
In International Conference on Robotics and Automation (ICRA 07),
pp. 3915-3920, Rome, April 2007.

A Comparison of Two Approaches for Vision and Self-Localization on a

Mobile Robot

Daniel Stronger and Peter Stone

Department of Computer Sciences, The University of Texas at Austin

{stronger,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/˜{stronger,pstone}

Abstract— This paper considers two approaches to the prob-
lem of vision and self-localization on a mobile robot. In the first
approach, the perceptual processing is primarily bottom-up,
with visual object recognition entirely preceding localization. In
the second, significant top-down information is incorporated,
with vision and localization being intertwined. That is, the
processing of vision is highly dependent on the robot’s estimate
of its location. The two approaches are implemented and tested
on a Sony Aibo ERS-7 robot, localizing as it walks through a
color-coded test-bed domain. This paper’s contributions are an
exposition of two different approaches to vision and localization
on a mobile robot, an empirical comparison of the two methods,
and a discussion of the relative advantages of each method.

I. INTRODUCTION

Despite evidence that perceptual processing in humans

makes use of a combination of bottom-up and top-down

processing [1], the standard approach to many problems in

robotics continues to be a primarily bottom-up approach.

That is, information flows in only one direction, from the

low-level sensory inputs towards progressively higher-level

knowledge and concepts. This discrepancy suggests analyz-

ing the relative advantages and disadvantages of incorporat-

ing top-down information in a robot’s perceptual processing.

This paper explores this issue in the context of the problem

of vision and self-localization on a mobile robot in a known,

fixed environment. Specifically, given a series of visual

images produced by a camera on-board the robot, how can

the robot effectively use those images to determine its posi-

tion and orientation (pose) over time? This paper considers

two contrasting approaches to this problem, distinguished

primarily by the extent to which localization information is

used during the vision processing. In one method, which we

call Approach A, the visual processing completely precedes

the localization computations. By contrast, in Approach B,

the robot’s localization and vision are intermixed, with vision

processing relying on the robot’s prior estimate of its pose.

While there are many possible algorithms that take either

approach, this paper presents representative examples of the

two approaches, comparing them empirically as a case study.

In Approach A, the problem of vision and localization

decomposes neatly into a vision problem followed by a

localization problem. The input to vision is the raw camera

input, and the output is a collection of identified objects and

their locations in the image. This, in turn, is the input to the

localization problem, along with the previous pose estimate.

Solving the vision problem in general, or being able to

accurately attach labels to objects in an arbitrary visual scene,

is currently far beyond the state of the art in computer vision.

However, when the visual scene is restricted to containing

a small set of familiar objects with known visual footprints,

the problem can be solved with a relatively high degree of

accuracy. The general method involves scanning each incom-

ing image to determine if any area of the image matches the

appearance of any of the objects in the environment. This

approach to object detection has been applied successfully

in many different domains [2], [3].

When matches are found, they are used to determine the

robot’s relative horizontal angle and distance to the corre-

sponding object. As the robot moves through its environment,

it must continually incorporate its noisy odometry estimates,

as well as its current landmark observations, into its running

pose estimate. One method that has been shown to be very

effective on state estimation problems with noisy observa-

tions and actions is Monte Carlo Localization (MCL) [4].

Much work has been done in MCL on vision-based robots.

This includes work in vision-based legged robots [5], [6], [7],

[8], [9] and wheeled robots [10], [11]. The two components

of Approach A, object recognition and MCL, are presented

in the following section.

Approach B is based on the idea that knowledge about

the robot’s location can be used to inform its processing of

its visual input. The location information is useful because,

in a fixed environment, knowledge of the camera pose

can be used to predict what is appearing in each image

frame. For example, the authors have previously shown

that predicting the locations of objects in the image can

dramatically speed up a robot’s visual processing [12]. In

this paper, instead of using prediction to speed up vision, the

instance of Approach B discussed uses prediction to perform

a qualitatively different kind of vision, towards the goal

of localization accuracy. Specifically, the implementation of

Approach B does not perform object recognition at all.

