
In Proceedings of the 25th International Conference on Machine Learning (ICML 08),
Helsinki, Finland,, July 2008.

Online Kernel Selection for Bayesian Reinforcement Learning

Joseph Reisinger JOERAII@CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Risto Miikkulainen RISTO@CS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

Abstract

Kernel-based Bayesian methods for Reinforce-

ment Learning (RL) such as Gaussian Process

Temporal Difference (GPTD) are particularly

promising because they rigorously treat uncer-

tainty in the value function and make it easy to

specify prior knowledge. However, the choice of

prior distribution significantly affects the empir-

ical performance of the learning agent, and lit-

tle work has been done extending existing meth-

ods for prior model selection to the online set-

ting. This paper develops Replacing-Kernel RL,

an online model selection method for GPTD us-

ing sequential Monte-Carlo methods. Replacing-

Kernel RL is compared to standard GPTD and

tile-coding on several RL domains, and is shown

to yield significantly better asymptotic perfor-

mance for many different kernel families. Fur-

thermore, the resulting kernels capture an intu-

itively useful notion of prior state covariance that

may nevertheless be difficult to capture manually.

1. Introduction

Bayesian methods are a natural fit for Reinforcement

Learning (RL) because they represent prior knowledge

compactly and allow for rigorous treatment of value func-

tion uncertainty. Modeling such uncertainty is important

because it offers a principled solution for balancing explo-

ration and exploitation in the environment. One particu-

larly elegant Bayesian RL formulation is Gaussian Process

Temporal Difference (GPTD) (Engel et al., 2005). GPTD

is an efficient adaptation of Gaussian processes (GPs) to the

problem of online value-function estimation. In GPs, prior

knowledge in the form of value covariance across states

is represented compactly by a Mercer kernel (Rasmussen

& Williams, 2006), offering a conceptually simple method

Appearing in Proceedings of the 25
th International Conference

on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

for biasing learning.

An important open question for Bayesian RL is how to

perform model selection efficiently and online. In GPTD,

model selection determines the particular form of the prior

covariance function and the settings of any hyperparame-

ters. This paper contributes towards answering this ques-

tion in two ways: (1) It demonstrates empirically the im-

portance of model selection in Bayesian RL; and (2) it out-

lines Replacing-Kernel Reinforcement Learning (RKRL), a

simple and effective sequential Monte-Carlo procedure for

selecting the model online. RKRL not only improves learn-

ing in several domains, but does so in a way that cannot be

matched by any choice of standard kernels.

Although conceptually similar to methods combining evo-

lutionary algorithms and RL (Whiteson & Stone, 2006),

RKRL is novel for two reasons: (1) The sequential Monte-

Carlo technique employed is simpler and admits a clear em-

pirical Bayesian interpretation (Bishop, 2006), (2) Since

GPs are nonparametric, it is possible to replace kernels on-

line during learning without discarding any previously ac-

quired knowledge, simply by maintaining the dictionary

of saved training examples between kernel swaps. This

online replacing procedure significantly improves perfor-

mance over previous methods, because learning does not

need to start from scratch for new kernels.

This paper is divided into seven main sections: Section

2 introduces GPTD, Section 3 describes RKRL, Section 4

details the experimental setup using Mountain Car, Ship

Steering and Capture Go as example domains, and the last

three sections give results, future work and conclusions.

2. Gaussian Process Reinforcement Learning

In RL domains with large or infinite state spaces, func-

tion approximation becomes necessary as it is impractical

or impossible to store a table of all state values (Sutton &

Barto, 1998). Gaussian Processes (GPs) have emerged as a

principled method for solving regression problems in Ma-

chine Learning (Rasmussen & Williams, 2006), and have

recently been extended to performing function approxima-

Online Kernel Selection for Bayesian Reinforcement Learning

tion in RL as well (Engel et al., 2005). In this section, we

briefly review GPs and their application to temporal differ-

ence learning.

