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Abstract— In order for a mobile robot to accurately interpret
its sensations and predict the effects of its actions, it must
have accurate models of its sensors and actuators. These
models are typically tuned manually, a brittle and laborious
process. Autonomous model learning is a promising alternative
to manual calibration, but previous work has assumed the
presence of an accurate action or sensor model in order to
train the other model. This paper presents an adaptation of the
Expectation-Maximization (EM) algorithm to enable a mobile
robot to learn both its action and sensor model functions,
starting without an accurate version of either. The resulting
algorithm is validated experimentally both on a Sony Aibo
ERS-7 robot and in simulation.

I. I NTRODUCTION

As an autonomous robot moves through its environment,
it uses its sensors to gain information about the state of
the world, and it takes actions to influence that state. In
order to be effective, however, the robot must have accurate
modelsof its sensors and actions, so that it can correctly
interpret its raw observations and predict the changes that
are caused by its actions. This paper considers the situation
of a mobile robot in a fixed, known environment, where the
robot’s pose (location and orientation) is the relevant world
state. In this context, its action model describes the robot’s
relative movements as a function of the action command
being executed. The sensor model is a function from the
robot’s pose to a probabilistic distribution of its observations,
such as from a laser range finder or a camera.

One way to construct a robot’s action and sensor models
is through manual calibration. However, this process can be
laborious, inaccurate, and in particular, brittle, due to the
propensity of the correct models to change over time from
robot wear or environmental changes. This paper presents
a method for a robot to autonomously learn its action and
sensor models, starting without an accurate model for either.
In this way, it contrasts from previous work that relies on
the presence of either an accurate action or sensor model to
learn the other model. Specifically, assuming the presence
of a control policy that explores the full range of actions
and states, the algorithm is able to learn an accurate action
and sensor model for a mobile robot starting with no action
model and a very poor sensor model. A robot’s ability to
learn accurate models starting with such little knowledge is
a key factor in its overall autonomy and versatility.

The robot’s action and sensor models are learned as
probabilistic functions. For the sensor model, a polynomial
function is learned that maps landmark distances to the

means of the corresponding observation distributions. Addi-
tionally, two variance parameters are learned: one for those
distance-based observations, and another for the observed
horizontal angle to the landmark. For the action model, a
table-based function is learned, with each of a set of40
actions being mapped to the robot’s corresponding actual
velocities (forward, sideways, and turning). These results
could additionally be interpolated for intermediate actions,
as in [1], [2]. Notably, there are many different possible
sets of parameters that could be learned. The derivations of
the action and sensor learning procedures in Section III are
specific to this one, but the principles used could be applied
to learning a wide range of parameter sets, including settings
with a continuous range of actions.

The above functions and variances are learned within the
frameworks of Kalman Filtering [3] and the Expectation-
Maximization (EM) algorithm [4]. The adaptation of the
E-step to the problem described above is achieved by an
extended Kalman filter and smoother (EKFS) [5], described
in Section II. However, the adaptation of the M-step in
Section III is a contribution of this paper. The resulting
technique has been empirically validated both on a Sony
Aibo ERS-7 and in simulation. These results are described
in Section IV. Section V discusses previous related work and
Section VI discusses future work and concludes.

II. BACKGROUND

A mobile robot can be modeled by a hidden Markov model
(HMM) with a continuous state space. The method presented
in this paper applies the EM algorithm to such an HMM
to learn the robot’s action and sensor models, which are
parameterized functions describing a nonlinear dynamical
system. This section presents notation (adapted from that
used in [6] and [7]) for discussing HMMs in a continuous
domain, the EM algorithm, and the EKFS.