Instead, it represents the environment in terms of the three-

dimensional locations, orientations, and appearance of the

edges in the environment. This information is combined with

the robot’s three-dimensional camera pose estimate to yield

an expected view for each image frame. The expected view

is constructed by projecting each edge in the world model

onto the image plane.

Once the expected view is found, the camera image is

analyzed by first applying an edge detector, such as [13],

and then collecting consecutive, collinear edge points into

line segments [14]. The resulting line segments are collected

as potential matches to the edges in the expected view. For

each pair of an observed edge and an expected edge, if



they are close enough in position and orientation, they are

identified with each other. These line segment identifications

are then used to update the robot’s camera pose estimate.

This process is repeated until the camera pose stabilizes.

Between each image frame and the next, the robot’s pose

is updated in accordance with its odometry estimate. This

method is described in full detail in Section III.

The instance of Approach B described in this paper is

based in part on the object tracking algorithm presented

by Lowe [15]. More recent object tracking methods are

presented by Harris [16] and by Drummond and Cipolla [17].

In the context of mobile robot localization, Approach B has

been employed both on wheeled robots [18], [19], [20] and

on a legged robot by Gasteratos et al. [21].

Finally, there has been some previous work comparing

localization methods. Gutmann and Fox compare a number

of such methods [22], but these methods all use the same

vision process and so do not compare methods for vision and

localization taken as a whole. Lauer et al. compare examples

of Approach A and B [20], but do not provide a quantitative

comparison based on ground truth measurements. We are not

aware of any previous work that provides such a comparison.

The remainder of this paper is organized as follows. The

following two sections present the two approaches to vision

and localization on a mobile robot. Section IV presents an

experimental comparison of the two approaches implemented

on a Sony Aibo ERS-7 in a color-coded test-bed domain.

Finally, Section V discusses the relative advantages of each

method and Section VI concludes.

II. APPROACH A

Approach A can be divided into two components. Sec-

tion II-A discusses object recognition in a color-coded do-

main, and Section II-B describes Monte Carlo Localization.

A. Object Recognition

The implementation of object recognition used by Ap-

proach A for this paper was previously developed by our

research group. These algorithms are described in complete

detail by Sridharan and Stone [3] and in our technical

report [23]. They are summarized in this section.

Using object recognition for localization relies on the

environment having a set of landmarks: distinct objects at

fixed, known positions. For example, if the objects are a set

of differently colored spheres, they will appear as differently

colored solid circles in the image, and their sizes and colors

can be used to determine the robot’s distances from the

corresponding objects in its environment.

In a color-coded domain like the one used in the ex-

periments reported in this paper, a common first step of

the visual processing is color segmentation (see, e.g., [24]).

Color segmentation is carried out via a color table, a three-

dimensional array with a color label for each possible com-

bination of camera pixel color components. The color table

can be created off-line by manually labeling a large suite of

training data and using the Nearest Neighbor algorithm to

learn the best label for each color combination.

The object recognition used in the experiments reported in

this paper starts by segmenting every pixel in the image into

a color category. As all of the pixels are segmented, adjacent

pixels of the same color are combined into a bounding box, a

rectangular structure consisting of the rectangle’s coordinates

and the color inside. Heuristics are used to determine whether

boxes should be merged or removed.

Finally, object recognition itself consists of using these

bounding boxes to determine which objects are present in the

image. This process is highly dependent on the details of the

set of landmarks in the environment and their appearances.

Each object is recognized by a routine that identifies bound-

ing boxes, or combinations of bounding boxes, that indicate

the presence of the object in question. These recognition

routines are heuristically designed based on the details of

the environment. The heuristics used in Approach A have

been manually tuned for the test-bed domain [23].

Once each object in the image has been identified, it’s

identity and image location is used to inform the robot’s

knowledge of its own location in the environment. Com-

bining this information with the robot’s odometry into a

running estimate of its pose is performed by Monte Carlo

Localization, described in the following section.