GPs are a class of statistical generative models for Bayesian

nonparametric inference. Instead of relying on a fixed func-

tional form as in parametric model, GPs are defined directly

in some (infinite-dimensional) function space (Rasmussen

& Williams, 2006). Specifically, an indexed collection of

random variables V : X → ℜ over a common probabil-

ity space is a GP if the distribution of any finite subset of

V is Gaussian. Gaussian processes are completely speci-

fied by prior mean and covariance functions. In this paper,

the mean function is assumed to be identically zero and

the prior covariance function is specified as a Mercer ker-

nel k(·, ·). Mechanistically, a GP is composed of the set of

training data and a prior covariance function (kernel) that

defines how to interpolate between those points.

Following the formulation of (Engel, 2005), consider a sta-

tistical generative model of the form

R(x) = HV (x) + N(x), (1)

where V is the unknown function to be estimated, N

is a noise model, H is a linear transformation, and R

is the observed regression function. Given a set of

data D = {(xi, yi)}
t
i=0, the model reduces to a sys-

tem of linear equations Rt = HtVt + Nt, where Rt =
(R(x0), . . . , R(xt))

⊤, Vt = (V (x0), . . . , V (xt))
⊤, and

Nt = (N(x0), . . . , N(xt))
⊤.

Assuming that V ∼ N (0,Kt) is a zero-mean GP with

[Kt]i,j
def
= k(xi,xj) for xi,xj ∈ D and N ∼ N (0,Σt),

then the Gauss-Markov theorem gives the posterior distri-

bution of V conditional on the observed R:

V̂t(x) = kt(x)⊤αt, (2)

Pt(x) = k(x,x)− kt(x)⊤Ctkt(x), (3)

where

αt = H
⊤

t (HtKtH
⊤

t + Σ)−1
rt−1,

Ct = H
⊤

t (HtKtH
⊤

t + Σ)−1
Ht,

and kt(x)
def
= (k(x,x1), . . . , k(x,xt))

⊤. This closed-form

posterior can be used to calculate the predicted value of

V at some new test point x
∗. In RL, the sequence of ob-

served reward values are assumed to be related by some

(possibly stochastic) environment dynamics that are cap-

tured through the matrix H.

In order to adapt GPs to RL, the standard Markov Decision

Process (MDP) framework needs to first be formalized as

follows. LetX and U be the state and action spaces, respec-

tively. Define R : X → ℜ to be the reward function and let

p : X ×U×X → [0, 1] be the state transition probabilities.

A policy µ : X × U → [0, 1] is a mapping from states to

action selection probabilities. The discounted return for a

state x under policy µ is defined as

D(x) =

∞
∑

i=0

γiR(xi)|x0 = x,

where xi+1 ∼ pµ(·|xi), the policy-dependent state transi-

tion probability distribution, and γ ∈ [0, 1] is the discount

factor. The goal of RL is to compute a value function that

estimates the discounted reward for each state under a pol-

icy µ, V (x) = Eµ[D(x)].

GPs can be used to model the latent value function given

a sequence of observed rewards and an appropriate noise

model. Reward is related to value by

R(x) = V (x)− γV (x′) + N(x,x′),

where x
′ ∼ pµ(·|x). Extending this model temporally to

a series of states x0,x1, . . . ,xt yields the system of equa-

tions Rt−1 = HtVt + Nt, where R and V are defined as

before, and

Nt = (N(x0,x1), . . . , N(xt−1,xt))
⊤,

Ht =











1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...

0 0 . . . 1 −γ











and Nt ∼ N (0,Σt). If the environment dynamics are

assumed to be deterministic, the covariance of the state-

dependent noise can be modeled as Σt = σ2
I. For stochas-

tic environments, the noise model Σt = σ2
Ht+1H

⊤
t+1 is

more suitable. See (Engel, 2005) for a complete derivation

for these models.

Given Ht, Σt, and a sequence of states and reward val-

ues, the posterior moments V̂t and Pt can be computed to

yield value function estimates. Thus GPs fit naturally into

the RL framework: Learning is straightforward and does

not require setting unintuitive parameters such as α or λ;

prior knowledge of the problem can be built in through the

covariance function; the full distribution of the posterior is

available, making it possible to select actions in more com-

pelling ways, e.g. via interval estimation. Furthermore, the

value estimator V̂t and covariance Pt can be computed in-

crementally online as each new state action pair is sampled,

without having to invert a t× t matrix at each step. For de-

tails of this procedure, see (Engel et al., 2005).

