Efficient Real-Time Inference in Temporal Convolution Networks

Piyush Khandelwal, James MacGlashan, Peter Wurman, and Peter Stone

Abstract— It has been recently demonstrated that Temporal
Convolution Networks (TCNs) provide state-of-the-art results in
many problem domains where the input data is a time-series.
TCNs typically incorporate information from a long history
of inputs (the receptive field) into a single output using many
convolution layers. Real-time inference using a trained TCN can
be challenging on devices with limited compute and memory,
especially if the receptive field is large. This paper introduces
the RT-TCN algorithm that reuses the output of prior convo-
lution operations to minimize the computational requirements
and persistent memory footprint of a TCN during real-time
inference. We also show that when a TCN is trained using
time slices of the input time-series, it can be executed in real-
time continually using RT-TCN. In addition, we provide TCN
architecture guidelines that ensure that real-time inference can
be performed within memory and computational constraints.

[. INTRODUCTION

Many state-of-the-art solutions to problems operating on
time-series input, such as human activity recognition [25]
and heartbeat detection [12], make use of Deep Neural Net-
works (DNNs). Among different DNN architectures, Tempo-
ral Convolution Networks (TCNs) have achieved excellent
results on both synthetic and real datasets [2, 24]. In TCNss,
convolution operations are applied along the time dimen-
sion, i.e. data from many different time-steps is convolved
together. By building layers of such temporal convolutions,
a single output can incorporate a long history of input data.
This input history is defined as the receptive field of the TCN.
A 3-layer TCN is illustrated in Figure 1b.

In this paper, we specifically deal with the problem of
calculating TCN outputs in real-time as time-series input
becomes available. For the example TCN illustrated in Fig-
ure 1b, predictions are made every two samples after the first
15 samples are observed. Real-time execution implies that
output y;_o is computed as soon as input x;_o is available
at time ¢t — 2 and its calculation must be completed before
the next prediction y, is required at time ¢, or the system
will gradually fall behind. Note that some of the individual
convolutions required to compute y; were computed previ-
ously while computing y;_o (marked in dashed black). If
the TCN is executed on a device with sufficient compute
bandwidth and memory, the last T inputs can simply be
stored in memory and these individual convolutions can be
recomputed to compute the latest output. However, when

Piyush Khandelwal, James MacGlashan, Peter Wurman, and Peter Stone
are with Sony AI, Sony Corporation of America, 25 Madison Avenue,
New York, NY 10010, USA. Peter Stone is also with the Department
of Computer Science, University of Texas at Austin, 2317 Speedway,
Austin, TX 78712, USA. Email: {piyush.khandelwal, james.
macglashan, peter.wurman, peter.stone}@sony.com

resources are limited, executing a trained TCN in real-time
requires a more sophisticated pipeline.

This paper introduces the Real-Time TCN (RT-TCN)
algorithm for computing TCN outputs, which retains prior
convolution outputs so that convolutions are not recomputed.
Specifically, in the example TCN in Figure 1b, RT-TCN
only computes the convolution shared between y;_o and
y; once. For some TCN architectures, RT-TCN may also
reduce the memory footprint compared to the straightforward
approach of buffering the last T inputs. On devices with
limited compute and memory, RT-TCN allows executing
larger TCN architectures than would be otherwise possible.

In addition to the main contribution of introducing RT-
TCN, this paper makes two further contributions. A TCN
typically operates continually on input sequences of arbitrary
length. If the input length of the TCN is always equal to
its receptive field size, then the TCN will generate only a
single output, and we term such TCNs as SingleWindowTCNs
(in Sections IV and V, we discuss why SingleWindowTCNs
are useful). If a TCN only generates a single output, not
all convolution operations it typically performs in a layer
contribute to that single output. Thus, it is possible for a
SingleWindowTCN to have a reduced network architecture
than the corresponding continual TCN, and the second
contribution of this paper is providing algorithms to convert
between a SingleWindowTCN and the corresponding TCN.
These algorithms recompute the rate at which convolutions
should be performed at each layer.