B. Monte Carlo Localization

After identifying the objects present in the image, Ap-

proach A proceeds by incorporating the objects’ positions

in the image into a running estimate of the robot’s two-

dimensional body pose. MCL addresses the question of how

to represent the robot’s uncertainty in its own pose. MCL

represents the distribution as a collection of sample poses,

or particles. Each particle has a possible pose, (x, y, θ),
and a relative probability, p. The collection of particles is

maintained by a series of updates: the motion update, the

observation update, resampling, and reseeding. The remain-

der of this section describes these processes.

In the motion update, each particle’s pose is updated

according to the robot’s odometry estimate. The update is

applied to each particle in its own reference frame, causing

differently oriented particles to move in different directions.

Furthermore, to model random noise in the motion model, a

random perturbation is added to each particle’s pose.

An observation update happens for every landmark obser-

vation that is registered by vision. An observation consists of

a landmark identity and its distance and relative angle to the

robot. For each observation, every particle’s probability p is

updated according to an observation likelihood. This quantity

is the likelihood that the given observation would occur,

assuming the particle’s pose. This likelihood is computed

by predicting what the landmark’s distance and angle would

be if the particle’s pose were correct. The difference between

these predicted values and the observed values is converted

to a likelihood in accordance with a Gaussian model of the

observation noise. To temper the effects of false observations,

the change in the particle’s probability towards the computed

likelihood is limited by a constant.

After every vision frame, the particles are resampled

according to their probabilities. That is, multiple copies are



made of the highest probability particles, and the lowest ones

are deleted. The purpose of this resampling is to concentrate

the localization algorithm’s processing on the most likely

areas of the state space. The number of copies made of each

particle is roughly proportional to its probability.

Additionally, a small number of reseeding particles are

added, replacing low-probability particles, in accordance

with completely new estimates of the robot’s pose derived

from the current observations (i.e., by triangulation). This

process is based on the idea of Sensor Resetting [5]. Re-

seeding enables the robot to recover from large, unmodeled

movements, also known as the kidnapped robot problem [25].

Without reseeding, there can easily be no particles in the

area of the robot’s new actual pose, in which case it is very

difficult for the particles to recover.

One potential enhancement to reseeding, which is used

in the experiments reported in this paper, is landmark

histories [8]. A landmark history is an account of all of

the recent sightings of a given landmark. The histories are

updated in accordance with the robot’s odometry. Then, at

any time, all of the recent observations of a given landmark

can be averaged to yield a more accurate estimate of that

landmark’s relative distance and angle. These accumulated

estimates enable the robot to construct reseeding estimates,

even when there is not enough information in any one image

to triangulate a position. Because of the accumulation of

errors in the robot’s odometry, observations are removed

from the histories after enough time has passed or enough

movement has occurred.

III. APPROACH B

This section presents the implementation of Approach B

used in this paper. Recall that in this approach, the vision

and localization processes are intertwined. That is, the visual

interpretation of each image is heavily influenced by the

robot’s prior knowledge about its location, and the result

of the visual processing yields direct information about the

robot’s three-dimensional camera pose, which in turn informs

the pose of the robot itself.1

For each input image, the robot begins by segmenting

the entire image into color categories, just as in Approach

A. It further analyzes the image by performing edge de-

tection on the segmented image, and combining collinear

edge points into line segments, as discussed in Section I.

The remainder of the robot’s visual processing, however, is

intertwined with its localization. This process consists of

the robot maintaining an accurate estimate of its camera’s

three-dimensional pose. This pose is represented by a six-

dimensional state vector X , with three dimensions for the

camera’s position and three for its orientation, the pan, tilt,

and roll. Since the robot walks on a two-dimensional surface,

it also maintains its two-dimensional body pose, (x, y, θ),
along with its camera pose X .

For each camera image that is captured, the robot starts

with a prior estimate of its camera pose, X0. This pose

1To our knowledge, this method has not been previously implemented on
the Aibo.

is used to generate an expected view, as discussed in the

introduction. To construct an expected view, each edge in

the three-dimensional line model is projected onto the image

plane.2 If no part of the edge projects to within the image

rectangle, it is ignored.

