
In Proceedings of the IJCAI Workshop on Autonomous Mobile Service Robots , New York City, NY, USA
July 2016

State Aggregation through Reasoning in Answer Set Programming

Ginevra Gaudioso, Matteo Leonetti, and Peter Stone
Department of Computer Science

University of Texas at Austin
ginevra.gaudioso@utexas.edu, {matteo,pstone}@cs.utexas.edu

Abstract
For service robots gathering increasing amounts of
information, the ability to realize which bits are rel-
evant and which are not for each task is going to
be crucial. Abstraction is, indeed, a fundamental
characteristic of human intelligence, while it is still
a challenge for AI. Abstraction through machine
learning can inevitably only work in hindsight: the
agent can infer whether some information was per-
tinent from experience. However, service robots
are required to be functional and effective quickly,
and their users often cannot let the robot explore the
environment long enough. We propose a method to
perform state aggregation through reasoning in an-
swer set programming, which allows the robot to
determine if a piece of information is irrelevant for
the task at hand before taking the first action. We
demonstrate our method on a simulated mobile ser-
vice robot, carrying out tasks in an office environ-
ment.

1 Introduction
Service robots will have to perform a variety of tasks for ex-
tended periods of time, inhabiting their environment perma-
nently. They are subject to continuously accumulating knowl-
edge, which can quickly become overwhelming. Decision
making requires robots to process such knowledge repeatedly,
with the additional challenge, brought about by sharing the
environment with humans, of having to do so with a respon-
siveness that does not make the users impatient.

Being able to realize which pieces of information are rele-
vant for which task will become an indispensable skill. This
ability of abstracting irrelevant details is a formidable char-
acteristics of human intelligence, which is still a challenge for
AI. A person learning the shortest path between two rooms in
a building would have no problem realizing that the weather
outside has no bearing on his task. He would not need to learn
it from data, trying a certain path with sunshine and with rain
to verify it takes the same time. He would just be able to re-
alize it by reasoning. This human capability is what we want
to achieve by automated reasoning.

In this paper, we propose a system which leverages auto-
mated reasoning in Answer Set Programming (ASP) to de-

termine a set of possible courses of action for the robot, and
the respective relevant information. Reinforcement learning
is then performed to learn the best behavior for the task, learn-
ing decisions that depend only on the knowledge that the ASP
reasoner has deemed pertinent.

By reasoning on a model, the agent can direct the execu-
tion towards the goal, without the need to explore the whole
environment. Through reinforcement learning, the agent can
adjust to the environment, adapting in the (very likely) case
of inaccuracies of the model. By learning alone, however, the
only way to realize whether some features of the perceived
state are irrelevant for the optimal behavior is in hindsight:
after trying the same actions multiple times, statistical tests
can reveal that certain states can indeed be abstracted. In cer-
tain cases as our example above, on the other hand, we expect
that reasoning on a model of the environment should provide
such an abstraction even before acting. For this reason, we
propose a combination of automated reasoning in ASP and
reinforcement learning, to benefit from both the forward view
of reasoning and the backward view of learning.

2 Background
2.1 Answer Set Programming
Answer Set Programming is a form of declarative program-
ming, based on the stable model semantics of logic program-
ming [Lifschitz, 2008]. Its syntax is defined in terms of
atoms, literals, and rules. An atom is an elementary propo-
sition, such as p or -q, while a literal is an atom with our
without negation, such as p or not q. A rule is is an expres-
sion of the form:

p, . . ., q :- r, . . ., s, not t, . . ., not u

where “:-” is the (prolog-style) implication sign. The im-
plication sign separates the head (on the left), from the body
(on the right) of the rule. The head is a disjunction of lit-
erals, while the body is a conjunction of literals. A set of
rules forms an ASP theory. A model of an ASP theory is an
Answer Set, that is a set of atoms compatible with the the-
ory. Informally, each rule has to be interpreted as follows: if
r, . . . , s are in the answer set, and t, . . . , u are not, then at
least one in {p, . . . , q} is in the answer set. For a formal def-
inition of the stable model semantics we refer to Gelfond and
Lifschitz [1988].



The symbol not is often referred to as negation as failure.
The classical negation of an atom p is denoted with -p, and
is another atom, with the constraint that if p is in the answer
set then -p cannot be in the answer set, and vice versa.

