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Abstract— In order for a mobile robot to accurately interpret ~ means of the corresponding observation distributions.i-Add
its sensations and predict the effects of its actions, it must tjonally, two variance parameters are learned: one forethos
have accurate models of its sensors and actuators. These yistance-based observations, and another for the observed
models are typically tuned manually, a brittle and laborious hori | | he land k. For th . del
process. Autonomous model learning is a promising alternative orizontal angle t_o t _e anamark. _Or the action model, a
to manual calibration, but previous work has assumed the table-based function is learned, with each of a set/®f
presence of an accurate action or sensor model in order to actions being mapped to the robot’s corresponding actual
train the other model. This paper presents an adaptation of the velocities (forward, sideways, and turning). These result
Expectation-Maximization (EM) algorithm to enable a mobile .14 aqditionally be interpolated for intermediate aatip
robot to learn both its action and sensor model functions, . . -
starting without an accurate version of either. The resulting as in [1], [2]. Notably, there are many different possble
algorithm is validated experimentally both on a Sony Aibo Sets of parameters that could be learned. The derivations of
ERS-7 robot and in simulation. the action and sensor learning procedures in Section IIl are
specific to this one, but the principles used could be applied
to learning a wide range of parameter sets, including ggttin

As an autonomous robot moves through its environmeniith a continuous range of actions.
it uses its sensors to gain information about the state of The above functions and variances are learned within the
the world, and it takes actions to influence that state. Iframeworks of Kalman Filtering [3] and the Expectation-
order to be effective, however, the robot must have accuratgaximization (EM) algorithm [4]. The adaptation of the
modelsof its sensors and actions, so that it can correctl-step to the problem described above is achieved by an
interpret its raw observations and predict the changes thettended Kalman filter and smoother (EKFS) [5], described
are caused by its actions. This paper considers the situatiim Section 1l. However, the adaptation of the M-step in
of a mobile robot in a fixed, known environment, where theSection 11l is a contribution of this paper. The resulting
robot’s pose (location and orientation) is the relevantlgvor technique has been empirically validated both on a Sony
state. In this context, its action model describes the rebotAibo ERS-7 and in simulation. These results are described
relative movements as a function of the action commanigh Section IV. Section V discusses previous related work and
being executed. The sensor model is a function from th@ection VI discusses future work and concludes.
robot’s pose to a probabilistic distribution of its obséiwas, Il. BACKGROUND

such as from a laser range finder or a camera. A mobile robot can be modeled by a hidden Markov model

One way to construct a robot's action and sensor mode(givm) with a continuous state space. The method presented
is through manual calibration. However, this process can B this paper applies the EM algorithm to such an HMM
laborious, inaccurate, and in particular, brittle, due e t 5 |earn the robot's action and sensor models, which are
propensity of the correct models to change over time frofgarameterized functions describing a nonlinear dynamical
robot wear or environmental changes. This paper prese@gfﬁtem. This section presents notation (adapted from that
a method for a robot to autonomously learn its action angseq in [6] and [7]) for discussing HMMs in a continuous
sensor models, starting without an accurate model forreithqjomain’ the EM algorithm, and the EKFS.

In this way, it contrasts from previous work that relies on a¢ time steps0 through 7, the robot's state vector is
the presence of either an accurate action or sensor model;to pose,s; = (z4,y:,0;) . At time stepsl through T,
learn the other model. Specifically, assuming the preseng@ ophservation vecton, is recorded by the robot. The
of a control policy that explores the full range of actiongyarameters of the HMM consist of transition probability
and states, the algorithm is able to learn an accurate actigRripution functionsa(ss, s;+1) = p(sei1|se, c(t)), where
and sensor model for a mobile robot starting with no actiog(t) is the action command being executed at titrfethe
model and a very poor sensor model. A robot’s ability tQmission probabilitiesh(s;, 0;) = p(os|s;), and the initial
learn accurate models starting with such little knowledgje istate distribution:t(s) = p(se). We denote the complete
a key factor in its overall autonomy and versatility. sequence of observations; through oy, as O, and the

The robot's action and sensor models are leamned @mplete set of HMM parameters as= (a,b, 7). Since
probabilistic functions. For the sensor model, a polyndmia

function is learned that maps landmark distances to thelThe dependence af on c(t) is omitted for the sake of brevity.

