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Abstract
Intelligent mobile robots have recently become able to operate autonomously in large-scale

indoor environments for extended periods of time. In this process, mobile robots need the capabil-
ities of both task and motion planning. Task planning in such environments involves sequencing
the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of
people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the
prerequisites for optimal task planning that is often overlooked is having an accurate estimate of
the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art
motion planning algorithms, though often computationally complex, are designed exactly for this
purpose of finding routes through constrained spaces.

In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-
optimal planning for robot navigation while maintaining manageable computational efficiency. To
this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Nav-
igation), including two configurations with different trade-offs over computational expenses be-
tween task and motion planning, for everyday service tasks using a mobile robot. Experiments
have been conducted both in simulation and on a mobile robot using object delivery tasks in an
indoor office environment. The key observation from the results is that PETLON is more efficient
than a baseline approach that pre-computes motion costs of all possible navigation actions, while
still producing plans that are optimal at the task level. We provide results with two different task
planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for
the selection of task planners from an engineering perspective.

1. Introduction

“Planning,” or selecting a sequence of actions to achieve a goal, has been a core focus of interest
within the field of Artificial Intelligence (AI) since the field was founded in the 1950’s. Initially,
the focus of attention was on task planning which is concerned with sequencing actions within a
symbolic representation of the state space (Fikes & Nilsson, 1971). For example, if a robot has
the goal of obtaining supplies for camping including milk and frozen hot dogs, both of which could
spoil if not refrigerated, a symbolic (task) planner, given a domain model that includes coolers, ice,
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and conditions for spoiling, could identify that the robot should first buy a cooler, then a block of
ice, and then milk and hot dogs. In general, task planners aim to find the shortest plan in terms
of number of symbolic actions. If action costs are available, some task planners are also able to
identify the lowest cost plan, which in general may be longer in terms of the number of actions.

A key limitation of task planning is that it assumes that symbolic actions can be executed “atom-
ically.” Continuing our camping example, it does not reason about how the robot should traverse
continuous space in order to travel from its current location to the store. Rather it assumes that the
robot can teleport itself to the next location, perhaps roughly estimating how long it would take to
move there in the real world. In contrast, a largely independent thread of research exists on mo-
tion planning that focuses on producing a continuous motion plan while avoiding collisions with
obstacles in 2D or 3D continuous space (Latombe, 2012). Traditionally, motion planning has been
concerned with computing a path connecting a start configuration to a goal configuration, without
any concern for the sequencing of subgoals. Within the context of mobile robotics, the robots need
capabilities of both task and motion planning, so as to sequence actions to accomplish complex
tasks, while producing these actions’ implementations at the motion level.

1.1 Two Types of TMP Problems

Task planning and motion planning have historically remained mostly (though not entirely — see
related work) independent, because physical robots have only been able to execute very short mis-
sions that could be solved entirely with motion planning algorithms. TMP for manipulation (TMP-
M) has attracted much attention of late, mainly to ensure the geometric feasibility of symbolic plans
in highly confined workspaces, with complex kinematic constraints (Gravot et al., 2005; Erdem
et al., 2011; Lagriffoul et al., 2014; Srivastava et al., 2014; Garrett et al., 2018a). Despite the great
success of these approaches, TMP for navigation (TMP-N), i.e., to select task routes considering
task-level domain knowledge and navigation costs, presents sufficiently different challenges that
different approaches are needed, and has not yet been well addressed in the literature.

1.2 Challenges of TMP-N

TMP-N frequently arises in large, knowledge-intensive domains, in which a robot has to reason
about many objects and their properties, such as feasible locations to acquire and then to store
milk. Moreover, solutions to TMP-N may vary significantly in quality, where suboptimal plans may
significantly delay task completion schedule, due to long execution time navigating in large envi-
ronments. As a result, the following two properties are generally necessary to TMP-N algorithms:
scalability in knowledge representation and reasoning (KRR), and optimality in planning actions at
the task level.

Because of the recent advances in sustainability of long-term autonomy on mobile service robots
in large-scale environments (Khandelwal et al., 2017; Hawes et al., 2017; Veloso, 2018), there is
a pressing need to generate task plans that are fully aware of—and indeed dependent upon—the
grounded navigation costs of task actions that can only be determined by motion planning algo-
rithms. With well-defined physical constraints of symbolic states and a model of the free space and
obstacles in the environment, the navigation costs of all possible task actions can be evaluated and
then used to select the optimal task route. However, in cases with combinatorially many possible
task sequences, doing so can be computationally infeasible. The following example demonstrates
the infeasibility.
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Figure 1: Camping Preparation example: the robot wants to compute a plan to prepare items for
camping, while minimizing overall plan cost. As the number of objects increases, the
number of motion cost evaluations increases exponentially.