A choice rule is a particular rule whose syntax is as follows:
{p, . . ., q} :- r, . . ., s, not t, . . ., not u

If the body is verified by the answer set, then zero or any
number of atoms in {p, . . . , q}may be in the answer set. Two
other special cases of rules are facts and constraints. A fact is
a rule in which the body is missing. A constraint is a rule in
which the head is missing. For instance, “:- q” means that
q cannot belong to any answer set.

To compute the answer sets of a given program, we used
the answer set solver clingo [Gebser et al., 2011].

2.2 Planning in Answer Set Programming
We want to represent a dynamical system Dm = 〈S,A, fm〉
in Answer Set Programming. The set S is a set of states, A
is a set of actions, and fm : S × A → 2S is the (potentially
non-deterministic) transition function.

The set of states is represented in terms of predicates whose
truth value may change at different time steps, and that for
this reason are called fluents. Given a finite set of fluents, F ,
the set of states S = 2F is the set of all possible truth as-
signments (positive or negative) to the fluents in F . In ASP,
however, a fluent may have three values: appear in an answer
set, appear negated, or not appear at all. Therefore, answer
sets can be partial assignments to the fluents, where some flu-
ents result unspecified. Such answer sets may correspond to
more than one state (the ones obtained by assigning true or
false to the missing fluents in all possible ways), and we will
refer to them as belief states. Let B = 3F be the set of belief
states over the fluents in F . Let c : B → 2S be a completing
function which for any belief state b returns the set of states
obtained by assigning to the fluents in F \ b truth values in all
possible ways. We can establish a partial ordering over belief
states, determining that a belief state b is more general than a
belief state b′ iff c(b) ⊇ c(b′), denoted with b � b′.

Actions are represented in the same way as fluents, and
are syntactically indistinguishable from them. For instance,
openDoor(d1,0), is an atom that means that the action
openDoor is executed on door d1 at time step 0. The tran-
sition function fm is represented in the ASP theory by deter-
mining how fluents are carried over from one time step to the
next by actions, or just by the passage of time.

The pre-condition of actions is represented with con-
straints. For instance:
:- openDoor(D,I), not facing(D,I)

means that it is not possible to execute action openDoor(D)
if facing(D) cannot be proven at time step I.

The effect of actions is represented with rules such as:
open(D,I+1):- openDoor(D,I)

which means that executing the action openDoor(D) at
time step I causes the door to be open at time step I+1.

A planning problem P = 〈Dm, s0,G〉 is a tuple where
Dm is a transition system, s0 is the initial state, and G is a set
of states. The initial state is specified through a set of facts

about the time step 0, while the goal state is specified through
constraints excluding, from the possible set of states at the
last time step, all the states that do not fulfill a given goal. The
ASP reasoner grounds all the rules, and generates a theory up
to a given time step n, whose answer sets are all and only
the histories of the form 〈s0, a0, . . . , sn−1, an−1, sn〉, where
sn ∈ G. The sequence of actions p = 〈a0, . . . , an−1〉 is a
plan that achieves a goal state in G.

2.3 Optimization in Answer Set Programming
The answer set solver clingo supports optimization state-
ments, which allow the programmer to obtain not just any
answer set but an optimal one. We take advantage of this
feature, since we want to compute the minimum set of flu-
ents necessary to estimate the cost of a plan. An optimization
statement can be specified as follows:
opt { L1, ..., Ln }

where opt can be either #minimize or #maximize, and
the symbols Ln are literals. As a consequence of the presence
of this statement, the answer set solver will return an answer
set which has either the minimum or the maximum possible
number of literals specified in the statement.

Answer set programming allows us to write very compact
models, and the answer set solver clingo can return not just
one plan but all plans that fulfill certain constraints, which
will be necessary for the definition of our method. Further-
more, the ability to optimize over the answer sets allows us
to define the minimum solution as the more abstract, enabling
the reasoning at the foundation of state aggregation. A draw-
back of automated reasoning is that decisions originate from
the model only, and any discrepancies between the environ-
ment and the model may lead to a failure. We overcome
this weakness through reinforcement learning, grounding de-
cisions also on data from experience.