One issue with using GPs for RL is that the size of Kt, k(·),
Ht and rt each grow linearly with the number of states vis-

ited, yielding a computational complexity of O(|D|2) for

each step. Since it is not practical to remember every single

experience in online settings, the GP dictionary size must

Online Kernel Selection for Bayesian Reinforcement Learning

be limited in some way. To this end, Engel et al. derive

a kernel sparsification procedure based on an approximate

linear dependence (ALD) test. As the number of observed

training examples tends to infinity, the number of examples

that need to be saved tends to zero (Engel et al., 2005). A

matrix At contains approximation coefficients for the ALD

test and a parameter ν controls how “novel” a particular

training example must be before it is remembered by the

GP, making it possible to tune how compact and computa-

tionally efficient the value function representation is.

Finally, note that GPTD can be extended to the case where

no environment model is available, simply by defining the

covariance function over state-action pairs k(x,u,x′,u′).
This procedure will be termed GP-SARSA in this paper.

GPTD has been shown to be successful, but in practice per-

formance relies on a good choice of kernel. The next sec-

tion will focus on a particular online method for performing

such kernel selection.

3. Online Model Selection

A common requirement in RL is that learning take place

online, e.g. the learner must maximize total reward ac-

crued. However, traditional model selection techniques ap-

plied to GPs, such as cross-validation, or Bayesian Model

Averaging, are not designed to address this constraint. The

main contribution of this paper is to introduce Replacing-

Kernel Reinforcement Learning (RKRL), an online proce-

dure for model selection in RL. In section 3.1 an online

sequential Monte-Carlo method developed and used to im-

plement RKRL, as described in section 3.2.

3.1. Sequential Monte-Carlo Methods

Given a set of kernels {kθ(·, ·)|θ ∈ M} parameterized by

a random variable θ and a prior p(θ) over these parame-

terizations, a fully Bayesian approach to learning involves

integrating over all possible settings of θ, yielding the pos-

terior distribution

p(R|D) =

∫∫

p(R|V,D,θ)p(V |D,θ)p(θ)dV dθ.

The integration over V given θ is carried out implicitly

when using GPs, however, the remaining integral over θ

is generally intractable for all but the most simple cases.

Instead of integrating over all possible model settings θ,

we can use the data distribution D to infer reasonable set-

tings for θ via p(θ|D). Such evidence approximation can

is more computationally efficient and is an example of an

empirical Bayes approach, where likelihood information is

used to guide prior selection (Bishop, 2006).

Monte-Carlo methods can be used to sample from p(θ|D),
however, such methods assume that this distribution is sta-

Algorithm 1 Sequential Monte Carlo

Parameters: n, µ, τ , Λ

1: Draw {θ
(0)
i }

n
i=1 ∼ p(θ)

2: for t = 0, 1, . . . do

3: Calculate {w
(t)
i }

n
i=1 from equation 4.

4: Draw {θ̃
(t+1)

i }ni=1 by resampling {(θ
(t)
i , w

(t)
i)}ni=1.

5: θ
(t+1)
i ← θ̃

(t+1)

i + (c0φ0, . . . , ckφk)⊤ where ck ∼
Bernoulli(µ) and φk ∼ N (0, 1).

6: end for

tionary (Bishop, 2006). In the RL case, stationarity implies

that when evaluating θ, previous data acquired while eval-

uating θ
′ cannot be used. To avoid this inefficiency, we

instead employ a sequential Monte-Carlo (SMC) method

adapted from (Gordon et al., 1993) that relaxes the station-

arity assumption.