I. INTRODUCTION



the HMM represents the robot’s state over time, the function;_,. Denoting the linearized sensation function @as=
a can be thought of as a model of the robot’s actions, whilds + &k gives us thato, ~ N(Jpai—1 + k, JZa,t,lJT).
b is a model of its sensations. The goal of this work is ta'he likelihood of o; according to this distribution can be
find the parametera with the maximum overall likelihood multiplied into a running overall parameter likelihood ag t
given the observations, namalyO|)). This maximization is successive values af; are computed.
achieved by the EM algorithm, where the hidden variables I1l. THE M-STEP
are the HMM states over time (the robot’'s pose), and the We wish to determine the value of that maximizes the
parameters being estimated are the HMM paramefers,  expected log likelihood of the observation sequence. Vigitin

EM alternates between two steps, expectation (E) ante total sequence of states.&s- (so,...,sr) and usingd
maximization (M). In the E-step, a probability distributio to refer to probabilities according to the E-step distriduit
over the hidden variables is determined assuming the durreis expected log likelihood is given by:
parameter estimate is correct. The M-step uses the hidden
variable distribution computed in the E-step to compute a Eslogp(OIN)]
new set of parameter estimates. The new parameters ate/ p(S)logp(S,O|A)dS
defined to be those that maximize the expected log likelihood ** -
of the observed data (in our case the robot's observations), [ j(s)10g [ﬂ(SO) Hp(5t|3t—1:)\)p(ot|5tv)\):| ds
where the expectation is taken over the probability digtrib /s =
tion computed in the E-step. The adaptation of the M-step ,
to learning the robot’s action and sensor models, presented/, *%) {log”(s()) +;(l°gp(s”s“1”\) Hogp(otst”\))} a5
in Section lll, is a primary contribution of this paper. T

The goal of the E-step is to compute tle posteriori :/ f)(S)logTr(so)dS—l-Z/f)(S) log p(st|s¢—1,a)dS
probability distribution ofs at each time step, denoted as =175

. . . . . T

e (8¢), gwenO and\. Iq thl§ paper, all .state dIS'[.I’IbUtIOI’IS are Z/ 5(S) log p(ot|s1,b) dS @)
approximated as multivariate Gaussians. In linear systems = /s
the E-step then amounts to an optimal smoother such as th
forward-backward smoother [8]. In the nonlinear case nigki

a first-order approxmatmn results in an EKFS. . components of\: w, a, and b, respectively. Maximizing
The EKF.S a_llgonthm can be understood in terM3his expression with respect td consists of maximizing

of the distributions a(s;) = p(,ol’ o005 A)and a0 term with respect to the corresponding component. The

Bi(se) = p(0r41, ... or|se, V). Bayes' Law yieldsni(s:) = gisyipution 7 that maximizes the first term is equal to the

at(st)ﬁt(st)/p((?‘)‘): The d|str|put|on3c_g and 3 are repre- yigyipy tion of so according top, namely~y(s), as in [6].

sented as multivariate Gaussians, with means denoted ximizing the other two terms corresponds to learning the

Fovt and.uﬁ’t and_ covariance matrices denoted ¥y and  5.tion and sensor model, discussed in the next two sections.
Y g,¢. This factorization ofy, is useful because; and j;

can both be computed through an extended Kalman filtéy- Learning the Action Model _ .
as follows [9]. The values ofi, ; and %, , are computed  For a mobile robot, the action model is a function from
by running the standard EKF forwards in time, starting witfction commands to combinations of forwards, sideways, and
of the initial distributionr(s). Similarly, the values ofi, Cause arelative displacemenbetweens; and s;.. This
and $5, are computed by running the EKBackwards in displacement is given byi(—0;)(si+1 — s:), where R
time, starting with S5 7 = oco. After a and 3 have been represents a counterclockwise rotation around thexis
' reference frame of,. Additionally, the relative displacement
fy,t =tast + Dot (Bayt +Za.6) " (1.t — fayt) (1) is assumed to be normally distributed, so that,1|s;) ~
Sy =255+ S50 7! @  N(se+R(0:) e, R(et)zc(t)R(et)T)v whereg. ;) andX, ;)
are the mean and covariance of the relative displacement