2.4 Markov Decision Processes
We introduce briefly in this section the notation we use for
Markov Decision Processes, referring to one of the many
more specialized texts for a complete discussion [Sutton and
Barto, 1998]. We denote a Markov Decision Process as
D = 〈S,A, f, r〉, where S is the set of states, A is the set
of actions, f is the transition function and r is the reward
function. We denote with A(s) the actions available in state
s. The behavior of the agent is represented as a function
π : S → A called a (stationary deterministic) policy, which
returns the action to execute in each state.

A number of methods exist which return an optimal policy
by computing a value function:

qπ(s, a) =
∑
s′

f(s, a, s′)(r(s, a, s′) + γq(s′, π(s′))), (1)

where 0 < γ ≤ 1 is the discount factor. The value function
computes the expected return for taking action a in s and fol-
lowing π thereafter. A policy π∗ is optimal iff qπ∗(s, a) ≥
qπ(s, a), for every other policy π, and ∀s ∈ S, a ∈ A.

Value functions often cannot be represented exactly but
have to be approximated. Function approximation also al-
lows the agent to generalize between similar states (where the
similarity depends on the function approximation involved).



A popular function approximator, for which implementa-
tions are widely available, is Tile Coding with hashing [Sut-
ton and Barto, 1998]. In tile coding the state space is parti-
tioned into tiles, where the union of a layer of tiles forms a
tiling. A feature φi(s) ∈ {0, 1} corresponds to each tile, and
therefore, only one feature can return 1 per tiling. It is pos-
sible to have multiple tilings slightly shifted from each other
span the state space, or at different resolutions.

We will use Sarsa(λ) [Sutton and Barto, 1998] for control,
estimating the value function with True Online TD(λ) [Seijen
and Sutton, 2014]. The exploration will be an ε-greedy strat-
egy. With the ε-greedy strategy, the agent chooses the current
optimal action according to qπ with probability 1 − ε, and a
random action with probability ε.

Reinforcement learning allows the agent to learn an opti-
mal behavior with no prior knowledge. In practice, however,
this often requires an infeasible amount of experience. This
issue is addressed by DARLING, a method combining plan-
ning and reinforcement learning described in the next section.

2.5 Domain Approximation for Reinforcement
Learning

The approach presented in this paper builds on a method to
generate a reduced MDP for reinforcement learning through
planning, called Domain Approximation for Reinforcement
LearnING (DARLING). DARLING comprises three steps:
plan generation, plan filtering and merging, and reinforce-
ment learning.

Plan Generation The user is required to provide an ASP
model Dm = 〈S,A, fm〉 of an MDP D = 〈S,A, f, r〉. For
this paper we only consider MDPs that can be modeled in
ASP, therefore with discrete action and state spaces. The first
step consists of computing all plans of length at most L = µ·l
where l is the length of the shortest plans, and µ ≥ 1 is a pa-
rameter of the method, which determines how suboptimal a
plan can be in the model in order to be considered for rein-
forcement learning in the environment.

Plan Filtering and Merging Let P be the set of the plans
computed at the previous step. Some plans in P may be re-
dundant, that is, they may contain a sequence of actions such
that, if removed from the plan, what remains is also a plan.
For instance, a plan containing a cycle is redundant. If a plan
is not redundant it is said to be minimal. Redundant plans are
filtered out of P , and the remaining plans form the set Π(L)
of all the minimal plans of length at most L. The plans that
belong to Π(L) are then merged into a partial policy

πL(s) = {a|∃p ∈ Π(L) s.t. 〈s, a〉 ∈ p}, ∀s ∈ S. (2)

While a policy is a function that returns an action for each
state of an MDP, a partial policy is a function π : S → 2A

which returns the set of all the actions that belong to at least
one plan. Such a function is used in the last step of DAR-
LING to define a reduced MDP Dr on which the agent can
do reinforcement learning.

Reinforcement Learning and Execution At run time, the
agent can choose only among the actions returned by the
partial policy, and it estimates their value by reinforcement
learning to make an informed choice. The partial policy re-
duces the MDP in which the agent effectively learns from

D = 〈S,A, f, r〉 to Dr = 〈S,Ar, fr, r〉, where the actions
available are restricted to those returned by the partial policy:
Ar(s) = πL(s). The transition function is defined from the
one of D: fr(s, a, s′) = f(s, a, s′), ∀s, s′ ∈ S, a ∈ Ar(s),
but it is undefined for actions a /∈ Ar(s).

