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Abstract

Reinforcement learning studies the problem
of solving sequential decision making prob-
lems. Model-based methods learn an effec-
tive policy in few actions by learning a model
of the domain and simulating experience in
their models. Typical model-based methods
must visit each state at least once, which
can be infeasible in large domains. To over-
come this problem, the model learning algo-
rithm needs to generalize knowledge to un-
seen states and provide information about
the states in which it needs more experi-
ence. In this paper, we use existing super-
vised learning techniques to learn the model
of the domain. We empirically compare their
effectiveness at generalizing knowledge across
states on three different domains. Our results
indicate that tree-based models perform the
best after training on a small number of tran-
sitions, while support vector machines per-
form the best after a large number of transi-
tions.

1. Introduction

Reinforcement learning (RL) studies the problem of
finding effective solutions to sequential decision mak-
ing problems (Sutton & Barto, 1998). For many
agent-based applications, it is critical that an RL al-
gorithm be very sample efficient: that it takes very
few actions to learn an effective policy. We focus on
sample efficiency as the key evaluation criterion for
RL algorithms because in many agent-based applica-
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tions, acquiring experiences can be very expensive and
time-consuming. Two of the main approaches towards
this goal are to incorporate generalization (function
approximation) into model-free methods and to de-
velop model-based algorithms. Model-based methods
achieve high sample efficiency by learning a model of
the domain and simulating experiences in their model,
thus saving precious samples in the real world.

This paper is motivated primarily by the observation
that the world is too large to explore exhaustively.
Consider, for example, the act of identifying your fa-
vorite restaurant. One possible strategy is to visit the
restaurants in order of their distances from your house,
visiting closest ones first. In most American cities, do-
ing so would likely lead you to visit several pizza par-
lors, fast food joints, and coffee shops before getting to
many gourmet establishments. Nonetheless, provided
that you have time to try every restaurant, eventually
you will find your favorite one.

In practice, however, visiting every restaurant is infea-
sible in any reasonably large city. Rather, you must
make choices about which ones to explore, and, more
to the point, which not to explore. Deciding not to
ever visit a particular restaurant entails some risk: a
particular pizza parlor could be the restaurant that
you ultimately would prefer over any other. But at
some point, you must generalize across restaurants,
for instance based on the name, the menu, the ap-
pearance, or the existence of golden arches out front.
Skipping some restaurants enables you to expand the
radius of your search and thus to more quickly find
a restaurant that is close to your favorite, if not your
absolute favorite.

Following this example, we would like an RL agent
to do the same thing: avoid exploring some states by
generalizing knowledge it learned from other states.
To do this properly, the agent needs a mechanism that
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can generalize knowledge across states when learning a
model of the environment. It then needs a method for
driving exploration such that it explores sufficiently
to learn a correct model. One approach to solving
this problem would be to have the agent explore the
states in which the model knows it makes inaccurate
predictions.

In this paper, we explore the possibility of using exist-
ing supervised learning techniques to build generaliz-
able models of Markov Decision Processes (MDP) that
provide information on the accuracy of their predic-
tions that could be used to motivate an agent’s explo-
ration. We then empirically compare the predictions
of these models across three example domains.

2. Background

We adopted the standard Markov Decision Process for-
malism for this work (Sutton & Barto, 1998). An
MDP consists of a set of states S, a set of actions
A, a reward function R(s, a), and a transition func-
tion P (s′|s, a). In each state s ∈ S, the agent takes
an action a ∈ A. Upon taking this action, the agent
receives a reward R(s, a) and reaches a new state s′.
The new state s′ is determined from the probability
distribution P (s′|s, a).

Model-based reinforcement learning methods learn a
model of the domain and then simulate actions inside
their models. The domain can be modeled by approx-
imating its transition and reward functions. In many
domains, the discrete state s is represented by a vector
of n discrete state variables s = 〈x1, x2, ..., xn〉. The
goal of the agent is to find the policy π mapping states
to actions that maximizes the expected discounted to-
tal reward over the agent’s lifetime.

The most efficient model-based methods are able to
specifically target and explore the states in which their
models need improvement. Knows What It Knows
(KWIK) (Li et al., 2008) is a learning framework for
efficient model learning that formalizes this approach.
A learning algorithm that fits the KWIK framework
must, with high probability, make an accurate predic-
tion, or reply “I don’t know” and request a label for
that example. KWIK algorithms can be used effec-
tively in an RL setting by encouraging the agent to
explore the states for which the agent says “I don’t
know”. With this encouragement, the agent is driven
to collect the experiences necessary to learn a fully ac-
curate model. Algorithms such as r-max (Brafman &
Tennenholtz, 2001) and slf-rmax (Strehl et al., 2007)
learn models of the domain using techniques that fit
the KWIK framework.