If a model line does project onto a line segment in the

image rectangle, this segment is compared to each of the

detected edge segments in the image. Four matching criteria

are computed between the two line segments: length of

overlap, effective distance, angle difference, and appearance

match. The overlap length and effective distance are depicted

in Figure 1. The angle difference is the angle between the

two lines. The appearance match reflects whether or not

model information corresponding to the line matches the

features of the observed line. In a color-coded domain,

these features are the colors on either side of the line.

Certain lines represent the boundary between the known

environment and the unknown background. The side of the

line corresponding to the background is permitted to match

any color. Additionally, some edges may be surrounded by

different colors depending on the robot’s position. In these

cases, the robot’s estimated position is used to assign the

edge colors. If there is an appearance match, any positive

length of overlap, and the angle difference and effective

distance are both sufficiently low, the model line and image

line are considered to be a match.

d1

d2

Observed Line

Overlap Length

Expected Line

Fig. 1. For each pair of an expected
view line and a line detected in the image,
the robot computes a length of overlap, the
angle difference, and the effective distance,
defined as the average of d1 and d2.

All of the matches

between a model line

and an observed line

are collected into a

list of size n. The next

step is to determine

a new camera pose

X , such that when the

model lines are pro-

jected onto the image

plane assuming a camera pose of X , their distances from the

corresponding observed lines are as small as possible. That

is, considering the observed lines to be fixed, each of the

distances d1 and d2 depicted in Figure 1 can be thought of

as a function of X : Fi(X
0) = di, where i runs from 1 to 2n

and d2k−1 and d2k are the two distances for the kth match

out of n. If the fit were perfect, the following 2n equations

would all be satisfied:

Fi(X) = 0, i = 1 to 2n (1)

This system of equations is nonlinear and frequently

overdetermined. An efficient and numerically stable way of

approximating a solution to such a system is Levenberg-

Marquardt optimization [26]. This process relies on the

Jacobian, J , of F , given by Ji,j = ∂Fi/∂Xj , taken at X . The

partial derivatives can be computed either analytically [15]

or by using a direct approximation. The latter approach relies

on the approximation Ji,j ≈ (F (X +ǫej)−F (X))/ǫ, where

ej is the unit vector with all components 0 except for the

2Although this paper considers only models with line segment edges, the
methodology is easily extended to curved surfaces [15].



jth component of 1, and ǫ is a small non-zero constant.

Given these partial derivatives, Levenberg-Marquardt itera-

tively solves for p in the equation:

(JT J + λI)p = −JT F (X) (2)

where p points in the direction of the correction applied to

X from one iteration to the next and λ is a parameter that

is typically set heuristically. In the instance of Approach B

presented here, a slight variant of Levenberg-Marquardt is

used, where λ is constantly set to one and the applied ad-

justment to X is equal to p in both direction and magnitude.

Notably, the impact of the λI term is heavily dependent on

the units of the coordinate system in which X is represented.

These units are chosen manually, each one proportional to an

estimate of the variance, or average inaccuracy, of X in that

dimension.3 Furthermore, in each iteration, the line matches

are recomputed in accordance with the latest estimate of X ,

before Equation 2 is applied again.

After a camera pose X has been extracted from the image,

the robot computes its body pose, (x, y, θ), updates that

pose according to the robot’s odometry estimate, and then

estimates its camera pose again from the resulting body pose.

This final camera pose is used as the starting point, X0, for

the following frame.

The body position, (x, y), is defined as the center of the

robot’s body, and the orientation, θ, represents the direction

the body is pointing. The relationship between the body

pose and the camera pose is represented by a homogeneous

transformation matrix from the robot’s camera-centered co-

ordinate system to its body-centered coordinate system. This

transformation, T cam
body , is a function of the robot’s body tilt

and roll, and any joint angles connecting the camera to the

head. The transformation matrix T cam
body can be computed as

the product of a series of DH-transformations over the joints

from the body to the camera, as described by Schilling [27].