If the agent finds itself in a state for which πL returns no ac-
tion, it can replan from that state, compute a new partial pol-
icy, and merge it with the current one, augmenting the MDP
in which it learns.

3 Related Work
Li et al. [Li et al., 2006] identify several levels of abstrac-
tion for Markov Decision Processes, from the strictest, cor-
responding to Bisimulation [Givan et al., 2003], in which
two states are aggregated only if the full one-step model
corresponds exactly, to Policy Irrelevance [Jong and Stone,
2005], in which only the optimal action has to be maintained
when merging two states. Our method is at an intermedi-
ate level, indicated by Li et al. as Q∗-Irrelevance, since it
aims at preserving the optimal value function. At the same
level of abstraction are the G-algorithm [Chapman and Kael-
bling, 1991], and stochastic dynamic programming with fac-
tored representation [Boutilier et al., 2000]. The former ini-
tially collapses every state, and later performs statistical tests
to split particular states when necessary. It is a learning al-
gorithm, which does not require a model of the MDP, but
does require experience to gather enough data for the sta-
tistical tests. Conversely, our method is based on reasoning
on a model, and no prior experience is required to determine
which information is certainly irrelevant.

Factored representations allow for a natural description of
many domains in terms of features. Stochastic dynamic pro-
gramming on factored MDPs is a decision-theoretic method,
and it works on a model of the MDP, like our method, but it
requires an exact, stochastic, model. Our method, on the other
hand, requires an ASP model of the environment, which does
not include transition probabilities and actions costs. Re-
lated to factored representation is Relational Reinforcement
Learning (RRL) [Džeroski et al., 2001]. The aim of RRL is
making use of a relational, first-order, representation to gen-
eralize through logic induction. It is particularly powerful in
domains that can be naturally expressed in terms of objects
and relations among them. Even if generalizing through first-
order lifted inference, RRL methods still calculate values and
policies for the full domain, while our method uses ASP (in
its propositional definition) to reduce the portion of the region
to explore, and apply the generalization to that region only.

Lastly, the most common method for state aggregation for
RL is through function approximation. In particular, tile cod-
ing described in Section 2.4, is one of the most popular lin-
ear function approximators. For this reason, we compare our
method against Tile coding in Section 5.1.

4 Method
As previously introduced, a weakness of reinforcement learn-
ing, inherited by DARLING, is that state aggregation has to
happen in hindsight: as a consequence of the data acquired
through acting. In many situations, however, it is obvious to



humans that certain features of the environment have no im-
pact on a particular task, for instance the weather outside of
a building for indoor navigation. We aim at formalizing and
implementing such reasoning in ASP, so that the agent can
realize that certain aspects of the environment do not matter
for the task at hand, even before taking the first action.

As a motiving example, consider a service robot perform-
ing tasks in the building shown in Figure 1. The robot re-

Figure 1: Simulation environment of an office building.

members whether the doors in front of it are open or closed.
If the robot is in room A, as shown in the figure, and it has
to navigate to room B, the state of only a few of the about 30
doors on the floor actually affects the navigation.

We are interested in determining when two states are equiv-
alent for the purpose of computing an optimal policy in the
restricted MDP Dr. If in two states s and s′ the same actions
are available, and each action has the same value under the
optimal policy:

Ar(s) ≡ Ar(s′) ∧ qπ∗(s, a) = qπ∗(s
′, a),∀a ∈ Ar(s) (3)

then s and s′ can be aggregated, which we will denote with
B(s, s′).

As introduced in Section 2.2, it is possible in ASP to reason
in terms of belief states, that is, states in which some fluents
are not assigned a truth value. Some belief states are more
general than others, in that they correspond to larger sets of
fully specified states.

For each state s for which the partial policy (Eq. 2) returns
a non-empty set of actions, we want to compute the most gen-
eral belief state b∗ such that the following conditions hold:

s ∈ c(b∗) (4)

B(s, s′) ∀s, s′ ∈ c(b∗) (5)

@b. b � b∗ ∧B(s, s′) ∀s, s′ ∈ c(b) (6)

that is, b∗ is the maximal equivalence class for the value func-
tion containing the state s. Such a belief state b∗ would not
contain any of the fluents that are irrelevant for distinguishing
states for the purpose of estimating the optimal value func-
tion. Therefore, it would be possible to learn the same value
for all the states in c(b∗), accelerating learning considerably.