3. Models

For our agent to behave as desired, the technique for
learning a model of the MDP should have the following
properties:

• Generalizes predictions well to unvisited states

• Has some measure of confidence in the accuracy
of its predictions (It knows what it knows)

Using a model with these properties, the agent can ex-
plore the states in which the model has low confidence,
and learn a model about the world without exploring
every state by generalizing its knowledge to unseen
states.

In this paper, we examine whether existing supervised
learning techniques can be used to learn this model.
Each model needs to predict the P (s′|s, a), R(s, a) and
its confidence in its prediction C(s, a) for each state-
action pair. The confidence is used to compare the rel-
ative prediction accuracy of the model across different
state-action pairs, but not across models. Therefore if
C(s, a) > C(t, b), then the agent is more confident in
its estimates of P (s′|s, a) and R(s, a) than it is of its
estimates of P (t′|t, b) and R(t, b). We compare against
a tabular model as well:

• Tabular

– Model Learning : For each input (s, a), the
tabular model counted the number K of tran-
sitions to each next state s′, the sum of re-
wards G from this state-action, and the num-
ber of visits T to this state-action. The pre-
dictions were then: P (s′|s, a) = K(s′)/T and
R(s, a) = G/T . This model did not per-
form any generalization; the transition and
reward functions were learned separately for
each state-action pair.

– Confidence estimation: The confidence mea-
sure C equaled the number of visits to the
state-action: T , similar to R-Max.

For the remaining techniques that we tested, we built
separate models to predict the change in each state
feature as well as the reward. We predicted the rela-
tive change in each state feature rather than the ab-
solute change because the relative change generalizes
better across states. The first n models each made a
prediction of the probabilities of the change in each
state feature: P (xr

i |s, a), while the last model pre-
dicted the reward: R(s, a). The input to each model
was a vector containing the n state features and action
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a: 〈a, s1, s2, ..., sn〉. For the first n models, the desired
output was the relative change in the state variable.
For the last model, the desired output was the reward
r.

After all the models are updated, they can be used
to predict the full model of the domain. The first n
models output probabilities for the relative change,
xr

i , of their particular state features. The predic-
tions P (xr

i |s, a) for the n state features are combined
to create a prediction of probabilities of the relative
change of the state sr = 〈xr

1
, xr

2
, ..., xr

n〉. Assuming
that each of the state variables transition indepen-
dently, the probability of the change in state P (sr|s, a)
is the product of the probabilities of each of its n state
features:

P (sr|s, a) = Πn
i=0

P (xr
i |s, a) (1)

The relative change in the state, sr, is added to the
current state s to get the next state s′. The last model
predicts reward R(s, a). The combination of the model
of the transition function and reward function make up
a complete model of the underlying MDP.

The confidence C of the model was the minimum of
the confidence reported by each of the individual mod-
els for each state feature and reward, because it is
assumed the model is only as good as its worst pre-
diction. The six models based on different supervised
learning techniques are described below.

• C4.5 decision trees

– Model Learning : The model based on C4.5
decision trees (Quinlan, 1986) built one tree
to predict the change in each state feature.
C4.5 built trees on the training samples by
making optimal splits based on information
gain ratio. It stopped making splits when the
information gain ratio from the optimal split
was below 0.001. All of the training samples
are saved in their appropriate leaf. When
classifying a state-action pair (s, a), it is clas-
sified into a leaf. Then P (s′|s, a) is the count
of transitions to s′ in the leaf divided by the
total number of instances in the leaf. Simi-
larly, the reward is the average reward of the
instances in the leaf.

– Confidence estimation: The confidence C is
the number of instances in the leaf that the
input (s, a) was classified into.

• Committee of C4.5 decision trees

– Model Learning : We built a model combining
three C4.5 decision tree models together into

a committee. Each tree model was trained
with some randomness added into the deci-
sion of which split to make - the split was
chosen from all splits with gain ratio within
0.05 of the optimal split. The model reported
the predictions P (s′|s, a) and R(s, a) of a ran-
domly selected model from the committee.

– Confidence estimation: If we define the
expected value of model x’s prediction as
Ex(s′|s, a), then the confidence C is the
maximum of Ex(s′|s, a) − Ey(s′|s, a) over all
s′, x, y.