The computed means and variances gf f;, v, are Of the action taken at time, 20(75)- In this paper, a fixed,
used in the following section as the inputs to the M-stegeonstant value is used fat.().” The action model function,
Additionally, to learn an action model the joint distritani @, i therefore determined by the mean relative displacement
over two consecutive time steps is neede;, s.+1|0, \).  He(t)s for each aptmm:(_t). A closed form expression for these
This distribution is discussed further in Section III-A. displacements is derived as follows.

Fina”y, it is also valuable to be able to Compqﬁ@‘)\), The maximum likelihood action model is the one that
the overall likelihood of), which is what we are trying to maximizes the second term in (3). For each actibnlet
maximize. This likelihood is the product of the likelihood @(4) = {t : c(t) = A}, the set of time steps at which
of each observation, given all of the ones that preceded it., . )

h h observation likelihood can be computed from t The_ vall_Je used foE _corresponded'to standard de\_/la_tlonslofmm_ in
Eac SF'C . 0 ) " ) p ’ hfé\ch direction and.1 radians, at each time step. In preliminary experiments,
state distribution given the preceding observations, m@methe algorithm was robust to these values being at least ddui halved.

t=1

(S

®his expression decomposes the expected log likelihood
into a sum of three terms that are functions of the three



action A occurred. Then, the portion of the second term i

(3) affected by actior is given by:

Z p(S)logp(st|si—1,a)dS
teQ(A)’ S
= Z ﬁ(stflaSt)logp(sﬂs,g,l,a)dstildst
teQ(A) Y st—1:5t
= Z / D(si—1,5¢t)log fa(d(si—1,st)) dsi—1dst
teQ(A) Y St—1:5t
=X [ bensie-
teQ(A)’st—1:5t

1 —
i(d(stfl, st) = pa) X4 (d(se—1,80) — pa)ldsi—1dse

where d(s;—1,s;) is the relative displacement,
R(—6i—1)(st — si—1), fa is the probability density
function (pdf) of the normal distribution with mean 4

and covariance® 4, and C is a constant with respect to

1a. Completing the M-step requires finding the value o

w1 that maximizes this expressiop;;. This value is the

one that minimizes the sum of the weighted integral o?y ore ~ N(f(dist(s:))

(d(si—1,8t) — pa) S, (d(s¢—1,8:) — pa), where the
weights are the(s;_1, s;) distributions. Taking the gradient
with respect tou 4 and setting it equal to zero, we get tha
wh is the correspondingly weighted meandifs;_1, s;):
ZteQ(A) fst_l,st P(st—1,8¢)d(st—1,5¢)

ZtEQ(A) fst—last P(st—1,5t)

/ Blse_1,50)d(se_1, 5)
St—1,St

(©)

Wi =

1
Q4]

®)
teQ(A)
The expressiorp(s;—1,s;) represents the probability of
going through the two states,_; and s; at those times,
according to the E-step distribution ovér To complete
the computation of:*,, note that the integral in (5) is the
expected value ofi(s;_1, s;) with respect top.

In order to compute this expected value,
use the factorization [6] of p(si—1,5:/0,\) as
av—1(8t-1)b(st, 01) Be(se)alsi—1, s¢) /D(O[N), where

A = (a,b,7) are the parameter values from the previous

iteration of the EM algorithm. This factorization is usefu
becausea;_1(s;—1) is already known from the forwards
sweep of the forward-backward smoother (see Section |
and B(St,ot)ﬁt(st) is a normal distribution overs; that

was computed in the backwards sweep (in between t

observation and time updates). We denote the mean and

variance ofB(st7ot)ﬁt(st) asus andXs and store them for
eacht as they are computed.