Executing DARLING, the agent has already computed
Π(L). The plans are stored in a directed acyclic graph
G = 〈V,E〉, where V = {s|∃p ∈ Π(L) s.t. 〈s, ai〉 ∈ p},
is the set of nodes which is composed of the states that are
traversed by at least one plan, and E = {〈si, ai, sj〉|∃p ∈
Π(L) s.t. 〈si, ai〉, 〈sj , aj〉 ∈ p ∧ sj = si+1} is the set of
edges, labeled by the actions, which link two states if they
appear one immediately after the other in at least one plan.

We require the user to specify the one-step model for esti-
mating action costs, and we take advantage of an automated
reasoner to verify which bits of information are necessary.

We add an additional requirement to the specification of
actions in ASP: a pre-condition for an action a is verified in
a belief state b if: (1) the action is executable in any state of
c(b), and (2) the agent has all the necessary information to
correctly estimate the cost of a from any state in c(b). The
second requirement is usually not present in planning, but it
will allow the reasoner, with an appropriate query, to chain
the necessary knowledge for estimating action costs.

For instance, the robot of our example has an action
approachDoor(D,I) to approach a door D at time step
I . We use time as a metric for action costs. The pre-condition
of such an action requires (1) the agent to be at a location con-
nected to the door (to enable the action) and (2) to know the
room in which the robot is, and the door it is beside. The
second part of the pre-condition is necessary to be able to as-
sociate a cost with the action.

In order to compute the most general current belief state,
the agent generates an ASP query for each plan available from
the current state. First, the current state is located in the graph
G. If not present, the agent can replan. Then, the graph is
visited with a depth first search starting from the current state.
For each plan, the agent constructs the following query:

1. For each fluent pi in the current state, add a choice rule
{pi}.

2. Add an optimization statement with each fluent pi in the
current state: #minimize {p1, p2, ..., pi}.

3. For each action a(C,i) with constants C at time step i
in the current plan, add the action as a fact: a(C,i).

4. Add the goal.

The resulting query is similar to a planning query, since it
contains the goal, but the choice rule is not on the actions,
which on the contrary are specified as facts, but on the fluents
of the initial state. Because of the minimization statement,
only the fluents that are necessary for the plan to achieve the
goal will be added. Hence, this method explicitly takes ad-
vantage of the fact that the agent knows what it is going to
do, and can therefore reason about what information will be
necessary down the road.

Consider the plan in the example that goes from room A
to room B through the doors A1 and B1. The knowledge
base of the robot could contain the state of 10 doors, still
leaving about 20 more unspecified. It also certainly contains
the fluent at(roomA,0) specifying that the robot is in room
A, and the fluent beside(A1,0), since the robot is beside
door A1. A minimization of the fluents of the current state
would leave only the at and beside fluents, and the fluents
encoding the state of doors A1 and B2. The state of any other
door would be removed from the answer set.

The query returns the minimum answer set ASi for a par-
ticular plan pi . The minimum belief state containing the cur-
rent state is then computed as b∗ = ∪ASi, the union of all
the answer sets for every plan. The information discarded is
certainly irrelevant for the plan, while it is still possible that
further generalization can be done on the preserved informa-



tion. This is the most we can extract from the model, but more
aggregation can be performed learning from data.

5 Experimental Validation
We validate our method to aggregate states through reasoning
in ASP in two domains. The first domain is a grid world de-
signed to serve as an illustration of the method. It allows us to
run a large number of trials, and to compare our method with
Tile Coding. The second domain is the realistic simulation of
a mobile service robot introduced above.