At time steps0 through T , the robot’s state vector is
its pose,st = (xt, yt, θt)

⊤. At time steps1 through T ,
an observation vectorot is recorded by the robot. The
parameters of the HMM consist of transition probability
distribution functions,a(st, st+1) = p(st+1|st, c(t)), where
c(t) is the action command being executed at timet,1 the
emission probabilities,b(st, ot) = p(ot|st), and the initial
state distribution:π(s) = p(s0). We denote the complete
sequence of observations,o1 through oT , as O, and the
complete set of HMM parameters asλ = (a, b, π). Since

1The dependence ofa on c(t) is omitted for the sake of brevity.



the HMM represents the robot’s state over time, the function
a can be thought of as a model of the robot’s actions, while
b is a model of its sensations. The goal of this work is to
find the parametersλ with the maximum overall likelihood
given the observations, namelyp(O|λ). This maximization is
achieved by the EM algorithm, where the hidden variables
are the HMM states over time (the robot’s pose), and the
parameters being estimated are the HMM parameters,λ.

EM alternates between two steps, expectation (E) and
maximization (M). In the E-step, a probability distribution
over the hidden variables is determined assuming the current
parameter estimate is correct. The M-step uses the hidden
variable distribution computed in the E-step to compute a
new set of parameter estimates. The new parameters are
defined to be those that maximize the expected log likelihood
of the observed data (in our case the robot’s observations),
where the expectation is taken over the probability distribu-
tion computed in the E-step. The adaptation of the M-step
to learning the robot’s action and sensor models, presented
in Section III, is a primary contribution of this paper.

The goal of the E-step is to compute thea posteriori
probability distribution ofs at each time step, denoted as
γt(st), givenO andλ. In this paper, all state distributions are
approximated as multivariate Gaussians. In linear systems,
the E-step then amounts to an optimal smoother such as the
forward-backward smoother [8]. In the nonlinear case, taking
a first-order approximation results in an EKFS.

The EKFS algorithm can be understood in terms
of the distributions αt(st) = p(o1, . . . , ot, st|λ) and
βt(st) = p(ot+1, . . . , oT |st, λ). Bayes’ Law yields:γt(st) =
αt(st)βt(st)/p(O|λ). The distributionsα and β are repre-
sented as multivariate Gaussians, with means denoted by
µα,t andµβ,t and covariance matrices denoted byΣα,t and
Σβ,t. This factorization ofγt is useful becauseαt and βt

can both be computed through an extended Kalman filter
as follows [9]. The values ofµα,t and Σα,t are computed
by running the standard EKF forwards in time, starting with
µα,0 andΣα,0 equal toµπ andΣπ, the mean and covariance
of the initial distributionπ(s). Similarly, the values ofµβ,t

and Σβt
are computed by running the EKFbackwards in

time, starting with Σβ,T = ∞. After α and β have been
computed for each time step,µγ,t andΣγ,t are given by:

µγ,t =µα,t + Σα,t(Σα,t + Σβ,t)
−1(µβ,t − µα,t) (1)

Σγ,t =(Σ−1
α,t + Σ−1

β,t
)−1 (2)

The computed means and variances ofαt, βt, γt are
used in the following section as the inputs to the M-step.
Additionally, to learn an action model the joint distribution
over two consecutive time steps is needed:p(st, st+1|O, λ).
This distribution is discussed further in Section III-A.

Finally, it is also valuable to be able to computep(O|λ),
the overall likelihood ofλ, which is what we are trying to
maximize. This likelihood is the product of the likelihood
of each observation, given all of the ones that preceded it.
Each such observation likelihood can be computed from the
state distribution given the preceding observations, namely

αt−1. Denoting the linearized sensation function aso =
Js + k gives us thatot ∼ N(Jµα,t−1 + k, JΣα,t−1J

⊤).
The likelihood of ot according to this distribution can be
multiplied into a running overall parameter likelihood as the
successive values ofαt are computed.

