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Successes of Reinforcement Learning

Video Pinball _] 2839%

Approaching or passing human level performance
BUT

Can take millions of episodes! People learn this MUCH faster
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People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently
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Curricula must be recreated from scratch for each new task or agent

Can we use knowledge gained about learning a curriculum for one
task to speed up learning of a curriculum for a new task?
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Sequencing as an MDP
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Sequencing as an MDP

State space S¢: All policies 7; an agent can represent
Action space A¢: Different tasks M, an agent can train on
Transition function p¢(s¢,a“): Learning task a¢ transforms an agent’s policy s¢

Reward function r¢(s¢,a¢): Cost in time steps to learn task a¢ given policy s¢
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Combining CMDPs with UVFAS

Universal Value Functions learn a VF over states and goals

30=S]

In our setting, goals are tasks R

t=0
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* For now, we restrict ourselves to navigational dlD
tasks, where tasks can be represented by their
start and end coordinates 0

2 stream architecture to create an embedding
over states and goals, then merge s g

Schaul et al. (2015)
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Experimental Results

e Evaluate whether curriculum
policies learned for one set of
tasks can generalize to a novel
set of unseen tasks

* Navigational tasks
e Start x

e Starty
* End x
* Endy

* 9900 possible tasks

e 8 + 1 source tasks
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Interpolation Results

Randomly shuffle all tasks
Present tasks one by one
Each task seen is novel,
though similar tasks might

have been seen previously

Learns to interpolate
between tasks
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Extrapolation Results

Split tasks into train/test set

Test set tasks start in top

left room and end in
bottom right
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Train on source tasks for
200 episodes, then evaluate
on test set
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* Curricula often need to be recreated i SO ,M;.»C"D o
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from scratch for each new agent or task GO R

* Showed curriculum policies can
generalize to produce curricula for

unseen tasks

* Showed that tasks can be used as goals
in a UVFA to make this possible
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* Extend to non-navigational tasks, where
a more general representation for tasks
is needed
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