The third and final contribution of this paper is provid-
ing architecture recommendations which enable RT-TCN
to minimize its memory footprint and computational re-
quirements. We provide results that show RT-TCN memory
consumption and computational requirements (in terms of
multiplicative FLOPS) across different network architectures.
These results lead to guidelines that may help a user balance
network architecture size with performance while using RT-
TCN on a device with limited resources.

We believe that these contributions will be particularly of
interest to the robotics community, as low-powered sensors
and IoT devices that operate on real-world time-series data
and use TCN architectures for estimation will benefit from
faster inference methods.

In the next section, we provide a brief overview of TCNs,
followed by a discussion of related work in Section III. In
Section IV, we specify the RT-TCN algorithm. Next, we
present results summarizing compute and memory footprints
when using RT-TCN, and provide guidelines for different
network architectures and inference approaches. Finally, we
conclude in Section VI.

Output

gt{ﬁi?/, / e j
i i i
[T T7
LI o

il A A A A A A A I A B
[T 1T T 717

(a) Example s; and d;

(b) Continual Temporal Convolution Network (TCN)

L

Xg2 Xt X-(T+1)

(c) Reduced SingleWindowTCN with 1 output

Fig. 1: (a) shows examples of different values of strides (s;) and dilation rates (d;) for a TCN layer ¢ in a network. (b)
illustrates an example TCN with 3 layers and a receptive field size T' = 15. The three layers apply a 1-d temporal convolution
with kernel sizes k& = [3,3, 3], network dilation rates d = [1,1,2] and strides s = [2, 1, 1], respectively. Given T inputs,
this TCN computes 7, 5, and 1 convolution across the three layers, respectively. Only convolutions marked via solid lines
contribute to output y;, and the corresponding SingleWindowTCN in (c) only requires 3 convolutions at layer 2 (not 5).

II. TEMPORAL CONVOLUTION NETWORKS

Typically, convolution networks have been applied in
image processing domains where 2-dimensional convolutions
are applied across the width and height of an image. A
TCN is a 1-dimensional convolution network where the input
data is supplied as a time-series. A TCN takes a history
of inputs, where the input at each time-step may consist
of many different channels (i.e. features), and performs 1-d
convolutions on this input data to generate an output. Similar
to general convolution networks, a TCN also comprises many
convolution layers, and the depth (n) of the TCN is defined
by the number of layers inside it (in Figure 1b, n = 3).

Since this paper focuses on real-time execution of TCNs,
it only considers TCNs that are made up of causal convo-
lutions. A convolution operation is considered causal if the
output of that operation is generated by convolving input data
from the current time step or earlier. Causality ensures that
a TCN does not depend on future data, making the TCN
suitable for real-time execution. In Figure 1b, causality is
illustrated by lining up the last input in a convolution with
its output along the x-axis (time dimension).

For any given TCN layer, a convolution operation is
defined via the following parameters:

o Kernel Size (k) - Kernel size is the number of time-
steps that are convolved together in a single convolution
operation. In Figure 1b, k = 3 for all layers.

e Number of Filters (ny) - To obtain multiple features
from the same convolution kernel input, multiple inde-
pendent convolutions (filters) are applied on the same
input kernel to generate a multi-channeled convolution
output. Number of input channels (c¢) and ny are not
illustrated in Figure 1b. They are used by RT-TCN to
compute the size of input and intermediate buffers.

o Network Dilation Rate (d) - Dilation controls the spac-
ing between subsequent inputs supplied to a single
convolution operation. Increasing dilation at any layer
increases the receptive field size without increasing
network depth of kernel size, and is useful in domains
where a longer history is required to solve the task. In

Figure 1b, the network dilation rates are 1, 1, and 2 for
layers 1, 2, and 3, respectively.

e Stride (s) - Convolution kernels in a layer are applied
repeatedly spaced apart by the convolution stride. The
output rate reduction (r) of the the TCN, i.e. the output
rate relative to the input rate, can be calculated as
r = II?'s;, where s; is the stride size for layer ¢. In
Figure 1b, the strides are 2, 1, and 1 for layers 1, 2,
and 3, respectively, and » = 2 x 1 x 1 = 2. Examples
of different d and s are illustrated in Figure la.

o Activation Function (g) - The activation function of a
layer is a non-linear function applied to the result of
individual convolution operations, allowing the network
to model complex non-linear relationships. The choices
for activation functions in TCN are typically the same
as those used for feed forward networks; e.g., ReLU,
sigmoid, tanh, or ELU among others [1].

e Dilated Kernel Size (k') - At layer 4, the number of
timesteps used as input for a convolution is termed as
dilated kernel size and computed as k:; =d;(k;—1)+1.