• Random Forest of decision trees

– Model Learning : The Random
Forests (Breiman, 2001) model combined
the predictions of ten tree-based models.
The trees were the same as C4.5 decision
trees except that when making each split,
25% of the input features were eliminated.
The optimal split was selected from the
remaining input features. The predictions
from the random forest were the average of
the predictions of its ten member trees.

– Confidence estimation: The confidence mea-
sure was the same as in the tree committee.

• Neural Networks

– Model Learning : The neural network models
were trained with back-propagation (Rumel-
hart et al., 1986) with 50 hidden neurons, and
one output for each possible outcome of the
state feature. The networks were trained to
predict the probability of each outcome by
training the output matching the input tran-
sition’s outcome with a target of 1.0, while
the remaining outputs had a target of 0.0.
The outputs of the network should sum to
1.0. A final network was trained with one
output whose target was the reward for that
transition. The predictions P (s′|s, a) were
the values of the corresponding output neu-
rons and R(s, a) was the output of the reward
network.

– Confidence estimation: The confidence mea-
sure C was the negative of the absolute value
of the difference between the sum of the out-
puts and 1.0. This was used as a measure
of how much the outputs are miscalibrated,
because they should sum to 1.0.

• Support Vector Machines

– Model Learning : Multi-class Support Vector
Machines (SVMs) (Burges, 1998) were the
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sixth model. Each SVM was trained to pre-
dict the outcome and its probability using
libsvm with an RBF kernel (Chang & Lin,
2001).

– Confidence estimation: The confidence C
was the distance of the input point (s, a) to
the decision boundary in the SVM.

• K Nearest Neighbors

– Model Learning : The K nearest neigh-
bors (Cover & Hart, 1967) model saved all
sample transitions. Distances between points
were calculated as the sum of differences be-
tween all state features plus 1 if the action
was different. It made predictions by aver-
aging the outcomes and rewards of the five
nearest neighbors to the test point.

– Confidence estimation: The confidence C
was the negative of the average distance to
the five nearest points.

4. Experiments

We performed experiments comparing the seven differ-
ent models on three domains. The domains were se-
lected as examples of factored domains where it should
be possible to generalize knowledge across states. For
each experiment, some number n of (s, a, s′, r) tran-
sitions would be randomly sampled from the MDP.
The model would be trained on these n samples. We
would then record the predictions of the model for ev-
ery state-action in the MDP along with the model’s
confidence in each prediction. The model’s predictions
were then compared with the correct transitions in the
MDP.
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Figure 1. Taxi

The first domain used in the exper-
iments was the classic Taxi domain
introduced by Dietterich (Dietterich,
1998). The domain, shown in Fig-
ure 1, is a 5x5 gridworld with four
landmarks that are labeled with one
of the following colors: red, green,
blue or yellow. The agent’s state

consists of its location in the gridworld in x, y coor-
dinates, the location of the passenger (a landmark or
in the taxi), and the passenger’s destination (a land-
mark). The agent’s goal is to navigate to the pas-
senger’s location, pick the passenger up, navigate to
the passenger’s destination and drop the passenger off.
The agent has six actions that it can take. The first
four (north, south, west, east) move the agent to the
square in that respective direction with probability 0.8
and in a perpendicular direction with probability 0.1.

If the resulting direction is blocked by a wall, the agent
stays where it is. The fifth action is the pickup action,
which picks up the passenger if she is at the taxi’s lo-
cation. The sixth action is the putdown action, which
attempts to drop off the passenger. Each of the actions
incurs a reward of −1, except for unsuccessful pickup
or putdown actions, which produce a reward of −10.
The episode is terminated by a successful putdown ac-
tion, which provides a reward of +20.

R R

R R

R R

R R

Figure 2. Castle

We introduce the Castle domain as
another example of a highly struc-
tured domain where transition and
reward dynamics are easily general-
ized. It consists of a gridworld made
up of eight 5x5 rooms as shown in
Figure 2. The agent has three state
variables: its x and y coordinates rel-
ative to the room it is in, and the
id of the current room. The agent
has four actions, north, south, east,
and west, which behave the same
as in the Taxi domain. Each room
has doors in identical locations as well as a square,
marked R in the figure, that provides an additional re-
ward ranging from 0 to 7. Since the doors and reward
squares are in the same location in all the inner rooms,
it is easy to generalize their locations across rooms.