5.1 Gridworld Domain
The grid-world domain designed to illustrate our method is
represented in Figure 2. The state is composed of the agent’s

Figure 2: The Gridworld used for this experiment.

position in the grid and the grid’s color. The position is rep-
resented as 〈x, y〉 coordinates, where the bottom left corner
is 〈0, 0〉 and the top right corner is 〈4, 4〉. The color repre-
sents information which is irrelevant for navigation tasks in
the grid. The agent moves by executing the actions north,
south, east and west, which deterministically move the
agent in the respective direction, unless it would take the
agent out of the grid, or make it hit the wall, in which case the
agent does not move. In Figure 2, the wall is the thick black
line. The pre-conditions of the actions require the agent to
know its position, but do not require the color.

The wall has been added to illustrate the effect of DAR-
LING. We ran DARLING with µ = 1, so that only the plans
that are optimal in the model (shortest plans) are retained.
The resulting reduced MDPDr contains only actions to reach
the bottom cells, and the cells on the right-hand side of the
wall, as shown in Figure 2. There are 15 shortest plans in
this grid, but only one of them is the optimal plan in practice.
Since the ASP model of the environment does not contain the
reward, the optimal plan will have to be learned. The reward
returned for entering each cell is also shown in Figure 2.

The agent goes from the starting position (marked with S
in the figure) to the goal position (marked with G) for 100
episodes. The color of the grid was randomly assigned as
part of the initial state out of a set of 100 colors.

We compare the agent performing state aggregation with
our method against four agents that do state aggregation with
tile coding, and one which learns in the full state space, with-
out doing any aggregation. The agents using tile coding have
as input the state vector 〈x, y, c〉, where the first two variables
are the coordinates of the agent in the grid, and c ∈ [0, 99]
encodes the color of the grid. Each tile coding agent employs

a group of 8 tilings with 2 × 2 cells on the first two vari-
ables, and different sizes on the color variable, namely: 2,
10, 50, and 100. A drawback we can immediately note about
state aggregation with tile coding is that the representation
has to be designed by hand. The parameters of Sarsa(λ) are
α = 0.1, γ = λ = 0.9, ε = 0.5. For tile coding, α has been
normalized by the number of tilings.

The results, shown in Figure 3, are averaged over 1000 tri-
als, and a sliding windows of 5 episodes. The plot also shows
the 95% confidence intervals every 5 points. The agent im-

Figure 3: The results of the grid-world experiment.

plementing our method filters out the information about the
color at planning time, and the input to its learning layer con-
tains only the position of the agent. Even if learning with a
tabular representation, it can outperform all of the tile coding
agents. The performance of tile coding agents increases, as
expected, with the generalization over the irrelevant variable.
The agent learning in the full state space in tabular form is the
slowest to learn, since it has to re-learn the optimal action for
each state for every color of the grid.

In this experiment the irrelevant knowledge has been in-
jected in the design of the environment, and can be identified
easily. In the next domain we show a realistic scenario in
which relevant and irrelevant fluents have to be determined
state by state.

5.2 Robot Navigation Simulator
The second domain was introduced in Section 4 and is shown
in Figure 1. The simulation is controlled by the same code
that controls our robots, executed in the Robot Operating Sys-
tem (ROS), while the 3D simulation was built in Gazebo1.

The state of the environment is represented by a set of flu-
ents as follows. The at(R,I) fluent represents the posi-
tion of the robot; beside(D,I) and facing(D,I) in-
dicate the position of the robot with respect to door D; the
open(D,I) fluents represent the state of the doors. The
set of actions is: gothrough(D,I); opendoor(D,I);
approach(D,I), where D is a door, with their literal
meaning. The reward function is r(s, a, s′) = −t(s, a, s′),
where t(s, a, s′) is the time in seconds it took to execute ac-
tion a from s to s′.

The robot had a sequence of three tasks to perform, which
was repeated 500 times. Each task has the goal of reaching

1ROS: www.ros.org, Gazebo: gazebosim.org



(a) Task 1, action 1. (b) Task 1, action 2.

Figure 4: The estimated return without state aggregation for the initial states corresponding to the single belief state of Figure 5

Figure 5: The estimated return with state aggregation for the
most frequent initial belief state.

one of the three roomsA,B, orC, starting from the preceding
one in a loop.

The state of the environment changed every 5 iter-
ations of the tasks: some randomly chosen doors in
{A1,A2,A3,B1,B2,B3,C1,C2} were closed and others were
opened, to simulate the effect of people in the real envi-
ronment. When approaching a door the robot can sense its
state, and therefore update the knowledge base following the
changes in the environment. The parameter were µ = 1.5 for
DARLING, and α = 0.8, γ = 0.9999, λ = 0.9, and ε = 0.15
for Sarsa.