Given a TCN, the first network output is not available until
T input samples are available, where T is the receptive field
size and can be calculated as follows:

To=k, Ti=k +s(Tiy1—1)Vi<i<n, T=T

In Figure 1b, the receptive field size T = 15. Padding (p)
defines the number of zero-padded inputs. If p = 14, the
TCN can make a prediction immediately after the first input.

III. RELATED WORK

2-d convolution networks [14, 15] have been used for a
long time to perform object recognition in images. Similarly,
causal dependencies were learned in neural networks by
supplying time-shifted input to recognize phonemes over 30
years ago [22]. In the last few years, Temporal Convolutional
Networks (TCNs), which make use of convolutions across
time-shifted features, have grown increasingly popular. TCNs
have been shown to produce better performance than recur-

rent networks such as LSTMs [7] across different time-series
benchmarks [2, 24] and forecasting [11, 23].

TCNs have also been successfully applied across many
different application domains. The WaveNet architecture
uses a TCN to generate raw audio waveforms [17]. Lea
et al. perform action segmentation and detection in video
by feeding spatiotemporal features extracted from individual
video frames into two different TCN-based architectures, and
show that TCNs can achieve state-of-the-art results while
being trained an order of magnitude faster than LSTMs [13].
In [4], Chang et al. demonstrate TCNs with gated activations
and residual connections outperform state-of-the-art LSTM
networks on voice activity detection. Similarly, Lara-Benitez
et al. show that TCNs outperform LSTMs in energy-related
time series forecasting [10]. TinyRadarNN feeds the output
of a conventional 2-d CNN into a TCN for hand gesture
prediction in a battery operated wearable device [19].

Next, we discuss different frameworks for implementing
TCNs on embedded devices. While TCN implementations
using popular deep learning libraries are available [8, 18],
the underlying libraries are unsuitable for operation on
embedded devices. More recently, TensorFlow Lite Mi-
cro [5] provides a better framework for implementing neu-
ral networks on embedded devices. Similarly, Carreras et
al [3] demonstrated FPGA-based acceleration for TCN in-
ference. However, neither approach provides a mechanism
for reusing convolutions during continual real-time TCN
inference where convolutions are shared across subsequent
evaluations. Finally, CMSIS-NN [9] discusses optimizing
convolutions on Arm Cortex-M CPUs, and such advances
can complement the convolution reuse proposed by RT-TCN.

IV. RT-TCN

In this section, we first describe RT-TCN, which enables
executing a TCN continually in real-time without redundant
computation. Next, we present algorithms that recompute the
rate of computing convolutions when moving from a TCN
to the corresponding SingleWindowTCN and vice-versa.

A. RT-TCN Algorithm

RT-TCN operates using these 2 principles:

e A convolution operation is performed as soon as a
dilated kernel width of inputs are available at that layer.

o Each layer uses an independent buffer to maintain a
history of inputs required for the next convolution.

RT-TCN consists of two parts:

1) Algorithm 1 is run once to allocate buffers to store
input and intermediate data and initialize them.

2) Algorithm 2 is then supplied generated buffers and
runs continually. Given the latest input, this algorithm
performs the necessary individual convolutions in all
layers, updates the necessary buffers, and returns the
network output if it is available. The network output
may not be available every time-step if:

« The number of inputs processed is less than T"— p.
o Output rate reduction r > 1, as in Figure 1b.