Denoting the  product ou_1(st—1)b(st,0t)0:(st)
as  fa,s(si-1,5:), we get that p(si—1,s:) x
fas(si—1,s¢)a(s¢—1, ). When the functionf, s is thought
of as a probability distribution over thes-fdimensional)

T
1
we = /—y st) |C— = log0202+<
;St t(t)[ 2< 103

n Once we compute the expected value and variance of
d(si—1, s¢) with respect tof, s, this distribution is multiplied

by a(si_1,s:), which is equal tofa(d(s;—1,s:)), Where

fa is specified by the mean and variance of actidnin

the previous iteration of EMji4 and 3 4. If the first-order
approximation ofd is Ls;—;; + m, then the mean and
variance ofd(s;_1, s;) with respect tcfa,g areLy, s+m and

LY, sLT respectively. Multiplying this distribution byf 4

and substituting the resulting mean into Equation 5 yiélds:

1 e
> a+3a(Sa+LSa L") (Lpta,s +m—fia)
1R, Gl

Averaging over thdQ(A)| relevant frames yields a value
for p*, the new estimate fog 4.

Wa =

B. Learning a Sensor Model

The robot’s observations correspond to sightings of the
landmarks in the environment, which are assumed to be
yisually distinguishable. Each observation veatphas two
componentsy; ; ando, ;. These are assumed to be generated
,0%) and oo ~ N(angs:),o3),
where the functions digt) and angs) represent the distance
and horizontal angle respectively from a robot at state
tthe landmark that is observed. The functipmaps the actual
landmark distance onto the mean of the distributiondgr
while there is no such function for the angle; the mean-of
is the angle itself. The sensor model that is learned cansist
of the functionf plus the variances? ando3.

To learn this sensor model, we maximize the third term
in (3) with respect to overall transition distributidn

T
3 / 5(S) log p(o¢st, b) dS
=175

T
:Z/ ¢ (st) log b(st, 01) ds¢
t=1" 5t
f(dist(s;)) — ol,t)Q
g1
ang(st) — 02t
o2

2
e
! Maximizing the above expression is equivalent to mini-
Isnizing both

f(dist(s¢)

i/st Ye(st) <10g0% + ( ) _Ol’t>2> dsy  (7)

and XT:/ ve(st) <1oga§ +( )2> dst
t=1"st

Minimizing the first expression with respect foamounts
to minimizing 3=, [, v:(s¢)(f(dist(s;)) — 01,)*. The func-
tion f is represented as a polynomial and therefore is learned
via weighted polynomial regression, where thedistribu-

he

o1

anQISt) — 02t
a2

®)

joint state (s;—1,s;), we denote its mean and variance asions act as a weighting function. Instead of attempting to

Ha,s @aNd X, 5. These quantities can be expressed as:

Hays = ( ) and X5 = ( ) (6)

0
st

Eo¢,t71
0

Mo, t—1
Hs,t

analytically compute the regression weighted by a series of
~¢'s, we approximate this weighting by drawing a number

3The expression for the mean of the product of two normal distiohs
also appears in Equation 1.



of samples from each distribution, and fit the polynomial the robot to spin in place. This parameterization is based on
to the resulting(dist(s), o1) pairs. the one used in [2].

The value ofs; that minimizes (7) can be determined As the robot walked, it scanned its head from side to side
by differentiating with respect te; and setting the result to see as many beacons as possible. The two components of
equal to0. The result iss? = >, I, ve(s¢)(f(dist(s;)) — each observation are derived from the robot's camera image.
01.4)%, where f is the optimal value off computed above The first component is the height of the beacon in pixels in
(which does not depend om;). Similarly, minimizing (8) the image, as _shown in Figure 1b). The qther component is
with respect tar, yieldso2 = 3, [. vi(s;)(angs;)—os.,)?. the robot’s estimate of the landmark’s horizontal anglenfro
In both cases, the integral is again approximated by sampliihe center of its body. This angle depends on the robot's head
from the~, distributions. In the experiments reported in thig?@n angle and the position of the landmark in the image. To
paper, because of the large number of frames in the data s@fenuate the effect of false positives in object recogniti
only one sample was taken from each frame. The degree Qtlier observations were pruned in the first iteration of EM

the polynomial used for regression was three. by discarding observations that represented too large of an
innovation in the forward Kalman filter. The robot’s acting
IV. EMPIRICAL VALIDATION and sensing abilities were developed as part of a previous