III. T HE M-STEP

We wish to determine the value ofλ that maximizes the
expected log likelihood of the observation sequence. Writing
the total sequence of states asS = (s0, . . . , sT ) and usinĝp
to refer to probabilities according to the E-step distribution,
this expected log likelihood is given by:

Ep̂[log p(O|λ)]

=
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S

p̂(S) log p(ot|st, b) dS (3)

This expression decomposes the expected log likelihood
into a sum of three terms that are functions of the three
components ofλ: π, a, and b, respectively. Maximizing
this expression with respect toλ consists of maximizing
each term with respect to the corresponding component. The
distribution π that maximizes the first term is equal to the
distribution of s0 according top̂, namelyγ0(s), as in [6].
Maximizing the other two terms corresponds to learning the
action and sensor model, discussed in the next two sections.

A. Learning the Action Model
For a mobile robot, the action model is a function from

action commands to combinations of forwards, sideways, and
turning velocities. During each time step, these velocities
cause arelative displacementbetweenst and st+1. This
displacement is given byR(−θt)(st+1 − st), where R
represents a counterclockwise rotation around thez-axis
through a specified angle, putting the displacement in the
reference frame ofst. Additionally, the relative displacement
is assumed to be normally distributed, so that(st+1|st) ∼
N(st+R(θt)µc(t), R(θt)Σc(t)R(θt)

⊤), whereµc(t) andΣc(t)

are the mean and covariance of the relative displacement
of the action taken at timet, c(t). In this paper, a fixed,
constant value is used forΣc(t).2 The action model function,
a, is therefore determined by the mean relative displacement,
µc(t), for each actionc(t). A closed form expression for these
displacements is derived as follows.

The maximum likelihood action modela is the one that
maximizes the second term in (3). For each actionA, let
Q(A) = {t : c(t) = A}, the set of time steps at which

2The value used forΣ corresponded to standard deviations of10 mm in
each direction and0.1 radians, at each time step. In preliminary experiments,
the algorithm was robust to these values being at least doubled or halved.



action A occurred. Then, the portion of the second term in
(3) affected by actionA is given by:

X

t∈Q(A)

Z

S

p̂(S) log p(st|st−1, a) dS

=
X

t∈Q(A)

Z

st−1,st

p̂(st−1, st) log p(st|st−1, a) dst−1dst
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t∈Q(A)

Z
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p̂(st−1, st) log fA(d(st−1, st)) dst−1dst
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X

t∈Q(A)

Z
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1

2
(d(st−1, st) − µA)⊤Σ−1

A (d(st−1, st) − µA)] dst−1dst

where d(st−1, st) is the relative displacement,
R(−θt−1)(st − st−1), fA is the probability density
function (pdf) of the normal distribution with meanµA

and covarianceΣA, and C is a constant with respect to
µA. Completing the M-step requires finding the value of
µA that maximizes this expression,µ∗

A. This value is the
one that minimizes the sum of the weighted integral of
(d(st−1, st) − µA)⊤Σ−1

A (d(st−1, st) − µA), where the
weights are thêp(st−1, st) distributions. Taking the gradient
with respect toµA and setting it equal to zero, we get that
µ∗

A is the correspondingly weighted mean ofd(st−1, st):

µ∗
A =

P

t∈Q(A)

R

st−1,st
p̂(st−1, st)d(st−1, st)

P

t∈Q(A)

R

st−1,st
p̂(st−1, st)

(4)

=
1

|Q(A)|

X

t∈Q(A)

Z

st−1,st

p̂(st−1, st)d(st−1, st) (5)

The expression̂p(st−1, st) represents the probability of
going through the two statesst−1 and st at those times,
according to the E-step distribution overS. To complete
the computation ofµ∗

A, note that the integral in (5) is the
expected value ofd(st−1, st) with respect top̂.

In order to compute this expected value, we
use the factorization [6] of p̂(st−1, st|O, λ̂) as
αt−1(st−1)b̂(st, ot)βt(st)â(st−1, st)/p̂(O|λ̂), where
λ̂ = (â, b̂, π̂) are the parameter values from the previous
iteration of the EM algorithm. This factorization is useful
becauseαt−1(st−1) is already known from the forwards
sweep of the forward-backward smoother (see Section II),
and b̂(st, ot)βt(st) is a normal distribution overst that
was computed in the backwards sweep (in between the
observation and time updates). We denote the mean and
variance of̂b(st, ot)βt(st) asµδ andΣδ and store them for
eacht as they are computed.