The last domain we tested on was a non-gridworld
domain we created called the Lights domain. In this
domain, there is a light level that is controlled with a
switch. The switch has three modes which vary how it
is controlled. The domain has three state features: the
mode of the light switch, the current lightlevel, and
an extra variable added to confuse the models. The
mode can be in three states: random, locked (boring),
or unlocked (interesting). The lightlevel ranges from 0
to 9 and the extra variable ranges from 0 to 24. There
are five actions: The first three change the mode to the
three different modes and the last two attempt to move
the lightlevel up or down. In the random mode, the
lightlevel is moved to a random level between 0 and
7. In the boring mode, the lightlevel stays constant.
In the interesting mode, the last two actions have an
effect: they move the lightlevel up or down. The extra
variable never changes. The agent receives a reward
of −1 if the lightlevel is below 8, a reward of 0 when
the lightlevel is 8, and a reward of 10 if the lightlevel
is 9.

5. Results

We tested each algorithm on the three domains while
varying the number of training samples from 50 to
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Figure 3. Operating characteristics of the models after
training on 50 samples in the Taxi domain
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Figure 4. Operating characteristics of the models after
training on 6400 samples in the Taxi domain

25600, doubling each time. We thresholded the con-
fidence measures of the models to classify some pre-
dictions as unknown. Predictions with confidence be-
low threshold were labeled as unknown and predictions
with confidence over the threshold were tested and la-
beled as correct or incorrect.

By varying the confidence threshold over the entire
range of confidences reported by the model, we built
plots of the operating characteristics of each model.
The data was plotted with the x axis representing the
percentage of transitions classified as unknown, which
varies from 0 to 100%. The y axis shows the percentage
of the known predictions that were classified correctly.
In these plots, we would like to find a method that
classifies all of the transitions correctly while labeling
all of them (the upper left corner of the graph). The
method that performs the best after few training sam-
ples is the apparent best candidate for our RL agent.

Figure 3 shows the operating characteristics of the
models after being trained on 50 sample transitions in
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Figure 5. Operating characteristics of the models after
training on 50 samples in the Castle domain
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Figure 6. Operating characteristics of the models after
training on 1600 samples in the Castle domain

the Taxi domain. Here the tree committee performed
the best, followed by the single tree. The accuracy of
the models improved with more samples, but the or-
dering remained roughly the same. At 200 samples,
the single tree model surpassed the tree committee as
the best model and the random forest separated itself
from the remaining models as the third best model.
The SVM started improving rapidly after 800 samples.
Next, Figure 4 shows the operating characteristics af-
ter 6400 samples, when the SVM model surpassed the
tree methods as the best model. By 25600 samples,
the SVM model was nearly perfect, classifying more
than 95% of the samples correctly at 0% unknown.

Figure 5 shows the operating characteristics of the
models on the Castle domain after 50 sample tran-
sitions. Similar to the Taxi domain, the tree-based
models performed the best, with the single tree out-
performing both the tree committee and the random
forest. Figure 6 shows the models after 1600 sam-
ples, when SVMs and the single tree performed equally
well as the best models, with many of the other ap-
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Figure 7. Operating characteristics of the models after
training on 50 samples in the Lights domain
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Figure 8. Operating characteristics of the models after
training on 12800 samples in the Lights domain

proaches close behind. From that point forward, SVM
performed the best, once again nearing perfect predic-
tions by 25600 samples.

The operating characteristics of the models after train-
ing on 50 sample transitions on the Lights domain are
shown in Figure 7. Again, the tree-based methods
performed the best, with the single tree slightly out-
performing the other two methods. By 200 samples,
the three tree-based methods were clearly much better
than the other algorithms. The methods all continued
improving, although after about 1600 samples, the tree
methods slowed down at about 80% correct at the 0%
unknown level. Next we show the models after 12800
samples (Figure 8), when all the methods performed
very well, with the exception of the neural networks.

6. Discussion

Our results showed that existing supervised learning
techniques can be used as a model learning technique
for an RL agent. Experiments across three domains

showed that the models generalize well and have suf-
ficient knowledge of what they know. While these re-
sults look promising, the ultimate test of these meth-
ods is to use them to learn models in a model-based
reinforcement learning algorithm.

In all three domains, the tree-based models performed
the best after low numbers of training samples. We
hypothesize that this occurs because the tree methods
generalize well from very small amounts of data. For
example, in a gridworld domain, the tree models can
correctly predict the outcomes for all the states in open
space (states with no walls blocking movement) after
seeing each action just once.

After enough training data is acquired, the SVM model
surpassed the tree-based approaches on the two grid-
world domains. This pattern suggests that the best
technique may be a hybrid approach that uses trees
early in learning and switches to SVMs once enough
training samples have been acquired.
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