Generalizing Curricula for Reinforcement Learning

Sanmit Narvekar and Peter Stone
Department of Computer Science
University of Texas at Austin
{sanmit, pstone} @cs.utexas.edu

Successes of Reinforcement Learning

Approaching or passing human level performance

BUT

Can take *millions* of episodes! People learn this <u>MUCH</u> faster

People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently

Curricula in RL

Narvekar et al. (2017)

Florensa et al. (2018)

Riedmiller et al. (2018)

Narvekar & Stone (2019)

Curricula must be recreated from scratch for each new task or agent

Can we use knowledge gained about learning a curriculum for one task to speed up learning of a curriculum for a new task?

Sequencing as an MDP

University of Texas at Austin Sanmit Narvekar 5

Sequencing as an MDP

- State space S^c : All policies π_i an agent can represent
- Action space A^c : Different tasks M_i an agent can train on
- Transition function $p^c(s^c,a^c)$: Learning task a^c transforms an agent's policy s^c
- Reward function $r^c(s^c, a^c)$: Cost in time steps to learn task a^c given policy s^c

Combining CMDPs with UVFAs

Universal Value Functions learn a VF over states and goals

$$v_{\pi}(s,g) = \mathbb{E}^{\pi}\Bigg[\sum_{t=0}^{\infty} r_g(s_t,a,s_{t+1})igg|s_0 = s\Bigg]$$

- In our setting, goals are tasks
- For now, we restrict ourselves to navigational tasks, where tasks can be represented by their start and end coordinates
- 2 stream architecture to create an embedding over states and goals, then merge

Experimental Results

- Evaluate whether curriculum policies learned for one set of tasks can generalize to a novel set of unseen tasks
- Navigational tasks
 - Start x
 - Start y
 - End x
 - End y
- 9900 possible tasks

8 + 1 source tasks

Interpolation Results

- Randomly shuffle all tasks
- Present tasks one by one
- Each task seen is novel, though similar tasks might have been seen previously
- Learns to interpolate between tasks

Extrapolation Results

- Split tasks into train/test set
- Test set tasks start in top left room and end in bottom right
- Train on source tasks for 200 episodes, then evaluate on test set
- Learns to extrapolate to unseen types of tasks

Summary

- Curricula often need to be recreated from scratch for each new agent or task
- Showed curriculum policies can generalize to produce curricula for unseen tasks
- Showed that tasks can be used as goals in a UVFA to make this possible
- Extend to non-navigational tasks, where a more general representation for tasks is needed