The technique described in this paper was validated botiroject, and they are described fully in a technical repbdy.[
on a physical mobile robot and in simulation. In both cases
accurate sensor and action models were learned, startihg W
no action model and a very poor sensor model. On the re
robot, the learned translational velocities were not eataid
due to the difficulty in measuring the ground truth for thes
velocities. All of the other aspects of the action and sens¢}
models were measured and compared to the learned mod
In simulation, ground truth is known, and all components of
the learned models were evaluated.

a)

Fig. 1. a) The Sony Aibo ERS-7 in its field of operation. Thediararks
A. Real Robot Results used are the four distinct color-coded cylindrical beactsA robot’s-eye

Experiments were performed on a Sony Aibo ERS-7. ThE® (c’)fbge?f;ic;nrf' Its height in the image in pixels is one compboé
robot is roughly280 mm tall and320 mm long. Its four legs
each have three degrees of freedom, as does its neck. It$\t each time step, the action command executed and
primary sensor is a color camera at the tip of its nose. Thgny observation made was recorded. In some frames, no
robot’s field of operation, depicted in Figure 1a), measuresbservation was made. When these frames were processed
5.4m x 3.6m. The landmarks used in this experiment werén the algorithm, no EKF observation updates are made, and
four distinct cylindrical beacons in fixed, known locations those frames are omitted in the sensor model reestimation.

The robot's action commands correspond attempted The training run lasted fot5 minutes, with each of the0
velocities in thex, y and ¢ directions. These attempted actions being executed roughly four times for five seconds
velocities determine the robot’s step sizes and directionat a time. As mentioned in the introduction, a control policy
However, they are often significantly inaccurate becauds needed that enables the robot to explore the full range of
of inaccuracies in the robot’s joint movement and its feefctions and states. To meet this constraint, after every five
slipping against the ground. The action model learned hseconds a new action was selected randomly, with priorities
the robot maps these action commands onto actual velocitging placed on staying on the field and on distributing
combinations. A set of40 action commands was used,the executed actions evenly. As a matter of convenience, a
determined as follows. The action commands are specified pyeviously developed accurate localization module wasl use
their z, y, andé velocities (v, vy, v9), Where each velocity to help keep the robot on the field. This measure would not
component is normalized to the ranfel, 1]. be necessary if a larger field were used.

The velocity combinations were all chosen to walk as The parameter estimation algorithm was run on the re-
fast as possible in a given direction (including turning asulting data set until convergence, defined as follows. In an
a component of the direction). Such combinations satisfigleal setting, EM is guaranteed to converge with the overall
the equationv? + ”5 + v = 1. The velocities are de- likelihood increasing with every iteration. However, ampr
termined by the combination of this equation, an angumations in the algorithm cause the likelihoog,O|\), to
lar velocity a € {—1,—%,0,%,4}, and a directionb € fluctuate after a time. The learning is considered finished
{O,ig,ig,i%,w}. Specifically,a = vy andb is the angu- when 50 iterations pass without a new highest likelihood,
lar direction of(v,,v,). For each of thel0 combinations of indicating that these fluctuations have started to overshad
a andb, these constraints uniquely specify a set of attempteatie learning. On the data collected by the robot, the algorit
velocities (v,, vy, vg). This set of motions was designed totook 152 iterations to converge. The entire process ta6k
cover the range of possible motions, excluding ones that haminutes of data-collection plus abou® minutes of offline
a very high angular velocity, which all effectively just s processing on &.79GHz Pentiumd processor.