SMC approximates the posterior distribution p(θ|D) at

time t empirically via a set of n samples and weights

{(θ
(t)
i , w

(t)
i)}ni=1 where

wi
def
=

p(D|θ
(t)
i)p(θ

(t)
i)

∑

m p(D|θ(t)
m)p(θ(t)

m)
, (4)

where p(D|θ
(t)
i) is the likelihood of θ

(t)
i and p(θ

(t)
i) is

the prior. Inference proceeds sequentially with samples for

time t + 1 drawn from the empirical distribution

p(θ(t+1)|D) =
∑

l

w
(t)
l p(θ(t+1)|θ

(t)
l), (5)

where p(θ(t+1)|θ(t)) is the transition kernel, defining how

the hyperparameter space should be explored. In this pa-

per, the prior over models p(θ) is the uniform distribution

over [0, 1] for each of the kernel hyperparameters (listed in

table 1) and the transition kernel p(θ(t+1)|θ(t)) is defined

mechanistically as θ
(t+1) ← θ̃

(t+1)
+ (c0φ0, . . . , ckφk)⊤

where ck ∼ Bernoulli(µ) and φk ∼ N (0, 1). Pseudocode

for this procedure is given in algorithm 1.

3.2. Replacing-Kernel Reinforcement Learning

In Replacing-Kernel Reinforcement Learning (RKRL),

SMC is used to select good kernel hyperparameter settings.

Rather than calculating the true model likelihood p(D|θi)
in equation 4, RKRL instead weights models based on their

relative predictive likelihood, p̃(D|θi), where

log p̃(D|θi)
def
= τ−1

∑

t

rt,

and (r0, r1, . . .) is the sequence of rewards obtained by

evaluating the hyperparameter setting θi for Λ episodes.

Online Kernel Selection for Bayesian Reinforcement Learning

Table 1. Basic kernel functions and the corresponding extended parameterizations.

KERNEL BASIC EXTENDED

NORM k(x,x′) = 1 − ||x−x
′||2

α
k(x,x′) = 1 −

P

i
wi(xi − x′

i)
2

GAUSSIAN k(x,x′) = exp
h

−||x−x
′||2

σ2

i

k(x,x′) = exp
ˆ

−
P

i
wi(xi − x′

i)
2
˜

POLYNOMIAL k(x,x′) = (〈x,x′〉 + 1)d k(x,x′) = (
P

i
wixix

′
i + 1)d

TANH NORM k(x,x′) = tanh(v||x − x
′||2 − c) k(x,x′) = tanh(

P

i
wi(xi − x′

i)
2 − 1)

TANH DOT k(x,x′) = tanh(v〈x,x′〉 − c) k(x,x′) = tanh(
P

i
wixix

′
i − 1)

The parameter τ is introduced to control how strongly

model search should focus on hyperparameter settings that

yield high reward. Maximizing predictive ability directly is

preferable as it is more closely related to the goal of learn-

ing than maximizing the fit to the observed data. In tabular

methods these two approaches indeed coincide in the limit

of large data, however when using function approximation,

they may differ.

When using GPTD, the current value function estimate is

formed from the combination of the kernel parameteriza-

tion θ determining the prior covariance function and the

dictionary D̃ ⊆ D gathered incrementally from observing

state transitions. In this paper we consider two variants of

RKRL: Standard RKRL and Experience-Preserving RKRL

(EP-RKRL) that differ based on their treatment of the saved

experience D̃. In Standard RKRL, D̃ is discarded at the start

of each new kernel evaluation (making p(θ|D) stationary).

In contrast, in EP-RKRL each kernel parameterization sam-

ple θ
(t) inherits D̃1 from the sample θ

(t−1) that generated

it in equation 5.

RKRL naturally spends more time evaluating hyperparam-

eter settings that correspond to areas with high predictive

likelihood, i.e. maximizes online reward. Each sampling

step increases information about the predictive likelihood

in the sample (exploitation), while sampling from the tran-

sition kernel reduces such information (exploration).

4. Experimental Setup

Standard RKRL and EP-RKRL are compared against GP-

SARSA on three domains. This section gives the parameter

settings, kernel classes and domains used.

4.1. Parameters

In all experiments, the TD discount factor was fixed at

γ = 1.0 and ǫ-greedy action selection was employed with

ǫ = 0.01. The GP-SARSA parameters for prior noise vari-

ance (σ) and dictionary sparsity (ν) were σ = 1.0 and

1For efficiency the sufficient statistics α̃ and C̃ for sparsified
GP-SARSA are also inherited, though they can be recalculated.
The matrix of approximation coefficients At is not recalculated,
although doing so should lead to be better performance in general.

ν = 0.001. For each RKRL evaluation, GP-SARSA is run

for Λ episodes using the specified kernel parameterization.