Algorithm 1 Allocate and Initialize Buffers

Input: n < Network Depth/Number of layers

Input: ¢ < Number of input channels

Input: f[] <+ List of number of filters for each layer

Input: k[| < List of kernel sizes for each layer

Input: s[] < List of strides for each layer

Input: d[| < List of dilation rates for each layer

Input: p < Number of zero-padded inputs

Output: b |, b,[| Lists of buffers and initial write heads
I: m. < CONCATENATE([c], f[1 : n — 1])
2: for i =1ton do

k' dfi] - (k[i] = 1) + 1

bli] < Matrix[n,[i]][k]

: for j =1topdo

x + Vector|c]

FILL(z,0) > Input with all channels set to zero

RT-TCN(z; = x) > Apply Algorithm 2

(95}

> Apply padding

D A A

In Algorithm 1, we first compute the number of input
channels n, at each layer on line 1 by combining the number
of input channels and number of convolution filters from all
but the last layer. On line 3, we compute the dilated kernel
size k for layer 4, which is then used to initialize a single
fixed size buffer b[i] in “CW” layout (channels-width) on line
4. For a TCN, the width “W” in the “CW” layout references
the time dimension [16]. On line 5, we initialize the write
head by, [¢] which identifies the column along “W” where the
next input to that buffer should be written to. If padding
p is specified, p zero inputs are fed into Algorithm 2 to
populate the buffers appropriately (lines 6-9). Setting p =
T — 1 ensures that an output is generated on the first input.

Algorithm 2 takes a new single multi-channeled input
xz; and passes it through the network while performing
individual convolutions as necessary. A new input can trigger
at most 1 matrix multiplication per layer if the input buffer
for that layer becomes full. If a convolution is triggered in
the output layer, then a new network output gets generated.

On line 1, the new input sample x; is put in a temporary
buffer x}. On lines 4 and 5, x} is copied into the input
buffer for the current layer. If the buffer is full, then a dilated
convolution with an activation function is performed on lines
8 and 9 and the result is placed in x} to be processed as
an input for the next layer. The input buffer is emptied by
shifting it by the layer stride to eliminate the oldest values
along the time dimension (line 10), and the write head is
updated (line 11). Finally, if a convolution is performed in
the output layer, the temporary buffer z} is copied to the
output buffer on line 12. If the buffer is not full at any layer,
then no output is returned (lines 14 and 15).

B. SingleWindowTCN

To train a TCN, the straightforward approach is to sample
minibatches of whole input sequences with shape “NCW,”
where N is the minibatch size, C' is the number of input
channels, and W is the “width” of the sequence, and then
perform standard stochastic gradient descent optimization

Algorithm 2 RT-TCN Algorithm

Algorithm 3 Continual TCN to SingleWindowTCN

n +— Network Depth/Number of layers

s[] « List of stride for each layer

d[] + List of dilation rates for each layer

my,[| < List of weight matrices for each layer

my| | < List of bias matrices for each layer

gl] « List of activations for each layer

b[] « List of input buffers for each layer

by[] < List of buffer write heads for each layer

Input: z; < Next input data point to process at layer 0
Output: o (Network output, none if not available)

I @} x4

2: fori=1ton do

3: ¢ + NUMROWS(b[i]) > Input channel size
4 for j =0to c do > Fill channels at buffer head
5: Ole][5][bn[i]] = 23]

6: by, [Z] — by, [Z] +1

7: if by[i] = NUMCOLS(b[i]) then > Full buffer
8 x}y <= CONVID(b[i], my, [i], mpli], d[i])

9: x} < gli)(z}) > Apply activation function
10: b[i] + SHIFTCOLSLEFT(b]], s[i])

11: bh[i] <—bh[i] —S[Z]

12: if i = n then o + z}

13: else

14: 0 < none

15: break

on those minibatches to compute weight and bias matrices.
However, there is a potential drawback to this approach. If
we train with only a few sequences of long lengths (small
N and large W), then correlations within a single sequence
may negatively impact the learning process. To address this
issue, smaller random subsequences may be extracted and
used for training, and the minimum size of such sequences
is equal to the receptive field size.

If we feed only a receptive field size length of inputs into
a TCN, some intermediate convolutions no longer contribute
to the single output and can be removed. For example,
Figure 1c shows a reduced SingleWindowTCN for the TCN
in Figure 1b, and only 3 convolution operations need to
be executed in Layer 2 instead of 5 when the input length
is equal to the receptive field size. Popular deep learning
libraries such as TensorFlow perform such pruning optimiza-
tions automatically during training [6], but such libraries
cannot be used for inference on resource-constrained devices.

