Autonomous Task Sequencing for Customized Curriculum Design in Reinforcement Learning

Sanmit Narvekar, Jivko Sinapov, and Peter Stone
Department of Computer Science
University of Texas at Austin
{sanmit, jsinapov, pstone} @cs.utexas.edu

Successes of Reinforcement Learning

Approaching or passing human level performance

BUT

Can take *millions* of episodes! People learn this <u>MUCH</u> faster

People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently

Example: Quick Chess

- Quickly learn the fundamentals of chess
- 5 x 6 board
- Fewer pieces per type
- No castling
- No en-passant

Example: Quick Chess

Task Space

- Quick Chess is a curriculum designed for people
- We want to do something similar automatically for autonomous agents

 Curriculum learning is a complex problem that ties task creation, sequencing, and transfer learning

Autonomous Task Sequencing

Sequencing as an MDP

- State space S^c : All policies π_i an agent can represent
- Action space A^c : Different tasks M_i an agent can train on
- Transition function $p^c(s^c,a^c)$: Learning task a^c transforms an agent's policy s^c
- Reward function $r^c(s^c, a^c)$: Cost in time steps to learn task a^c given policy s^c

Sequencing as an MDP

- A policy π^c : $S^c \to A^c$ on this curriculum MDP (CMDP) specifies which task to train on given learning agent policy π_i
- Learning full policy π^c can be difficult!
 - Taking an action requires solving a full task MDP
 - Transitions are not deterministic

Sequencing as an MDP

- Instead, find one trace/execution in CMDP of π^{C^*}
- Main Idea: Leverage fact that we know the target task and therefore what is relevant for the final state policy π_f to guide selection of tasks

Grid world domain

Objectives

- Navigate the world
- Pick up keys
- Unlock locks
- Avoid pits

Target Task

- Recursive algorithm (6 steps)
- Each iteration adds a source task to the curriculum
- This in turn updates the policy
- Terminates when performance on target task greater than desired performance threshold

Step 1

- Assume learning budget β
- Attempt to solve target task directly in β steps. Save samples
- Solvable?
 - Target task easy to learn
 - Started with policy that made it easy to learn. Done
- Goal: incrementally learn subtasks to build a policy that can learn the target task

Target Task

Step 2

- Could not solve target
- Create source tasks using methods from AAMAS '16.

Step 3

- Attempt to solve each source in β steps
- Partition sources into solvable / unsolvable

Step 4

 If solvable tasks exist, select the one that updates the policy the most on samples drawn from the target task

Assumption

- Source tasks that can be solved have policies that are relevant to the target task
- Don't provide negative transfer

Step 4 (cont.)

- Add source task to curriculum
- Return to Step 1

- (Re-evaluate on target task)
- Policy has changed, so we will get a new set of samples
- Samples biased towards agent's current set of experiences
- This in turn guides selection of source tasks

Step 5

- No sources solvable
- Sort tasks by sample relevance
 - Compare states experienced in target task with those in experienced in sources
- Recursively create sub-source tasks
- Return to Step 2 with the current source task as the target task

Step 6

- No sources usable after exhausting the tree
- Increase budget, return to Step 1
- Learning can be cached, so agent can pick up where it left off

Connection to CMDPs

- An optimal path in CMDP is one that reaches π_f with least cost
- Selection in Step 4 picks tasks that update most towards $\pi_{\rm f}$
- Learning budget minimizes cost
- Algorithm behaves greedily to balance updates and cost

Experimental Setup

Grid world domain presented previously

Create multiple agents

- Multiple agents shows the algorithm is not dependent on implementation of RL agent
- Evaluate whether different agents benefit from individualized curricula

Experimental Setup

Agent Types

- Basic Agent
 - State: Sensors on 4 sides that measure distance to keys, locks, etc.
 - Actions: Move in 4 directions, pickup key, unlock lock
- Action-dependent Agent
 - State difference: weights on features are shared over 4 directions
- Rope Agent
 - Action difference: Like basic, but can use rope action to negate a pit

Basic Agent Results

Action-Dependent Agent Results

Rope Agent Results

Summary

- Presented a novel formulation of curriculum generation as an MDP
- Proposed an algorithm to approximate a trace in this MDP
- Demonstrated method proposed can create curricula tailored to sensing and action capabilities of agents