The RKRL parameters were set to n = 25, µ = 0.01 and

τ = 0.5. Performance of RKRL is insensitive to changes

doubling Λ or µ. Higher settings of n improve the initial

performance, but reduce the total number of epochs possi-

ble given a fixed number of episodes. The setting of τ sig-

nificantly impacts performance, although the main results

of this paper are insensitive for 0.25 ≤ τ ≤ 1.0. All ker-

nels are extended to functions of both the state and action,

with actions treated as extra state variables.

4.2. Kernels

Although RKRL automates the choice of kernel hyperpa-

rameters, there is still a need to choose a set of kernels

that represents the search space for RKRL. General ker-

nel classes are derived from basic classes commonly found

in the literature (table 1) by replacing the standard inner

products and norms with weighted variants (cf. automatic

relevance determination), yielding kernel classes with sig-

nificantly more hyperparameters. Setting these hyperpa-

rameters is the model selection task; as more hyperparam-

eters are added, the model becomes more general, but the

corresponding difficulty of inferring the model parameters

increases as well.

In order to give a fair baseline GP-SARSA comparison, the

best hyperparameter setting for each basic kernel class was

derived manually for each domain using grid search. Note

that although they are common, the hyperbolic tangent ker-

nels are not positive semi-definite; however they still yield

good performance in practice (Smola & Schölkopf, 2004).

4.3. Test Domains

GP-SARSA, RKRL and EP-RKRL are compared across three

domains: Mountain Car, Ship Steering and Capture Go.

Each domain highlights a different aspect of complexity

found in RL problems: Mountain Car and Ship Steer-

ing have continuous state spaces and thus require function

approximation, Ship Steering also has a large (discrete)

action space, and Capture Go is stochastic with a high-

dimensional state space.

Online Kernel Selection for Bayesian Reinforcement Learning

4.3.1. MOUNTAIN CAR

In Mountain Car, the learning agent must drive an under-

powered car up a steep hill (Sutton & Barto, 1998). The

available actions are a ∈ {−1, 0, 1}, i.e., brake, neutral and

accelerate. The state xt = (xt, ẋt) ∈ ℜ
2 is comprised of

the position and velocity. The environment is deterministic

with state evolution governed by

xt+1 = xt + ẋt+1

ẋt+1 = ẋt + 0.001at +−0.0025 cos (3xt)

where −1.2 ≤ x ≤ 0.5 and |ẋ| ≤ 0.07. Reward is −1 for

each time step the car has not passed the goal at x = 0.5.

In all RKRL experiments with Mountain Car, Λ = 100 (100

episodes per epoch) and each episode is limited to 1000

steps to reduce computation time.

4.3.2. SHIP STEERING

In Ship Steering, the learning agent must properly orient

a sailboat to a specific heading and travel as fast as pos-

sible (White, 2007). Actions are two-dimensional rudder

position (degrees) and thrust (Newtons), at = (rt, Tt) ∈
[−90, 90]× [−1, 2]. Possible rudder settings are discretized

at 3-degree increments and thrust increments are 0.5 New-

tons, yielding 427 possible actions. The state is a 3-tuple

consisting of the heading, angular velocity and velocity

xt = (θt, θ̇t, ẋt) ∈ ℜ
3. State evolution is described by

ẋt+1 = ẋt +
1

250
(30Tt − 2ẋt − 0.03ẋt(5θt + r2

t))

θ̇t+1 = θ̇t +
ẋtrt + ẋt

1000

θt+1 = θt + 0.5(θ̇t+1 + θ̇t)

Reward at time step t is equal to ẋt if |θt| < 5 and zero

otherwise. In all RKRL experiments with Ship Steering,

Λ = 1. By comparing results in Ship Steering to Moun-

tain Car, it is possible to elucidate how the learner’s perfor-

mance depends on the size of the action space.