Note that network reduction is not necessary, as the TCN
parameters s and d are sufficient to compute the output when
the input sequence length is equal to its receptive field size.
Some intermediate convolutions will not be used in the final
output, and in Section V, we examine how removing such
convolutions decreases computational requirements when
RT-TCN is not used for inference. In Algorithm 3, we
specify how a TCN can be reduced to a SingleWindowTCN
by reducing the rate of convolutions in each layer. Addition-
ally, if a trained SingleWindowTCN is used for inference
continually via RT-TCN, it is necessary to recalculate the

Input: n < Network Depth/Number of layers
Input: s[] < Continual strides for each layer
Input: d[| < Continual dilation rates for each layer
Output: s,,[| + SingleWindow strides for each layer
Output: d,,[] < SingleWindow dilation rates for each layer
I: Sge[n] 1
dgw[n] + 1
Sm d[n]
fori=n—-1to1do
Sswlt] < s[i] - sm
dgy[i] < dli]
Sm $— GCD(Sgy[i], dsw[i])
swli] + 224
Ay [i] < Ll

Sm

> Stride rate multiplier

D A A

rate at which convolutions need to be computed in every
layer given output rate r (Algorithm 4).

We now describe Algorithm 3 in detail. In a SingleWin-
dowTCN, since there is only 1 network output, stride at
the output layer is insignificant and can be set to 1 (line
1). Similarly, since no other input apart from those being
operated upon is necessary, dilation can be reduced to 1 (line
2). Decreasing dilation at the output layer increase strides
in lower layers, and we calculate the striding multiplier
Sm for the next layer (line 3) and update parameters for
it on lines 5-6. Next, we optimize parameters at this layer
by determining if any inputs are not needed. We compute
the Greatest Common Divisor (GCD) of the new stride and
dilation rate. GCD > 1 implies that some inputs at this layer
are not needed, and the stride and dilation rate are optimized
on lines 8-9; the stride rate multiplier for the next layer is
set to the GCD (line 7). This process is repeated down to
the input layer. If a reduction is performed at the input layer,
then some inputs are no longer needed and inputs should be
sub-sampled using the final value of s,,.

In Algorithm 4, we first initialize a dilation rate multiplier
mg to 1 on line 1. On line 4, we recompute strides for
a given layer depending on whether the output needs to

Algorithm 4 SingleWindowTCN to Continual TCN

Input: n < Network Depth/Number of layers

Input: r < Desired Output Rate Reduction

Input: s,,[] < SingleWindow strides for each layer
Input: d;,[| + SingleWindow dilation rates for each layer
Output: s[] + Continual strides for each layer

Output: d[| + Continual dilation rates for each layer

tmg 1
sl e
: for i =1ton do

1 > Dilation rate multiplier
2

3

4: [i] < GCD(sgw[i], ")

5

6

7

> Temporary variable

s
d[i] « dy[i] - ma
e
s[i]
Sgw[1]
!

mq < My

®

s[n] < s[n] - r

be calculated at a different rate than the stride specified
by SingleWindowTCN. Next, we increase (as needed) the
dilation rate based on the current value of the dilation rate
multiplier. Finally, on lines 6 and 7, we update r to account
whether the stride s at that layer accounts for a part of 7 rate
reduction, and then recompute m, depending on whether
additional convolution outputs were inserted at the current
layer, increasing the dilation rate at higher layers. If some
portion of r was not accounted by the stride at any layer, it
implies that striding exists at the output layer and the stride
rate is updated on line 8.

V. RESULTS

In this section, we evaluate how well RT-TCN performs
on metrics representing compute and memory when com-
pared to 2 other baseline approaches for TCN inference.

A. Experimental Setup, Approaches, and Metrics

We use a TCN network similar to Figure 1. Unless
otherwise specified, it has the following parameters:

o The depth of the network n = 3.

 All 3 layers have a kernel size of 3, i.e. k = [3,3,3].

o The output layer has 1 convolution filter whereas other
layers have 6, i.e. ny = [6,6,1].

o The network dilation rates d = [1, 1, 2].

o The convolution strides s = [2,1,1]. This s results in
an output reduction rate r = 2.

o ReLU is used as the non-linear activation function g in
all layers. ReLU is a good activation function in de-
vices with constrained compute since it doesn’t require
any FLOPs. Existing work on efficiently approximating
tanh [21], sigmoid [21], and ELU [20] is available.