Each simulated trial took about 14 hours in real time, which
corresponds to 2.5 times as much simulated time. For this
reason we could not run as many trials as with the grid-world
domain. For this experiment, we show the impact of state ag-
gregation on the estimate of the value function in the initial
state, which converges to the robot’s estimate for the whole
task. For each task we identified the aggregated belief state
which was the most frequent initial state. Let this belief state
be bi. Then we determined which states in c(bi) were the
initial state when the agent was not performing state aggrega-
tion. The single most common aggregate belief state corre-
sponds to 11 initial states for Task 1, 6 for Task 2, and again
11 for Task 3. It means that the agent not performing state

aggregation had to learn the same values for the same ac-
tions 11, 6, and 11 times respectively just for the initial state,
while it only had to learn them once while doing state aggre-
gation. The estimates learned for state aggregation are shown
in Figure 5, while the estimates without state aggregation are
shown, for each of the 11 states that should have been aggre-
gated, in Figure 4. Note that the estimates converge for state
2, the most frequent, while for the other states they are still
converging. For all these other states, using the aggregated
knowledge would provide a correct estimate, while the value
of those actions had to be relearned.

6 Conclusion

We propose a method to perform state aggregation based on
reasoning in answer set programming. The method allows
the robot to realize, before execution, what pieces of infor-
mation are certainly going to be irrelevant for learning an op-
timal policy. We demonstrated the approach on two domains,
one of which is a realistic simulation of a service robot in an
office environment. We show how much can be gained by
doing state aggregation, since just in the initial state of one of
the three tasks performed, the agent had to relearn the same
action values 11 times. This learning effort could be spared
if the robot realized that those 11 initial states are actually
equivalent for the task at hand. This ability is going to be
crucial for service robots which will deal with constantly in-
creasing amounts of information.

7 Acknowledgements

This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in
part by NSF (CNS-1330072, CNS-1305287), ONR (21C184-
01), and AFOSR (FA9550-14-1-0087). Peter Stone serves
on the Board of Directors of Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by the Uni-
versity of Texas at Austin in accordance with its policy on
objectivity in research.



References
[Boutilier et al., 2000] Craig Boutilier, Richard Dearden,

and Moisés Goldszmidt. Stochastic dynamic program-
ming with factored representations. Artificial Intelligence,
121(1):49–107, 2000.

[Chapman and Kaelbling, 1991] David Chapman and
Leslie Pack Kaelbling. Input generalization in delayed
reinforcement learning: An algorithm and performance
comparisons. In International Joint Conference on
Artificial Intelligence, volume 91, pages 726–731, 1991.

[Džeroski et al., 2001] Sašo Džeroski, Luc De Raedt, and
Kurt Driessens. Relational reinforcement learning. Ma-
chine learning, 43(1):7–52, 2001.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Schneider. Potassco: The potsdam answer set solv-
ing collection. Ai Communications, 24(2):107–124, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, volume 88, pages
1070–1080, 1988.

[Givan et al., 2003] Robert Givan, Thomas Dean, and
Matthew Greig. Equivalence notions and model minimiza-
tion in markov decision processes. Artificial Intelligence,
147(1):163–223, 2003.

[Jong and Stone, 2005] Nicholas K Jong and Peter Stone.
State abstraction discovery from irrelevant state variables.
In International Joint Conference on Artificial Intelli-
gence, pages 752–757. Citeseer, 2005.

[Li et al., 2006] Lihong Li, Thomas J. Walsh, and Michael L.
Littman. Towards a unified theory of state abstraction for
mdps. In Proceedings of the Ninth International Sympo-
sium on Artificial Intelligence and Mathematics (ISAIM-
06), 2006.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set pro-
gramming? In Proceedings of the 23rd National Confer-
ence on Artificial Intelligence - Volume 3, AAAI’08, pages
1594–1597. AAAI Press, 2008.

[Seijen and Sutton, 2014] Harm V. Seijen and Rich Sutton.
True online td(lambda). In Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML), pages
692–700, 2014.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Rein-
forcement Learning: An Introduction. MIT Press, 1998.