The translational component of T cam
body , in particular the

horizontal components, are used to determine the horizontal

displacement between the camera and body centers. This

displacement is subtracted from the horizontal translational

components of the camera pose, X , to yield the robot’s body

position. A horizontal overall pan angle is also extracted from

the transformation matrix and subtracted from the camera

pose pan angle to yield the body orientation. After the

odometry update is applied to the body pose, the entire

transformation matrix is used to compute the new starting

estimate for the camera pose, X0. This process is performed

in between every two consecutive image frames. Pseudocode

for all of Approach B is presented in Algorithm 1. The

algorithm is executed once for each incoming camera image.

Approach B is depicted in Figure 2. The left side shows

the edges in the expected view. After Levenberg-Marquardt

has been applied, the robot’s new camera pose estimate

is updated so that the projected lines match the observed

ones (right). A video of the robot’s point of view with

superimposed model lines is available online.4

3Lowe [15] uses “stabilizing equations” that have the same effect.
4www.cs.utexas.edu/˜AustinVilla/?p=research/

model-based_vision

IV. EXPERIMENTAL RESULTS

A. Test-Bed Domain

The methods described in this paper are implemented on

a Sony Aibo ERS-7.5 The robot is roughly 280mm tall and

320mm long. It has 20 degrees of freedom: three in each

of four legs, three in the neck, and five more in its ears,

mouth, and tail. At the tip of its nose there is a CMOS

color camera that captures images at 30 frames per second

in YCbCr format. The images are 208 × 160 pixels giving

the robot a field of view of 56.9◦ horizontally and 45.2◦

vertically. The robot’s processing is performed entirely on-

board on a 576 MHz processor. Notably, legged robots, while

generally more robust than wheeled robots to locomotion

in various terrains [28], [29], pose an additional challenge

for vision, as the jagged motion caused by walking leads to

unusually sharp motion in the camera image.

Algorithm 1 The expectation-based method.

Given: X0, camera image, 3-D line model, numIterations
Perform edge detection on camera image
Collect consecutive, collinear edge pixels into line segments
for k = 1 to numIterations do

equationList← ∅
for each model line do

Project line onto image plane, for camera pose X0.
if part of the line projects onto the image rectangle then

for each observed line do
if observed and model lines match then

Compute Jacobian of distances.
Add two equations to equationList,
one for each distance.

end if
end for

end if
end for
X ← p from Equation 2.
X0
← X

end for
Compute transformation matrix, T cam

body .
Compute body pose, (x, y, θ) from final X.
Update body pose according to robot odometry.

Compute next starting camera pose, X0, from body pose.

Fig. 2. Left: The white lines depict the expected view. Right: The final
line placements.

The robot’s environment is a color-coded rectangular field

measuring 4.4×2.9 meters, whose components are geometri-

cal shapes: two colored goals composed of rectangular panes,

four color-coded cylindrical beacons, and inclined walls

5http://www.aibo.com



surrounding the field. Additionally, the field is surrounded

by an inclined border that is 10 cm high, and there are 2.5
cm thick lines on the field surface. There are five discrete

field colors total. The robot and its environment are depicted

in Figure 3.

Fig. 3. The Aibo robot and its environment.
Noise in the robot’s joints and a relatively
low resolution camera make accurate local-
ization a difficult task.

Because this

domain has been

used in the four-

legged league of the

annual RoboCup

robot soccer

competitions [30],

many researchers

have addressed the

problem of vision

and localization on

the Aibo robot on

this field. However,

all the approaches we are aware of have been in the spirit

of Approach A.

One prominent feature of this test-bed domain is the

presence of lines on the field. From the point of view of

Approach A, these lines can provide useful information for

localization, but they do not form useful bounding boxes,

so they are recognized by a separate process. Following the

approach of Rofer and Jungel [7], we examine a series of

vertical scan lines, testing for green/white transitions. These

transitions represent field line pixels, and nearby collinear

line pixels are collected into image lines. Intersections of

observed lines can then be used as observation inputs to

MCL. Full details of our implementation of Approach A are

presented in [23].

