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Successes of Reinforcement Learning

Video Pinball _] 2839%

Approaching or passing human level performance
BUT

Can take millions of episodes! People learn this MUCH faster
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People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently
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Example: Quick Chess

* Quickly learn the
fundamentals of chess

5 x 6 board

Fewer pieces per type

No castling

* No en-passant
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Example: Quick Chess
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Task Space

Pawns + King

Pawns only / ‘
L4 \\
/,« \\‘ Ta rge/t task

Empty task

One piece per type

* Quick Chess is a curriculum designed for people

* We want to do something similar automatically for autonomous agents
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Task = MDP

Curriculum Learning

Environment

Action

Task Creation

Sequencing Transfer Learning

via Value Function Transfer

e Curriculum learning is a complex problem that ties task creation, sequencing,
and transfer learning
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Autonomous Task Sequencing
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Sequencing as an MDP

State space S¢: All policies 7; an agent can represent
Action space A¢: Different tasks M, an agent can train on
Transition function p¢(s¢,a“): Learning task a¢ transforms an agent’s policy s¢

Reward function r¢(s¢,a¢): Cost in time steps to learn task a¢ given policy s¢
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Sequencing as an MDP

* A policy ¢ S¢ > AC on this curriculum MDP (CMDP) specifies which task to
train on given learning agent policy m;

* Learning full policy =€ can be difficult!
* Taking an action requires solving a full task MDP
* Transitions are not deterministic
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Sequencing as an MDP

@ ..... M; Target Task

 Instead, find one trace/execution in CMDP of ¢

* Main Idea: Leverage fact that we know the target task and therefore what is
relevant for the final state policy & to guide selection of tasks
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Autonomous Seguencing

* Grid world domain

* Objectives
* Navigate the world
* Pick up keys
* Unlock locks
* Avoid pits
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Autonomous Seguencing

Recursive algorithm (6 steps)

Each iteration adds a source task to
the curriculum

This in turn updates the policy

Terminates when performance on
target task greater than desired
performance threshold
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Autonomous Seguencing

Step 1

* Assume learning budget [3

e Attempt to solve target task
directly in 3 steps. Save samples

e Solvable?
e Target task easy to learn

» Started with policy that made it easy

to learn. Done

e Goal: incrementally learn subtasks
to build a policy that can learn the

target task
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Autonomous Seguencing

Step 2

* Could not solve target

* Create source tasks using
methods from AAMAS ‘16.

Step 3

e Attempt to solve each source

in 3 steps

e Partition sources into
solvable / unsolvable

University of Texas at Austin

Sanmit Narvekar

Solvable Tasks
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Autonomous Seguencing

Step 4 Y=g Initial Policy m

* |f solvable tasks exist, select
the one that updates the [51, 52, 83, 54 ... Sp]
policy the most on samples (= § @ U.. P]
drawn from the target task

* Assumption

* Source tasks that can be
solved have policies that are
relevant to the target task

* Don’t provide negative (»mm § P [»J@U. P]
transfer T I @
v
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Autonomous Seguencing

Step 4 (cont.)

New Policy m,

* Add source task to curriculum

* Returnto Step 1

[$1, S2, S3, Sa - Spl
[=m § P.. P]
e (Re-evaluate on target task)

* Policy has changed, so we will get a new set of samples
* Samples biased towards agent’s current set of experiences

* This in turn guides selection of source tasks

University of Texas at Austin Sanmit Narvekar 17



Autonomous Seguencing

[S1, S2, S3 ... Sgl

Step 5

No sources solvable
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* Compare states experienced in

target task with those in
experienced in sources Selvable-Tasks

. J A\ J

Y Y

Recursively create sub-source
tasks

Return to Step 2 with the
current source task as the
target task
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Autonomous Seguencing

Step 6

e No sources usable after
exhausting the tree

* Increase budget, return to
Step 1

e Learning can be cached, so

agent can pick up where it
left off
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Connection to CMDPs

Learning budget minimizes cost

University of Texas at Austin Sanmit Narvekar

An optimal path in CMDP is one that reaches m; with least cost
Selection in Step 4 picks tasks that update most towards

Algorithm behaves greedily to balance updates and cost



Experimental Setup

* Grid world domain presented previously

Create multiple agents

* Multiple agents shows the algorithm is not dependent on
implementation of RL agent

* Evaluate whether different agents benefit from individualized
curricula

21
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Experimental Setup

Agent Types

* Basic Agent
» State: Sensors on 4 sides that measure distance to keys, locks, etc.
* Actions: Move in 4 directions, pickup key, unlock lock

* Action-dependent Agent
» State difference: weights on features are shared over 4 directions

* Rope Agent

» Action difference: Like basic, but can use rope action to negate a pit
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Basic Agent Results
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Action-Dependent Agent Results
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Rope Agent Results
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Summary

* Presented a novel formulation of
curriculum generation as an MDP

* Proposed an algorithm to approximate a
trace in this MDP

* Demonstrated method proposed can
create curricula tailored to sensing and
action capabilities of agents
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