4.3.3. CAPTURE GO

The third domain used in this paper is Capture Go, a sim-

plified version of Go played where the first player to make a

capture wins.2 The learner plays against a fixed random op-

ponent on a 5×5 board, and receives reward of -1 for a loss

and +1 for a win. The board state xt ∈ {−1, 0, 1}25 is en-

coded as a vector where -1 entries correspond to opponent

pieces, 0 entries correspond to blank territory and 1 entries

correspond to the agent’s pieces. The agent is given knowl-

edge of afterstates, that is, knowledge of how its moves

affect the state. In all RKRL experiments using Capture Go,

2http://www.usgo.org/teach/capturegame.

html

Table 2. Asymptotic performance on Mountain car. Bold num-

bers represent statistical significance.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL -67.6 ±0.3 -149 ±5.5 -63.7 ±0.3
GAUSSIAN -230 ±16 -521 ±84 -66.9 ±0.9
TANH NORM -638 ±72 -569 ±41 -130 ±8.7
TANH DOT -482 ±37 -532 ±113 -97.0 ±2.0

Table 3. Asymptotic performance (×102) on Ship Steering.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 34.0 ±1.0 3.3 ±0.7 171 ±241
GAUSSIAN 2.5 ±0.3 5.0 ±0.6 12.9 ±9.1
TANH NORM 2.1 ±0.8 4.5 ±0.7 662 ±183
TANH DOT 2.9 ±0.6 3.0 ±0.8 19.5 ±15.3

Table 4. Asymptotic performance (% wins) on Capture Go.

KERNEL GP-SARSA RKRL EP-RKRL

NORM 90.9 ±0.2 76.1 ±4.4 94.3 ±0.5
POLYNOMIAL 89.7 ±0.4 69.5 ±1.1 92.6 ±1.3
GAUSSIAN 90.3 ±0.5 78.3 ±0.7 93.3 ±0.1
TANH NORM 55.7 ±0.2 78.7 ±3.7 94.5 ±0.6
TANH DOT 62.4 ±2.8 70.5 ±1.5 89.1 ±1.1

Λ = 1000. This domain was chosen because it has a high

dimensional state vector and stochastic dynamics.

5. Results

GP-SARSA, RKRL and EP-RKRL were applied to three RL

domains. Section 5.1 summarizes asymptotic performance

in the three domains, Section 5.2 compares asymptotic dic-

tionary sizes, Section 5.3 evaluates the learned kernel per-

formance as a stand-alone static kernel and Section 5.4 ana-

lyzes the learned kernel hyperparameter settings in Capture

Go.

5.1. Asymptotic Reward

Asymptotic performance is evaluated across three domains:

Mountain Car, Ship Steering and Capture Go. In each do-

main EP-RKRL significantly outperforms both GP-SARSA

and RKRL over most kernel classes.

5.1.1. MOUNTAIN CAR

In Mountain Car, learning trials are run for 125,000

episodes and asymptotic performance is measured as the

average reward over the last 100 episodes. EP-RKRL sig-

nificantly outperforms both GP-SARSA and RKRL across all

kernel classes asymptotically (table 2). GP-SARSA perfor-

mance using the POLYNOMIAL kernel reaches a peak at

−51.6 after 33 episodes, which is significantly better than

Online Kernel Selection for Bayesian Reinforcement Learning

EP-RKRL (p < 10−5). However, performance degrades

significantly with more episodes. This is a phenomenon

common to neural-network based function approximators

(Sutton & Barto, 1998).

The Mountain Car problem has been studied extensively

in RL literature. The best asymptotic results from the

Reinforcement Learning Library stand at −53.92 (White,

2007). NEAT+Q, a similar method for combining TD

and evolutionary algorithms, achieves −52.0 (Whiteson &

Stone, 2006). However, in the former case, different values

for ǫ and γ are used and in the latter case, the learner is

run for significantly more episodes, making direct compar-

ison difficult. Running Mountain Car using a standard tile-

coding function approximator (Sutton & Barto, 1998) with

8 tilings and the same RL parameter settings yields asymp-

totic performance of −108.9, significantly better than GP-

SARSA across all kernels except POLYNOMIAL, but signifi-

cantly worse than EP-RKRL under all kernels except TANH

NORM.

Note that EP-RKRL significantly outperforms RKRL be-

cause it discards less experience over the course of learn-

ing. Since kernels can only describe smoothness proper-

ties of the value functions, the data points themselves be-

come more important for learning; hence discarding them

at each model selection step significantly reduces perfor-

mance. This contrasts with Whiteson’s NEAT+Q work pre-

cisely because neural networks are more expressive.