The field lines also affect the way Approach B is imple-

mented. They are represented in the environment model as

pairs of parallel lines, 2.5 cm apart. If the robot is too far

away from these lines, they become invisible because they

are too thin. In these cases, it is dangerous to include them

in the expected view, because they are more likely to match

incorrect lines than correct lines. Therefore, while computing

the expected view, the robot computes the expected width of

these field lines. If it is lower than a threshold width (the

value used is four pixels), it is not included in the expected

view.

One other aspect of Approach B that is dependent on

the robotic platform is the computation of the coordinate

transform from the robot’s body to its camera. This depends

on the head and neck joint angles, as well as the body’s

tilt, roll, and height off the ground. For the experiments

reported in this paper, body tilt, roll, and height are relatively

constant over the range of walking motions performed. They

are therefore treated as constants and estimated manually

beforehand.

B. Results

Both of the approaches to the vision and localization prob-

lem described above have been implemented and evaluated in

our test-bed domain. The goal of both approaches is for the

robot to be able to move freely throughout its environment

and continually maintain an accurate estimate of its two-

dimensional pose: (x, y, θ). This ability is tested by having

the robot slowly walk to a series of poses in its environment.

For each pose, the robot walks towards it, and stops when its

location estimate is within a threshold distance (2 cm) of the

desired position. It then rotates in place, until its orientation

estimate is within a threshold distance (10◦) of its intended

orientation. It then stops moving and suspends vision and

localization processing so that its position and orientation

accuracy can be measured manually. These measurements

are performed with a tape measure and a protractor, and have

an estimated average measurement error of one centimeter

and one degree respectively.

As the robot walks from each pose to the next, its head

scans from left to right, to increase the diversity of visual

information the robot receives over time. Preliminary testing

revealed that each of the two approaches worked best at a

different head scan speed, with Approach B working best

with a significantly slower head scan. Approach A is better

suited to a faster head scan, because if the head moves too

slowly the landmark histories would grow stale before they

could be used for reseeding. On the other hand, the Approach

B performs better with the slower head scan, because it is less

prone to error when consecutive image frames are as similar

to each other as possible. Each approach was evaluated with

the head scan speed at which it worked the best. Aside from

this difference, the testing scenario is identical between the

two vision and localization methods.

B
L

U
E

 G
O

A
L

Y
E

L
L

O
W

 G
O

A
L

10

13

5

4

3

6

14

11

8 12

9
2

17

Fig. 4. The series of poses traversed by
the robot.

In each trial, the

robot attempts to visit

a pre-set series of 14
poses on the field.

Each trial begins with

the robot’s pose es-

timate being as ac-

curate possible. The

poses visited are de-

picted in Figure 4. The sequence of poses is designed to

cover a wide range of difficulties for vision and localization.

The robot’s position error and angle error are recorded

for each pose attempted. The average position and angle

errors for a given trial are considered as one data point.

Each approach was evaluated over ten trials. The means and

standard deviations of the average errors are presented in

Table I.

Method Approach A Approach B

Position Error 11.81± 0.82 cm 7.55± 0.63 cm

Angle Error 6.49± 1.61 degrees 7.18± 2.22 degrees

TABLE I

EXPERIMENTAL RESULTS.

The position errors attained by Approach A were, on

average, 56% more than those attained by Approach B. This

difference is statistically significant in a one-tailed t-test,

with a p-value of less than 10−9. Although Approach A

achieved a lower average angle error, this difference was not



statistically significant, with a p-value of 0.44 for a two-

tailed t-test. Additionally, both approaches were similarly

computationally efficient, running in real time on-board the

robot at frame rate (30 Hz), along with the robot’s motion

processing.
V. DISCUSSION

Of the two approaches to vision and localization presented

in this paper, each has a number of relative advantages

and disadvantages. The experimental results presented in the

previous section demonstrate that, in the test-bed domain

used in this paper, a representative instance of Approach B

achieves more accurate localization than one of Approach A.

This result suggests that incorporating top-down information

in a robot’s perceptual processing can be used to yield an

advantage in certain robotic settings.