 Input sampling rate is assumed to be 100Hz. Compute
for all approaches scales linearly with this rate.

o All values are stored in 4 byte floating-point.

Note that the receptive field size T' = 15 at these settings.

Given a TCN, the following approaches can be used for

computing TCN outputs in real-time:

1) SIMPLE - The last T" inputs are buffered in memory
and used to compute the output by computing each
intermediate layer completely prior to the next layer.

2) SINGLEWINDOW - Same as SIMPLE, except strides
and dilations computed by reducing the network using
Algorithm 3 are used to compute network output.

3) RT-TCN - Given a TCN, different buffers are initial-
ized for the input and intermediate layers via Algo-
rithm 1. During inference, these generated buffers are
used by RT-TCN (Algorithm 2) to compute the output.

If the TCN has been trained as a SingleWindowTCN, it

must be converted to a continual TCN using Algorithm 4
when SIMPLE or RT-TCN are used to compute the TCN
output, and vice versa when SINGLEWINDOW is used for
computation (using Algorithm 3). Furthermore, since both
SIMPLE and SINGLEWINDOW require buffering the last T
inputs, they always require the same running memory.

We measure TCN inference performance for these ap-

proaches using the amount of running memory required for

buffering data, and the number of multiplicative FLOPS
required to compute convolutions. Note that the amount of
read-only memory to store convolution parameters is same
across all approaches, and is not included. We now vary some
network parameters and show metrics for all 3 approaches,
and outline guidelines using those results.

B. Varying Convolution Filters (ny)

We vary the number of convolution filters () in the first
2 layers in tandem, and plot metrics in the 2 graphs on the
left end of Figure 2. As ny increases, the computation time
for all 3 approaches increases on the order of n?, as both
the number of individual convolutions and inputs at the next
layer increase. At the default setting (n; = [6,6, 1]), RT-
TCN requires less compute than the other approaches while
requiring the same amount of memory. While the relative
ratios between the approaches are maintained as we vary
ny, the memory required by RT-TCN increases linearly
while SINGLEWINDOW and SIMPLE use constant memory
as the input buffer size does not change. This result is not
unexpected, as RT-TCN requires intermediate layer buffers
and the size of those buffers depend on ny.

From these results, we can state the guideline that if
memory is not constrained, or the number of input chan-
nels ¢ 2 AVERAGE(ny), RT-TCN can reduce computation
compared to SINGLEWINDOW within a similar memory
footprint. Furthermore, RT-TCN memory can be reduced by
reducing filters in layers with high dilation rates, assuming
network output quality is not significantly impacted.

C. Varying Network Dilation Rate (d)

As network dilation rate d is varied in tandem across all
3 layers (results in center left graphs in Figure 2), compute
for SINGLEWINDOW and RT-TCN is not impacted, whereas
compute for SIMPLE increases linearly. SIMPLE is inefficient
at high dilation as it computes numerous intermediate con-
volutions that do not contribute to the single output. In fact,
all graphs in Figure 2 demonstrate that SINGLEWINDOW is
better than SIMPLE, as it is always better not to compute
unnecessary convolutions. Additionally, RT-TCN requires
less memory relative to SINGLEWINDOW as d increases.
The receptive field size T increases super-linearly with d
and SINGLEWINDOW requires more memory relative to RT-
TCN, giving RT-TCN a slight edge at high dilation rates.

D. Varying Network Depth (n)

Next, we vary the network depth (n) from 2 layers to 8
layers (results in center right graphs in Figure 2). As we
vary network depth, it is necessary to select kernel sizes,
number of filters, strides and dilation rates for all layers
appropriately. All layers always use a kernel size of 3 and 6
filters regardless of the value of n. Layer 1 has a stride of
2, and all remaining n — 1 layers have a stride of 1, which
ensures that the output rate reduction is always 2 regardless
of n. Similar to the default settings, layer n has a dilation
of 2, and all other layers have a dilation rate of 1.