The sensor model consists of a polynomial function frontranslational velocities of the action model. The obséovest
distances to beacon heights, variances for those beaceare computed by applying a simulated “actual” sensor
heights, and a variance for the observed landmarks’ honirodel to the distances and adding gaussian noise to yield
zontal angles. For each quantity, a starting value was usbdacon height and angle observations. Random noise was
that was very inaccurate and the learned value was compardtitionally added to the robot’s motion.
to the measured actual value. The actual sensor model wasl'he algorithm converged on the simulated data after 959
measured as follows. The robot was placed at distancésrations; the learning curve is shown in Figure 3a). Each
from the beacon every00 mm from 1275 to 4175 mm, action’s learned velocities were compared to the grourtt .tru
the range of distances at which the robot can recognize tA&e final RMS errors i, v,, andvy were 23.06 mm/s,
beacon. At each distanc&)0 observations were made, and18.34 mm/s, and).086 rad/s, relative errors df.2%, 2.2%,
the mean and variance of the beacon heights and angles waral 2.7%, respectively, with respect to the total range of
computed. The actual beacon height means are shown as Wedocities in those three directions, namé&ii0 mm/s, 840
measured sensor model in Figure 2, along with the startimgm/s andr rad/s. Thex and y velocity RMS errors are
polynomial (a very poor linear model) and the learned modethown decreasing over the course of the EM iterations in
Figure 3b). Note that this RMS error improvement mirrors

To obtain S ; .
S ‘ ™ Starting Model — the overall log likelihood improvement shown in Figure 3a).
the mea.sured Nt Analytical Model - . . . . . . . . .
beacon height I Measured Model  + This similarity provides confirmation that the log likelibad
and angle % IR ] is a useful measure of the accuracy of the learned models.
& 2
variances, the g
variances £® 3600 W Side Velodty ——
= 15t - -3800 £ 250 Forward Velocity
at each ¢ 8 1000 E L0
distance were =~ | g 4200 5 15
averaged, each  °| ER 4 100 fa
WEIthEd by ® 0 2000 2500 3000 300 4000 - 4800 E 50
the fre UenC Landmark Distance (mm) -500 0 o
with ?Nhichy Fig. 2. The starting, learned, and measured sensor 0 200 400 600 800 1000 0 200 400 600 800 1000
models. For comparison, an analytical sensor model Iteration Iteration
that  beacon s also shown, derived from the specifications of a b)
distance the camera. The learned model successfully approx-
occurred imates the measured one. Fig. 3. a) The log likelihood improves over the coursel600 iterations

. . . of EM. b) As the action model estimates converge, the averafeite
during the Ie_amlng. The starting, mea_sured, and learmneglors decrease. The angular velocities (not picturedyerge within the
standard deviations for the beacon height wé®e 1.59, first 100 iterations.

and 1.69 pixels respectively, an error 6£3% in the learned . L . .
value. The starting, measured, and learned angle standard\dd't'ona”y' the standard deviations of the Gaussianaois

deviations were.2, 0.0267, and0.0116 radians, an error of added to the two observation components in the simulator
a factor of2.3. This error was likely due to the very small Were 1 pixel for the beacon height and.5 radians for
magnitude of the actual angle variances being dwarfed ﬁpe observed horizontal angles. The learned values of these

the uncertainty in the robot's orientation at any time. ThiStandard deviations were.980 pixels and0.474 radians,
hypothesis is supported by the simulation results, in whicfTOrs 0f2.0% and5.3% respectively. The RMS error of the
a much larger angle variance was learned accurately. learned sensor model, over the range of observed distances,

For the action model, the starting velocity estimates wer@f@s0-35 pixels, compared to an RMS error for the starting

all zero. Rotational velocities were measured for each (WOdel of12.71 pixels.

the 40 actions by allowing the robot to execute that action Thi i it V.t R';:ATEbD WORK hiol . i
for 30 seconds and measuring the total angular change. IS section situates the above approach 1o learning action