However, one factor that was not evaluated above was

the robustness of the two approaches. For example, if a

robot is suddenly moved to a new location without its

knowledge, how quickly can the robot recover from its

sudden localization inaccuracy? The instance of Approach

A presented in this paper has a built-in measure designed to

enable a smooth recovery from such an occurrence, namely

the reseeding particles described in Section II-B. On the

other hand, the implementation of Approach B has no such

mechanism, and preliminary experiments showed it to be

quite brittle to large unmodeled movements. Lauer et al.

achieve robustness to such movements in Approach B by

periodically testing a number of random poses to search for

matches [20].

Furthermore, both methods rely on complete prior knowl-

edge of the fixed geometrical structure of the environment.

In Approach A, this information was represented as a set

of discrete objects and lines, each with its own location,

appearance, and complex set of heuristics needed to properly

recognize it. In Approach B, knowledge of the environment

was encoded as a set of three-dimensional line segments with

color labels. In considering transferring either approach to

new domains, one important question is how easy it would

be for human programmers to codify the prior knowledge

needed by the robot in those domains. The authors’ intuition

is that the object recognition heuristics needed by Approach

A are often more difficult to specify than the CAD-type

model information used by Approach B. However, in a novel,

complex environment, either one could be a daunting task.

VI. CONCLUSION

This paper presents and compares two approaches to

the problem of vision and self-localization on a mobile

robot. In Approach A, processing is strictly bottom-up, with

visual object recognition entirely preceding localization. In

Approach B, the two processes are intertwined, with the

processing of vision being highly dependent on the robot’s

estimate of its location. The two approaches are implemented

and tested on a Sony Aibo ERS-7 robot, localizing as it

walks through a test-bed domain. Each method’s localization

accuracy was measured over a series of trials. In these tests,

Approach B attained a significantly lower average distance

error than Approach A, and no significant difference was

found in the methods’ average orientation errors. These

differences represent just one of the many relative benefits

and drawbacks of the two approaches, which are discussed

in Section V.

Looking forwards, it would be desirable for a robot

to learn the relevant parameters of its novel environment

autonomously, in analogy with the success in Simultaneous

Localization And Mapping (SLAM) on wheeled robots with

laser range finders. For robots whose primary sensors are

cameras, one possibility for future work involves combining

the techniques of Approach B with those used in vision-

based SLAM, e.g. [31], [32], [33]. Further research towards

combining the relative advantages of different methods will

continue to bring the field closer to the long-term goal of

fully autonomous robotic exploration of novel environments.

ACKNOWLEDGMENTS

This research is supported in part by NSF CAREER award IIS-

0237699 and ONR YIP award N00014-04-1-0545. Thanks also

to the UT Austin Villa team, and especially Mohan Sridharan,

for developing the software base used in this paper and our

implementation of approach A.

REFERENCES

[1] J. Wolfe, S. Butcher, C. Lee, and M. Hyle, “Changing your mind: On the contributions of top-down and bottom-

up guidance in visual search for feature singletons,” Journal of Experimental Psychology: Human Perception

and Performance, vol. 29, no. 2, pp. 483–502, 2003.

[2] R. Nelson and A. Selinger, “Large-scale tests of a keyed, appearance-based 3-d object recognition system,”

Vision Research, Special issue on computational vision, vol. 38, no. 15–16, 1998.

[3] M. Sridharan and P. Stone, “Real-time vision on a mobile robot platform,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, August 2005.

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), 1999.

[5] S. Lenser and M. Veloso, “Sensor resetting localization for poorly modelled mobile robots,” in The International

Conference on Robotics and Automation, 2000.

[6] C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,” in Proceedings of the International

Confrerence on Intelligent Robots and Systems (IROS), 2004.

[7] T. Rofer and M. Jungel, “Vision-based fast and reactive monte-carlo localization,” in The IEEE International

Conference on Robotics and Automation, 2003.

[8] M. Sridharan, G. Kuhlmann, and P. Stone, “Practical vision-based monte carlo localization on a legged robot,”

in IEEE International Conference on Robotics and Automation, April 2005.