Denoting the product αt−1(st−1)b̂(st, ot)βt(st)
as fα,δ(st−1, st), we get that p̂(st−1, st) ∝
fα,δ(st−1, st)â(st−1, st). When the functionfα,δ is thought
of as a probability distribution over the (6-dimensional)
joint state (st−1, st), we denote its mean and variance as
µα,δ andΣα,δ. These quantities can be expressed as:

µα,δ =

„

µα,t−1

µδ,t

«

and Σα,δ =

„

Σα,t−1 0
0 Σδ,t

«

(6)

Once we compute the expected value and variance of
d(st−1, st) with respect tofα,δ, this distribution is multiplied
by â(st−1, st), which is equal tof̂A(d(st−1, st)), where
f̂A is specified by the mean and variance of actionA in
the previous iteration of EM,̂µA and Σ̂A. If the first-order
approximation ofd is Lst−1,t + m, then the mean and
variance ofd(st−1, st) with respect tof̂α,δ areLµα,δ+m and
LΣα,δL

⊤ respectively. Multiplying this distribution bŷfA

and substituting the resulting mean into Equation 5 yields:3

µ∗
A =

1

|Q(A)|

X

t∈Q(A)

µ̂A +Σ̂A(Σ̂A +LΣα,δL⊤)−1(Lµα,δ +m− µ̂A)

Averaging over the|Q(A)| relevant frames yields a value
for µ∗

A, the new estimate forµA.

B. Learning a Sensor Model
The robot’s observations correspond to sightings of the

landmarks in the environment, which are assumed to be
visually distinguishable. Each observation vectorot has two
components,o1,t ando2,t. These are assumed to be generated
by o1,t ∼ N(f(dist(st)), σ

2
1) and o2,t ∼ N(ang(st), σ

2
2),

where the functions dist(s) and ang(s) represent the distance
and horizontal angle respectively from a robot at states to
the landmark that is observed. The functionf maps the actual
landmark distance onto the mean of the distribution foro1,
while there is no such function for the angle; the mean ofo2

is the angle itself. The sensor model that is learned consists
of the functionf plus the variancesσ2

1 andσ2
2 .

To learn this sensor model, we maximize the third term
in (3) with respect to overall transition distributionb:
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Maximizing the above expression is equivalent to mini-
mizing both
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Minimizing the first expression with respect tof amounts
to minimizing

∑
t

∫
st

γt(st)(f(dist(st)) − o1,t)
2. The func-

tion f is represented as a polynomial and therefore is learned
via weighted polynomial regression, where theγ distribu-
tions act as a weighting function. Instead of attempting to
analytically compute the regression weighted by a series of
γt’s, we approximate this weighting by drawing a number

3The expression for the mean of the product of two normal distributions
also appears in Equation 1.



of samples from eachγ distribution, and fit the polynomial
to the resulting(dist(s), o1) pairs.

The value ofσ1 that minimizes (7) can be determined
by differentiating with respect toσ1 and setting the result
equal to0. The result isσ2

1 =
∑

t

∫
st

γt(st)(f̂(dist(st)) −

o1,t)
2, where f̂ is the optimal value off computed above

(which does not depend onσ1). Similarly, minimizing (8)
with respect toσ2 yieldsσ2

2 =
∑

t

∫
st

γt(st)(ang(st)−o2,t)
2.

In both cases, the integral is again approximated by sampling
from theγt distributions. In the experiments reported in this
paper, because of the large number of frames in the data set,
only one sample was taken from each frame. The degree of
the polynomial used for regression was three.

