loses

e = 0.001. We provided RmAXQ and the original MAXQ-  10(396 — 12 + 100)m = 24200 reward due to its wasted

Q algorithm with the hierarchy shown in Figure 1b as prior exploration, accounting for the difference between the two
knowledge. For our implementation of MAXQ-Q, we used algorithms in Figure 2a. Furthermore, since @I action
precisely the hand-tuned parameters Dietterich (2000) optcannot navigate to an arbitrary location,N@xQ can't at-
mized for the initial value function, learning rates, anahte tempt thepi ckup action in a non-landmark location un-
perature decay (for Boltzmann exploration) for each actiortil some episode randomly starts the agent there. In this
in the hierarchy. We conducted 100 independent trials otase the hierarchy can only postpone, not prevent, wasted

each condition of our experiments. exploration. This effect explains the delayed convergence
relative to RMAX: in later episodes R4AXQ spends time
5.1. R-MAXQ versusR-MAX on exploration that RAAX performed more eagerly.

We begin by comparing the performance ofMAxQ and
R-mAX on the Taxi task. Our initial hypothesis was that
R-MAXQ would perform no better than Rax in the ab-  Figure 2 also compares RAaxQ with the original MAXQ-
sence of state abstraction, since the model-based alility tQ algorithm. Of course, this comparison isn't very fair,

5.2. R-MAXQ versus MAXQ-Q
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0 It is worthwhile to examine more closely how the hier-
,\—————""’)— archy interacts with state abstraction in the Taxi domain.
10000 | T e mmmmmmmmammm im0 Consider how MAXQ-Q learns th&®OOT action. The
o only values stored locally are the completion functions
% -20000 CT°°%(-,GET) and C*°°%(-, PUT), which have different ab-
Y stract representations. The latter function is always kqua
g -30000 0, since aftePUT terminates there is nothing to complete,
2 40000 since the entire episode has terminated. Meanwhile, to
3 evaluateC*°°Y(s, GET) the algorithm need only inspect the
50000 R-MAXQ —— passenger anddest i nati on variables ofs, since the
R-MAX values of these two variables before execul@y com-
-60000 MAXQQ o pletely determine the remaining cost of completR@OT
0 200 400 600 800 1000 1200 1400 1600 afterGET terminates. Hence, MAXQ-Q only learns 16 val-
Episodes ues at thdROOT node; to compute the value of a state it re-

) _ cursively queriesR* and adds the appropriate completion
Figure 3.Cumulative performance of RmxQ, R-mAx, and function (Dietterich, 2000)

MAXQ-Q on the Taxi domain, using state abstraction. (The
asymptotic performance is qualitatively similar to that shown in R-MAXQ doesn’t apply any explicit state abstraction to
Figure 2b, although with faster convergence.) ROOT, but note that after executing either of its two child
actions, the result must be one of 12 nonterminal states:
with the taxi at one of four landmarks, the passenger in
since a primary goal of the MAXQ framework was to createthe taxi, and the destination at one of the other three land-
opportunities for state abstraction (Dietterich, 200()icl  marks. Hence, the planning envelope computed in Algo-
we did not initially exploit. In fact, Dietterich identifiethe  rithm 2 will always contain some subset of these 12 states
condition described in Section 5.1, which he called shieldpjus the current state. As with MAXQ-Q, the result dis-
ing, as one that permits abstraction. For a more fair comtribution irrelevance ofSET allows R-MAXQ to store only
parison, we allowed our implementation of MAXQ-Q to a small number of values locally. To compute the value
use all the state abstractions in the Taxi domain identifiedf a state, RMAXQ also gueries one-step values from its
by Dietterich (2000), along with his optimized parameters.children and then adds the appropriate successor state val-
We applied Dietterich’s notion of max node irrelevance toues. In Fh|s sense, these 12 states can be thought of as the
allow R-MAXQ also to enjoy an explicit form of state ab- COMPletion seof ROOT.
straction as prior knowledge. Each action in the hierarchyFigure 3 also shows the performance of standarsiAX-
abstracts away state variables when our domain knowledggith the same DBN factorization as RAXQ applied to
indicates that doing so would not compromise the learnegnost of its actions (which are all primitive). Note that irth
model. However, whereas in MAXQ-Q an actiaronly  absence of shieldingaut down cannot safely ignore the
reports its abstract reward functidif to its parents, in R- passenger variable. The ability to abstract the primitive
MAXQ it must also convey the abstract transition functionmodels does reduce the amount of exploration thatAxX-
P. Thus we only allow a composite action to ignore a statemust perform, but the improvement is significantly smaller
variable if all of its children also ignore that state vat@ab  than that of the other algorithms. This result gives more

In the hierarchy shown in Figure 1b, the four primitive support for motivating hierarchical decomposition with op

movement actions and the four navigational actions cafPOrtunities for state abstraction.

abstract away thpassenger anddesti nation state  Some preliminary further experiments support the argu-
variables.GET andpi ckup ignoredesti nation, and  ments of Jong et al. (2008), who used model-free hierarchi-
PUT andput down ignorepassenger . HoweverROOT  cal algorithms to suggest that composite actions more reli-
cannot ignore any state variables. When a child's transitiomply improve RL performance when they replace instead of
function was more abstract than a parent's model, the pamugment primitive actions. We ran RAXQ with a hierar-

ent assumed a very simple dynamic Bayes network (DBNEhy in which the root's children included all six primitive
factorization (Boutilier et al., 1995). For examplgi°*™**  actions as well as the four navigational composite actions,
setsx andy (each conditional on the previous values of producing learning curves indistinguishable from those of
both variables), bupassenger anddestinationre-  standard RWAX in Figure 2. When the root action can ex-
main constant. Figure 3 compares the performance of thecute every primitive action, the planning envelope grows
resulting algorithms. Both MAXQ-Q and RAXQ learn  to include too many states. Formalizing the properties of a

much faster with state abstraction, with the model-basedomposite action’s completion set may help us understand
nature of RMAXQ continuing to give it an edge.
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fect can be represented as a scalar reward and a Sing|eStrUCtur.e in p0|i(?y constructiorProceedir.\g.s of the .Fourteenth
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state abstraction, allowing it to save the value functions a pietterich, T. G. (2000). Hierarchical reinforcement learning with
policies computed during one time step for all future time the MAXQ value function decompositiodournal of Artificial
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algorithm that learns a model to facilitate the computation Poral abstraction in reinforcement leamiriggoceedings of the

f the bias f h state f th d of th Seventh International Joint Conference on Autonomous Agents
of the bias for each state from the average reward of the .4 myitiagent Systems
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reward itself relies on stochastic approximation techegyu Kakade, S. M. (2003)0n the sample complexity of reinforcement
and their algorithm does not have any formal guarantees learning Doctoral dissertation, University College London.
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learning in polynomial time.Proceedings of the Fifteenth In-
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