The graphs demonstrate one key result of this paper.
As the number of layers increases, the CPU consumption

S 801 —e— Simple S 5400 5200
=3 X X S 200 S S
o SingleWindow S S S
=60 RT-TCN X %300 %150
g v 150 0 0
) & S g
3 g g g
“;) 40 w w 200 w100
2 g100 2 2
= =1 =] =
.g 20 S] 100 1§ 50
s s %0 s s
= = = = P
= 0 2 0 2 0 2 o Nou g
2 4 6 8 2 4 6 8 2 4 6 8 5 10 15
Filters Network Dilation Rate Network Depth Output Rate Reduction
300 a1 600

1200 o » 150
8 50 o—8—8—9—o" o8| T1000 v 4 300 P “ e
a 2 a g @
5.200 2 800 o 400 o E300
s z 600 s S 2 S
£ 150 £ o § 300 i §250{ i i i
s 2 .00 = = P A e SLOS A S)

n"’ 7
100 - 200{ _~
2001 & o 200
2 4 6 8 2 4 6 8 2 4 6 8 5 10 15

Filters Network Dilation Rate

Network Depth Output Rate Reduction

Fig. 2: We vary TCN parameters and plot multiplicative FLOPS as a measure of compute requirements (top row) and
memory consumption in bytes as a measure of memory requirements (bottom row). At the left end, we vary number of
filters (ny) across all layers apart from the output layer in tandem. At the center-left, we vary network dilation rates (d)
across all layers in tandem. At the center-right, we vary network depth (n). At the right end, we change the output rate
reduction () assuming that the network was trained as a SingleWindowTCN.

for RT-TCN increases linearly with the number of layers
because RT-TCN only performs at most 1 convolution per
layer. In contrast, CPU consumption for both SIMPLE and
SINGLEWINDOW increases super-linearly as increasing the
network depth additionally increases the receptive field size,
and more convolutions are performed at lower layers to
compute the SingleWindowTCN output. In terms of memory
consumption, the memory consumption for all 3 approaches
increases linearly with the network depth. As the number of
layers increase, the overhead for maintaining more interme-
diate buffers in RT-TCN is slightly more than the increasing
receptive field size, so SIMPLE and SINGLEWINDOW con-
sume slightly less memory relatively.

E. Varying Output Rate Reduction (1)

Assuming that the TCN has been trained as a SingleWin-
dowTCN, and the frequency at which network output needs
to be computed is a choice for a specific problem domain, we
can induce different continual TCN architectures by varying
the output reduction rate r (right end of Figure 2). Varying
r changes the stride s and network dilation rate d of the
resulting TCN (computed in Algorithm 4). As we vary r, the
CPU required by SINGLEWINDOW is inversely proportional
to r, and since the receptive field size T° does not change, the
memory requirement for SINGLEWINDOW is also constant.

On the other hand, the memory and compute requirements
for RT-TCN can change dramatically as we vary r. For
instance, a value of r = 3 effectively induces a dilation rate
of 4 and a stride of 3 in the output layer, and requires the
same memory and almost the same amount of computation
as when » = 1. In fact it is better to choose a higher
output frequency rate by setting » = 2, as in the induced
continual TCN architecture the output layer has a dilation

of 2 and stride of 1, and the TCN is much more efficient to
compute in real-time. The compute requirements for SIMPLE
are similarly affected as RT-TCN. These results demonstrate
that it is necessary to choose a suitable value of output
rate reduction r if that parameter can be freely selected.
Additionally, in situations where the output is not needed
often when compared to the input rate (r = T/2) it is faster
to compute the network output from buffered inputs directly,
and SINGLEWINDOW should be used.

VI. CONCLUSION

In this work, we have presented RT-TCN, an algorithm
which buffers the output of intermediate convolutions to
ensure no redundant computation is performed when a TCN
is evaluated continually in real-time. Through empirical
results we have demonstrated settings at which RT-TCN
can reduce the computational cost for inference compared
to the SINGLEWINDOW approach, where a time-slice of
time-series data is passed through a convolution network
layer-by-layer, and intermediate convolution operations are
not retained in memory even if they will be needed to
compute future outputs. We have also presented guidelines
and results that are intended to help with selection of network
architecture and inference approach when using TCNs. We
believe the work presented in this paper will help in the
application of TCNs for solving problems on devices with
limited resources.