IV. EMPIRICAL VALIDATION

The technique described in this paper was validated both
on a physical mobile robot and in simulation. In both cases,
accurate sensor and action models were learned, starting with
no action model and a very poor sensor model. On the real
robot, the learned translational velocities were not evaluated
due to the difficulty in measuring the ground truth for these
velocities. All of the other aspects of the action and sensor
models were measured and compared to the learned models.
In simulation, ground truth is known, and all components of
the learned models were evaluated.

A. Real Robot Results

Experiments were performed on a Sony Aibo ERS-7. The
robot is roughly280 mm tall and320 mm long. Its four legs
each have three degrees of freedom, as does its neck. Its
primary sensor is a color camera at the tip of its nose. The
robot’s field of operation, depicted in Figure 1a), measures
5.4m × 3.6m. The landmarks used in this experiment were
four distinct cylindrical beacons in fixed, known locations.

The robot’s action commands correspond toattempted
velocities in thex, y and θ directions. These attempted
velocities determine the robot’s step sizes and directions.
However, they are often significantly inaccurate because
of inaccuracies in the robot’s joint movement and its feet
slipping against the ground. The action model learned by
the robot maps these action commands onto actual velocity
combinations. A set of40 action commands was used,
determined as follows. The action commands are specified by
their x, y, andθ velocities(vx, vy, vθ), where each velocity
component is normalized to the range[−1, 1].

The velocity combinations were all chosen to walk as
fast as possible in a given direction (including turning as
a component of the direction). Such combinations satisfy
the equationv2

x + v2
y + v2

θ = 1. The velocities are de-
termined by the combination of this equation, an angu-
lar velocity a ∈ {− 1

2 ,− 1
6 , 0, 1

6 , 1
2}, and a directionb ∈

{0,±π
4 ,±π

2 ,± 3π
4 , π}. Specifically,a = vθ andb is the angu-

lar direction of(vx, vy). For each of the40 combinations of
a andb, these constraints uniquely specify a set of attempted
velocities(vx, vy, vθ). This set of motions was designed to
cover the range of possible motions, excluding ones that have
a very high angular velocity, which all effectively just cause

the robot to spin in place. This parameterization is based on
the one used in [2].

As the robot walked, it scanned its head from side to side
to see as many beacons as possible. The two components of
each observation are derived from the robot’s camera image.
The first component is the height of the beacon in pixels in
the image, as shown in Figure 1b). The other component is
the robot’s estimate of the landmark’s horizontal angle from
the center of its body. This angle depends on the robot’s head
pan angle and the position of the landmark in the image. To
attenuate the effect of false positives in object recognition,
outlier observations were pruned in the first iteration of EM
by discarding observations that represented too large of an
innovation in the forward Kalman filter. The robot’s acting
and sensing abilities were developed as part of a previous
project, and they are described fully in a technical report [10].

a) b)

Fig. 1. a) The Sony Aibo ERS-7 in its field of operation. The landmarks
used are the four distinct color-coded cylindrical beacons. b) A robot’s-eye
view of a beacon. Its height in the image in pixels is one component of
each observation.

At each time step, the action command executed and
any observation made was recorded. In some frames, no
observation was made. When these frames were processed
in the algorithm, no EKF observation updates are made, and
those frames are omitted in the sensor model reestimation.
The training run lasted for15 minutes, with each of the40
actions being executed roughly four times for five seconds
at a time. As mentioned in the introduction, a control policy
is needed that enables the robot to explore the full range of
actions and states. To meet this constraint, after every five
seconds a new action was selected randomly, with priorities
being placed on staying on the field and on distributing
the executed actions evenly. As a matter of convenience, a
previously developed accurate localization module was used
to help keep the robot on the field. This measure would not
be necessary if a larger field were used.

The parameter estimation algorithm was run on the re-
sulting data set until convergence, defined as follows. In an
ideal setting, EM is guaranteed to converge with the overall
likelihood increasing with every iteration. However, approx-
imations in the algorithm cause the likelihood,p(O|λ), to
fluctuate after a time. The learning is considered finished
when 50 iterations pass without a new highest likelihood,
indicating that these fluctuations have started to overshadow
the learning. On the data collected by the robot, the algorithm
took 152 iterations to converge. The entire process took15
minutes of data-collection plus about10 minutes of offline
processing on a2.79GHz Pentium4 processor.