[9] J. Hoffman, M. Spranger, D. Gohring, and M. Jungel, “Making use of what you don’t see: negative information

in Markov localization,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems,

2006.

[10] C. Stachniss, W. Burgard, and S. Behnke, “Metric localiztion with scale-invariant visual features using a single

perspective camera,” in Proceedings of the European Robotics Symposium (EUROS), 2006.

[11] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization for mobile robots,” Journal of

Artificial Intelligence, 2001.

[12] D. Stronger and P. Stone, “Selective visual attention for object detection on a legged robot,” in RoboCup-2006

Robot Soccer World Cup X, 2007.

[13] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 8, no. 6, pp. 679–698, 1986.

[14] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Upper Saddle River, New Jersey: Prentice

Hall, 2003.

[15] D. Lowe, “Fitting parameterized three-dimensional models to images,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. PAMI-13, no. 5, pp. 441–450, 1991.

[16] C. Harris, Tracking with Rigid Models. MIT Press, 1992.

[17] T. Drummond and R. Cipolla, “Real-time visual tracking of complex structures,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 24, no. 7, pp. 932–946, 2002.

[18] A. Kosaka and J. Pan, “Purdue experiments in model-based vision for hallway navigation,” in Proceedings of

Workshop on Vision for Robots in IROS’95, 1995.

[19] T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig, “Cooperative probabilistic state estimation for vision-

based autonomous mobile robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 670–684,

Oct. 2002.

[20] M. Lauer, S. Lange, and M. Riedmiller, “Calculating the perfect match: an efficient and accurate approach for

robot self-localization,” in RoboCup Symposium 2005, 2005.

[21] A. Gasteratos, C. Beltran, G. Metta, and G. Sandini, “PRONTO: a system for mobile robot navigation via

CAD-model guidance,” vol. 26, pp. 17–26, 2002.

[22] J.-S. Gutmann and D. Fox, “An experimental comparison of localization methods continued,” in Proceedings of

Intelligent Robots and Systems (IROS), October 2002.

[23] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann, M. Sridharan, and D. Stronger, “The UT

Austin Villa 2004 RoboCup four-legged team: Coming of age,” The University of Texas at Austin, Department

of Computer Sciences, AI Laboratory, Tech. Rep. UT-AI-TR-04-313, October 2004.

[24] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image segmentation for interactive robots,” in

The International Conference on Intelligent Robots and Systems (IROS), 2000.

[25] S. Engelson and D. McDermott, “Error correction in mobile robot map learning,” in Proceedings of the IEEE

International Conference of Robotics and Automation, May 1992, pp. 2555–2560.

[26] P. Gill, W. Murray, and M. Wright, Practical Optimization. Academic Press, 1981.

[27] R. Schilling, Fundamentals of Robotics: Analysis and Control. Prentice Hall, 2000.

[28] D. Wettergreen and C. Thorpe, “Developing planning and reactive control for a hexapod robot,” in Proceedings

of ICRA ’96, vol. 3, 1996, pp. 2718–2723.

[29] U. Saranli, M. Buehler, and D. Koditschek, “RHex: A simple and highly mobile hexapod robot,” The

International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631, 2001.

[30] P. Stone, T. Balch, and G. Kraetzschmar, Eds., RoboCup-2000: Robot Soccer World Cup IV, ser. Lecture Notes

in Artificial Intelligence. Berlin: Springer Verlag, 2001, vol. 2019.

[31] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping with uncertainty using scale-invariant

visual landmarks,” Int. J. Robotics Research, vol. 21, no. 8, pp. 735–738, 2002.

[32] A. J. Davison, “Real-time simultaneous localisation and mapping with a single camera,” in Proceedings of the

Ninth IEEE International Conference on Computer Vision, Oct. 2003.

[33] R. Sim, P. Elinas, M. Griffin, and J. Little, “Vision-based SLAM using the Rao-Blackwellised particle filter,”

in IJCAI Workshop on Reasoning with Uncertainty in Robotics, Edinburgh, Scotland, 2005.