5.1.2. SHIP STEERING

In Ship Steering, each learner trains for 2500 episodes

(1000 steps each) and the asymptotic performance is mea-

sured as the average reward obtained in the last 10 episodes.

EP-RKRL significantly outperforms GP-SARSA and RKRL

in all kernel classes except GAUSSIAN (table 3). In the re-

maining three cases, however, EP-RKRL outperforms both

methods by several orders of magnitude. Tile coding with 8

tilings yields asymptotic performance of 0.17, significantly

higher performance than GP-SARSA in all cases3 except for

the POLYNOMIAL kernel class (p < 10−9), but signifi-

cantly worse than EP-RKRL in all cases.

5.1.3. CAPTURE GO

In Capture Go, each learner trains for 3.75 · 106 episodes,

and asymptotic performance is measured as the average

number of wins over the last 1000 episodes. EP-RKRL out-

performs GP-SARSA and RKRL across all kernel classes

(table 4). GP-SARSA’s average reward peaks early and

declines under the TANH DOT kernel, achieving a max-

imum of 78.7% wins after 10,000 episodes, still signifi-

cantly lower than EP-RKRL (p < 10−6).
3Performance values in table 3 are scaled by a factor of 100.

Table 5. Asymptotic dictionary size for Mountain Car. Bold num-

bers indicate statistical significance.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 21.6 ±0.4 10.3 ±0.5 13.6 ±0.2
GAUSSIAN 29.6 ±0.5 7.2 ±0.6 12.5 ±0.2
TANH NORM 2.5 ±0.1 8.5 ±0.8 12.6 ±0.2
TANH DOT 7.7 ±0.7 5.1 ±0.4 11.7 ±0.4

Table 6. Asymptotic dictionary size for Ship steering.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 15.3 ±0.8 4.0 ±0.1 6.2 ±0.3
GAUSSIAN 12.3 ±0.5 15.5 ±0.3 13.7 ±0.1
TANH NORM 3.8 ±0.6 5.1 ±0.2 12.3 ±1.0
TANH DOT 7.7 ±0.8 3.2 ±0.1 5.3 ±0.2

Table 7. Asymptotic dictionary size for Capture Go.

KERNEL GP-SARSA RKRL EP-RKRL

NORM 28.5 ±0.2 5.9 ±ǫ 3.0 ±ǫ

POLYNOMIAL 147.1 ±3.3 25.2 ±1.4 40.4 ±1.4
GAUSSIAN 66.1 ±0.5 71.7 ±3.4 91.9 ±6.1
TANH NORM 62.0 ±1.1 19.6 ±0.4 17.5 ±0.7
TANH DOT 329.6 ±14.4 25.6 ±1.5 28.7 ±1.2

5.2. Dictionary Size

RKRL and GP-SARSA can be compared in terms of compu-

tational complexity by measuring the final dictionary sizes

|D̃| of each learning agent. At each decision point, the com-

putational complexity of GPTD is O(|D̃|2), arising from

matrix-vector multiplications and partitioned matrix inver-

sion (Engel, 2005). Furthermore, in practice the O(|D̃|)

cost of computing k(x)
def
= (k(x,x1), . . . , k(x,xt))

⊤ for

xi ∈ D̃ can carry a high constant overhead for complex

kernels. Thus, keeping |D̃| small is critical for online per-

formance.

The dictionary sizes for each kernel and learning algorithm

pair is given in table 5. In eight of the thirteen cases, EP-

RKRL kernels generate significantly smaller dictionaries for

ν = 0.001 than GP-SARSA kernels, and likewise in ten of

the thirteen cases RKRL generates significantly smaller dic-

tionaries. Thus in the majority of cases employing model

selection yields faster learning both in terms of episodes

and in terms of computation. However, these dictionary

sizes never differ by more than a single order of magni-

tude, with the largest difference being between RKRL and

GP-SARSA the TANH DOT kernel for Capture Go.