The sensor model consists of a polynomial function from
distances to beacon heights, variances for those beacon
heights, and a variance for the observed landmarks’ hori-
zontal angles. For each quantity, a starting value was used
that was very inaccurate and the learned value was compared
to the measured actual value. The actual sensor model was
measured as follows. The robot was placed at distances
from the beacon every100 mm from 1275 to 4175 mm,
the range of distances at which the robot can recognize the
beacon. At each distance,100 observations were made, and
the mean and variance of the beacon heights and angles were
computed. The actual beacon height means are shown as the
measured sensor model in Figure 2, along with the starting
polynomial (a very poor linear model) and the learned model.
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Fig. 2. The starting, learned, and measured sensor
models. For comparison, an analytical sensor model
is also shown, derived from the specifications of
the camera. The learned model successfully approx-
imates the measured one.

To obtain
the measured
beacon height
and angle
variances, the
variances
at each
distance were
averaged, each
weighted by
the frequency
with which
that beacon
distance
occurred
during the learning. The starting, measured, and learned
standard deviations for the beacon height were10, 1.59,
and1.69 pixels respectively, an error of6.3% in the learned
value. The starting, measured, and learned angle standard
deviations were0.2, 0.0267, and0.0116 radians, an error of
a factor of2.3. This error was likely due to the very small
magnitude of the actual angle variances being dwarfed by
the uncertainty in the robot’s orientation at any time. This
hypothesis is supported by the simulation results, in which
a much larger angle variance was learned accurately.

For the action model, the starting velocity estimates were
all zero. Rotational velocities were measured for each of
the 40 actions by allowing the robot to execute that action
for 30 seconds and measuring the total angular change.
The RMS difference between the measured and learned
angular velocities was0.135 rad/s, a relative error of3.2%
of the measured range of angular velocities,4.21 rad/s. By
contrast, the original “attempted” angular velocities, which
were manually calibrated (and not used by the robot), had
an RMS error of0.331 rad/s, a relative error of7.9%.

B. Simulated Results
The above experiment was also run in the exact same

way in simulation, using the same starting action and sensor
models. The simulation engine models the robot’s pose and
observation vectors, but not its physical joint angles or
camera image. This experiment verified that the method was
able to learn accurate action and sensor models, including the

translational velocities of the action model. The observations
were computed by applying a simulated “actual” sensor
model to the distances and adding gaussian noise to yield
beacon height and angle observations. Random noise was
additionally added to the robot’s motion.

The algorithm converged on the simulated data after 959
iterations; the learning curve is shown in Figure 3a). Each
action’s learned velocities were compared to the ground truth.
The final RMS errors invx, vy, and vθ were 23.06 mm/s,
18.34 mm/s, and0.086 rad/s, relative errors of3.2%, 2.2%,
and 2.7%, respectively, with respect to the total range of
velocities in those three directions, namely710 mm/s, 840
mm/s andπ rad/s. Thex and y velocity RMS errors are
shown decreasing over the course of the EM iterations in
Figure 3b). Note that this RMS error improvement mirrors
the overall log likelihood improvement shown in Figure 3a).
This similarity provides confirmation that the log likelihood
is a useful measure of the accuracy of the learned models.
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Fig. 3. a) The log likelihood improves over the course of1000 iterations
of EM. b) As the action model estimates converge, the average velocity
errors decrease. The angular velocities (not pictured) converge within the
first 100 iterations.

Additionally, the standard deviations of the Gaussian noise
added to the two observation components in the simulator
were 1 pixel for the beacon height and0.5 radians for
the observed horizontal angles. The learned values of these
standard deviations were0.980 pixels and0.474 radians,
errors of2.0% and5.3% respectively. The RMS error of the
learned sensor model, over the range of observed distances,
was0.35 pixels, compared to an RMS error for the starting
model of12.71 pixels.