In future work, we aim to extend RT-TCN to more
complex and deeper network architectures. While not every
TCN architecture is suited for the input and intermediate con-
volution reuse proposed by RT-TCN, it should be possible to
incorporate some common TCN techniques such as residual
connections in RT-TCN which we would like to explore.

[1

—

[3]

[4

=

[5

=

[6

=

[7

—

[8

=

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Andrea Apicella, Francesco Donnarumma, Francesco Isgro, and
Roberto Prevete. A survey on modern trainable activation functions.
arXiv preprint arXiv:2005.00817, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical eval-
uation of generic convolutional and recurrent networks for sequence
modeling. arXiv preprint arXiv:1803.01271, 2018.

Marco Carreras, Gianfranco Deriu, Luigi Raffo, Luca Benini, and
Paolo Meloni. Optimizing temporal convolutional network inference
on FPGA-based accelerators. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 2020.

Shuo-Yiin Chang, Bo Li, Gabor Simko, Tara N Sainath, Anshuman
Tripathi, Adron van den Oord, and Oriol Vinyals. Temporal modeling
using dilated convolution and gating for voice-activity-detection. In
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat
Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi
Regev, et al. Tensorflow lite micro: Embedded machine learning on
tinyml systems. arXiv preprint arXiv:2010.08678, 2020.

Google. TensorFlow graph optimization with Grappler, Accessed
August 5, 2020. https://www.tensorflow.org/guide/
graph_optimization.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 1997.

Carnegie Mellon University Locus Lab. Sequence Modeling Bench-
marks and Temporal Convolutional Networks (TCN), Accessed August
5, 2020. https://github.com/locuslab/TCN.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. ~CMSIS-NN:
Efficient neural network kernels for arm Cortex-M cpus, 2018.
Pedro Lara-Benitez, Manuel Carranza-Garcia, José M Luna-Romera,
and José C Riquelme. Temporal convolutional networks applied to
energy-related time series forecasting. Applied Sciences, 2020.
Pedro Lara-Benitez, Manuel Carranza-Garcia, and Jose C Riquelme.
An experimental review on deep learning architectures for time series
forecasting. International Journal of Neural Systems, 2020.

Siddique Latif, Muhammad Usman, Rajib Rana, and Junaid Qadir.
Phonocardiographic sensing using deep learning for abnormal heart-
beat detection. IEEE Sensors Journal, 2018.

Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D
Hager. Temporal convolutional networks for action segmentation and
detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation applied to handwritten zip code recognition. Neural
computation, pages 541-551.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio.
Object recognition with gradient-based learning. In Shape, contour
and grouping in computer vision. Springer, 1999.
MathWorks. Data Layout Considerations in
Learning, Accessed August 5, 2020.
//www.mathworks.com/help/gpucoder/ug/
data-layout-considerations—gpu-deep-learning.
html.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016.

Philippe Rémy. Keras TCN, Accessed August 5, 2020. https:
//github.com/philipperemy/keras—-tcn.

Moritz Scherer, Michele Magno, Jonas Erb, Philipp Mayer, Manuel
Eggimann, and Luca Benini. Tinyradarnn: Combining spatial and tem-
poral convolutional neural networks for embedded gesture recognition
with short range radars. arXiv preprint arXiv:2006.16281, 2020.
Nicol N Schraudolph. A fast, compact approximation of the exponen-
tial function. Neural Computation, 1999.

P Sibi, S Allwyn Jones, and P Siddarth. Analysis of different
activation functions using back propagation neural networks. Journal
of Theoretical and Applied Information Technology, 2013.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro
Shikano, and Kevin J Lang. Phoneme recognition using time-delay
neural networks. IEEE transactions on acoustics, speech, and signal
processing, 1989.

Deep
https:

[23]

[24]

[25]

Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang.
Multivariate temporal convolutional network: A deep neural networks
approach for multivariate time series forecasting. Electronics, 2019.
Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classi-
fication from scratch with deep neural networks: A strong baseline.
In International joint conference on neural networks (IJCNN). IEEE,
2017.

Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and
Shonali Krishnaswamy. Deep convolutional neural networks on mul-
tichannel time series for human activity recognition. In International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