5.3. Generalization

How well a particular kernel hyperparameter setting found

by EP-RKRL performs depends on what training examples

it encounters during learning. Determining to what degree

Online Kernel Selection for Bayesian Reinforcement Learning

classes, e.g. the Matérn kernels, that admit many basic ker-

nels as special cases (Genton, 2002). In particular, the

tradeoff between kernel class complexity and performance

should be explored.

Second, the learned kernel parameterizations acquired un-

der one dictionary do not perform well under different dic-

tionaries, indicating that the dictionaries themselves can be

thought of as hyperparameters to be optimized. Developing

such a theory of nonparametric sparsification in RL may

lead to significantly better value function approximations.

Third, it is possible to derive a full kernel-replacing pro-

cedure where all covariance function evaluations share the

same accumulated learning, updated after every fitness

evaluation of every individual. Such an approach would

further reduce the sample complexity of RKRL, and also

makes possible the use of Bayesian Model Averaging tech-

niques within a single learning agent, i.e. averaging over an

ensemble of GP value functions weighted by their predic-

tive likelihoods (Hastie et al., 2001).

Finally, there is a deep connection between action ker-

nels and the concept of Relocatable Action Models (Leffler

et al., 2007). It may be possible to cast the latter in terms

of state-independent prior covariance functions, yielding a

powerful framework for model selection.

7. Conclusion

This paper developed RKRL, a simple online procedure for

improving the performance of Gaussian process temporal

difference learning by automatically selecting the prior co-

variance function. In several empirical trials, RKRL yielded

significantly higher asymptotic reward than the best hand-

picked parameterizations for common covariance func-

tions, even in cases where a large number of hyperparame-

ters must be adapted. Furthermore, the learned covariance

functions exhibit highly structured knowledge of the task

that would have been difficult to build in a priori without

significant knowledge of the domain. Overall these initial

results are promising, and suggest that leveraging work in

statistical model selection will significantly improve online

learning.

Acknowledgements

Thanks to the anonymous reviewers for providing very

poignant feedback on the original draft, also thanks to

Yaakov Engel for help with some implementation details

and Tobias Jung and Bryan Silverthorn for helpful discus-

sions. This work was supported in part by an NSF Graduate

Research Fellowship to the first author and NSF CAREER

award IIS-0237699.

References

Bishop, C. M. (2006). Pattern recognition and machine

learning. Springer.

Engel, Y. (2005). Algorithms and representations for rein-

forcement learning. Doctoral dissertation, Hebrew Uni-

versity.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement

learning with gaussian processes. Proc. of ICML-05 (pp.

201–208). New York, NY, USA: ACM Press.

Genton, M. G. (2002). Classes of kernels for machine

learning: a statistics perspective. Journal of Machine

Learning Research, 2, 299–312.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993).

Novel approach to nonlinear/non-gaussian bayesian state

estimation. Radar and Signal Processing, IEE Proceed-

ings F, 140, 107–113.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The

elements of statistical learning. Springer.

Jung, T., & Polani, D. (2006). Least squares svm for least

squares td learning. ECAI (pp. 499–503). IOS Press.

Leffler, B. R., Littman, M. L., & Edmunds, T. (2007).

Efficient reinforcement learning with relocatable action

models. Proc. of AAAI-07 (pp. 572–577). Menlo Park,

CA, USA: The AAAI Press.

Loth, M., Davy, M., & Preux, P. (2007). Sparse tempo-

ral difference learning using lasso. IEEE International

Symposium on Approximate Dynamic Programming and

Reinforcement Learning. Hawaii, USA.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian pro-

cesses for machine learning. Adaptive Computation and

Machine Learning. Cambridge, MA, USA: MIT Press.

Seeger, M. (2001). Covariance kernels from bayesian gen-

erative models. NIPS (pp. 905–912). MIT Press.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support

vector regression. Statistics and Computing, 14, 199–

222.

Sutton, R. S., & Barto, A. G. (1998). Introduction to rein-

forcement learning. Cambridge, MA, USA: MIT Press.

White, A. (2007). The University of Alberta Reinforcement

Learning Library. http://rlai.cs.ualberta.

ca/RLR/. Edmonton, Alberta: University of Alberta.

Whiteson, S., & Stone, P. (2006). Evolutionary function

approximation for reinforcement learning. Journal of

Machine Learning Research, 7, 877–917.