V. RELATED WORK

This section situates the above approach to learning action
and sensor model functions within the context of related
previous work. First, work in developmental robotics aims to
enable a robot to learn about its sensors and effectors, starting
from as little innate knowledge as possible. For example,
it is possible for the robot to start with out any knowlege
about the structure of its own body [11], [12], or even the
dimensionality of the outside world [13]. By contrast, the
approach taken in this paper assumes that the robot has
implicit innate knowledge about the structure of its body
and state space. It instead aims to correlate the raw sensory
input with the state of the world and learn how each of a set
of actions effects that world state.

Learning a robot’s action and sensor model functions in
the context of the robot’s unknown state over time is also a



form of dual estimation. Other approaches to dual estimation
for a nonlinear dynamical system include the dual extended
Kalman filter [14], the joint extended Kalman filter [15],
[16], and discrimative training [17].

In this paper, the EM algorithm is used to learn a robot’s
action and sensor models. Ghahramani and Roweis discuss
a number of advantages of using the EM algorithm for
dual nonlinear estimation over the joint and dual EKF
methods [18]. In particular, EM generalizes well to learning
complex models or parameter combinations. This property
makes it well-suited to learning the action and sensor model
functions for a mobile robot.

When the EM algorithm is applied to dual estimation in a
linear system, the E-step is an optimal smoother such as
forward-backward smoothing [8]. The M-step yields new
parameter settings that can be computed from summary
statistics of the E-step distributions [19], [20]. In a nonlinear
system, an EKFS can be used for the E-step, as in [18],
[21], [22]. However, the methods used for the M-step vary as
required by the domain. This paper contributes an adaptation
of the M-step that enables learning a robot’s action and
sensor model functions. For the sensor model, sampling
(a technique used in [21]) is combined with polynomial
regression. For the action model, a closed form expression
is derived for the mean relative displacements of each of a
discrete set of actions.

Additionally, there is a wide range of previous work learn-
ing models of a robot’s actions and sensors. A number of
methods have been proposed for learning models of various
sensors for a mobile robot [23], [24], [25], although these
methods rely on the presence of an accurate action model.
Conversely, a number of approaches have been taken to
learning action models, assuming knowledge of an accurate
sensor model, including [2], [26], [27], and adaptations of
EM [28], [29], [30]. These applications of EM are specific
to learning an action model.

There is little previous work that address the problem of
learning an action and sensor model simultaneously. The
authors have previously developed a bootstrapping method
restricted to a one-dimensional domain [31], while Kaboli
et al. present a Markov chain Monte Carlo method to learn
four variance parameters of a probabilistic action and sensor
model [32]. Compared to all of the above-mentioned work,
the technique presented in this paper is unique in both the
complexity of the model learned and the paucity of the
knowledge with which the robot starts.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a technique that enables a mobile
robot to simultaneously learn an accurate model of its action
and sensors, starting with no action model and a very poor
sensor model. The technique is an adaptation of the EM
algorithm to a nonlinear dual estimation problem. The robot
learns a table-based action model function, a polynomial
sensor model function, and variances of the noise in the
observation components. The technique presented in this
paper is implemented and validated on data from a mobile
robot traversing its environment. In both real robot and

simulated experiments, the learned models match closely
with the ground truth properties of the sensors and actions.

In this work, all of the probability distributions involved
are multivariate Gaussians. One important area for future
work is to extend the method to other distributions, such as
combinations of Gaussians or histogram-based distributions.
This enhancement would make the method more robust to
multimodal state distributions. Another important area for
future work is to combine the technique presented here with
those used in SLAM, so that the robot can learn the layout
of novel domains, as well as model its sensors and actions in
them. Continued progress along these directions promises to
greatly improve the autonomy and utility of mobile robots.
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