The RMS difference between the measured and Iearné‘&d sensor model functions within the context of related
angular velocities wa.135 rad/s, a relative error o$.2% previous work. First, work in developmental robotics aims t
of the measured range of angull’;tr velocitie2] rad/s. By enable a robot to learn about its sensors and effectortinstar

contrast, the original “attempted” angular velocities, ish from as little innate knowledge as possible. For example,

were manually calibrated (and not used by the robot), he{ is possible for the rqbot to start with out any knowlege
an RMS error 0f0.331 rad/s, a relative error df.9%. about the structure of its own body [11], [12], or even the
’ dimensionality of the outside world [13]. By contrast, the

B. Simulated Results approach taken in this paper assumes that the robot has
The above experiment was also run in the exact sanmmplicit innate knowledge about the structure of its body
way in simulation, using the same starting action and sensand state space. It instead aims to correlate the raw sensory
models. The simulation engine models the robot’'s pose amdaput with the state of the world and learn how each of a set

observation vectors, but not its physical joint angles oof actions effects that world state.
camera image. This experiment verified that the method wasLearning a robot’s action and sensor model functions in
able to learn accurate action and sensor models, inclubang tthe context of the robot's unknown state over time is also a



form of dual estimation. Other approaches to dual estimaticsimulated experiments, the learned models match closely
for a nonlinear dynamical system include the dual extendeslith the ground truth properties of the sensors and actions.
Kalman filter [14], the joint extended Kalman filter [15], In this work, all of the probability distributions involved
[16], and discrimative training [17]. are multivariate Gaussians. One important area for future
In this paper, the EM algorithm is used to learn a robot’svork is to extend the method to other distributions, such as
action and sensor models. Ghahramani and Roweis discussnbinations of Gaussians or histogram-based distribsitio
a number of advantages of using the EM algorithm fomhis enhancement would make the method more robust to
dual nonlinear estimation over the joint and dual EKFmultimodal state distributions. Another important area fo
methods [18]. In particular, EM generalizes well to leagin future work is to combine the technique presented here with
complex models or parameter combinations. This properthose used in SLAM, so that the robot can learn the layout
makes it well-suited to learning the action and sensor modef novel domains, as well as model its sensors and actions in
functions for a mobile robot. them. Continued progress along these directions promises t
When the EM algorithm is applied to dual estimation in agreatly improve the autonomy and utility of mobile robots.
linear system, the E-step is an optimal smoother such as ACKNOWLEDGMENTS
forward-backward smoothing [8]. The M-step yields new This research is supported in part by NSF CAREER award I1S-
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of the M-step that enables learning a robot's action and

sensor model functions. For the sensor model, sampling,
(a technique used in [21]) is combined with polynomial
regression. For the action model, a closed form expression,
is derived for the mean relative displacements of each of a,
discrete set of actions. -

Additionally, there is a wide range of previous work learn-
ing models of a robot’s actions and sensors. A number of ,
methods have been proposed for learning models of various,
sensors for a mobile robot [23], [24], [25], although these
methods rely on the presence of an accurate action modelt?
Conversely, a number of approaches have been taken tg,
learning action models, assuming knowledge of an accuratg,
sensor model, including [2], [26], [27], and adaptations of
EM [28], [29], [30]. These applications of EM are specific
to learning an action model.

There is little previous work that address the problem of
learning an action and sensor model simultaneously. The,
authors have previously developed a bootstrapping methog,
restricted to a one-dimensional domain [31], while Kaboli
et al. present a Markov chain Monte Carlo method to learn*
four variance parameters of a probabilistic action and@ens &
model [32]. Compared to all of the above-mentioned work,?"
the technique presented in this paper is unique in both theg,
complexity of the model learned and the paucity of the,,
knowledge with which the robot starts.

VI. CONCLUSION AND FUTURE WORK 25

This paper introduces a technique that enables a mobilg,
robot to simultaneously learn an accurate model of its actio
and sensors, starting with no action model and a very poof”
sensor model. The technique is an adaptation of the EN,
algorithm to a nonlinear dual estimation problem. The robot
learns a table-based action model function, a polynomiaf®
sensor model function, and variances of the noise in thé®
observation components. The technique presented in thig!
paper is implemented and validated on data from a mobilesz
robot traversing its environment. In both real robot and

[13]
[14]

[15]

[24]
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