1.3 A Motivating Example of TMP-N Algorithms: Camping Preparation

Figure 1 illustrates a scenario where a robot needs to prepare items for camping:

A hot dog and a newspaper need to be collected and moved to the storage room; and
the robot has to have a cooler as the container for hot dogs.

In the first setting (left subfigure), to find the optimal task plan, the robot has to evaluate 7
motion costs. In the second setting (right subfigure), the number of objects that the robot has to
reason about is doubled. As a result, the number of cost evaluations grows to 20, even after the
task planner rules out plans that do not meet action preconditions (the robot has to collect a cooler
before collecting a hot dog from a fridge). The time complexity of evaluating all navigation actions’
motion costs is O(C(N,2)) = Θ(N2), where N is the number of objects, and C(N,2) is a N-choose-2
combination operation. In other words, continuing to scale up the number of objects, we can see the
number of motion cost evaluations soon becomes prohibitively large.

The aim of this research is to integrate task and motion planning to select the optimal (lowest-
cost) task route for robot navigation in a computationally efficient manner. We introduce a novel
algorithm, called Planning Efficiently for Task-Level-Optimal Navigation (PETLON), that returns
task-level-optimal solutions while significantly reducing the number of motion cost evaluations. We
say a task plan, in the form of a sequence of symbolic actions, is task-level-optimal, if its overall
action cost is not higher than that of any task plan, where action costs of the task plans are evalu-
ated using a motion planner. PETLON is a general approach that can work with a variety of task
and motion planners. In this article, we instantiate PETLON with a probabilistic motion planning
algorithm, and with two different task planning paradigms that are based on the Planning Domain
Definition Language (PDDL) (McDermott et al., 1998) and Answer Set Programming (ASP) (Lifs-
chitz, 2008; Gelfond & Kahl, 2014) respectively. We evaluate PETLON with mobile robot delivery
tasks both in simulation and on a real robot. From the experimental results, we observed that PET-
LON, while maintaining task-level optimality, significantly improves planning efficiency in most
cases, compared with baselines including a competitive, task-level-optimal approach.

The main contribution of this work (i.e., the PETLON algorithm) was previously published as a
conference paper authored by the same group of researchers (Lo et al., 2018). In this article, we dis-
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cuss related work more comprehensively, include sufficient technical details to ensure the reported
results can be reproduced by other researchers, provide a pictorial example for demonstration in
detail, conduct more experiments (specifically the “visibility” experiments in Section 6), and point
out limitations of our approach while identifying research directions for future work.

The remainder of this article is organized as follows. Section 2 discusses existing TMP al-
gorithms, including their assumptions and application domains. Section 3 formally defines the
problem of task-level-optimal TMP for navigation. Section 4 is the main section of this article, and
includes our PETLON algorithm and a proof of its task-level optimality. Section 5 presents the
technical details of instantiating PETLON on a mobile robot platform, including the selections of
task planning and motion planning algorithms. Section 6 details the experiment setup, a list of hy-
potheses to be evaluated in experiments, and results both in simulation and on a real robot. Finally,
we conclude in Section 7, followed by a discussion about the limitations of our approach and a few
directions for future work.

2. Related Work

The integration of task and motion planning has a long history. Shakey, the first mobile robot
with the ability to perceive and reason about its surroundings (Nilsson, 1984), executed its plans
in the real world, and is the earliest example. However, it is not until recently that task and mo-
tion planning (TMP) has been used as a term to refer to a family of algorithms that interleave the
processes of task and motion planning. These algorithms have been developed under very different
assumptions with very different goals, making direct comparisons a challenge. Here we summarize
representative algorithms for this problem.

Hierarchical planning methods aim at computing plans at different abstraction levels (Sacer-
doti, 1974), where primitive actions at the bottom level are directly executable. This hierarchical
planning idea has been widely applied to sequential decision-making methods, such as classical
planning (Nau et al., 2003; Zhang et al., 2015), and stochastic planning (Pineau et al., 2003; Zhang
et al., 2013). In particular, when world models are not available, one can learn from reinforcement
at different abstraction levels, for example using options for reinforcement learning (Sutton et al.,
1999). Fundamentally, TMP algorithms could be considered as a two-layer hierarchical planning
approach, where the agent may or may not learn at either level. The uniqueness of TMP within the
hierarchical planning context lies in the top and bottom layers corresponding to symbolic (discrete)
and geometric (continuous) spaces respectively.

aSyMov is one of the earliest TMP algorithms, which was previously referred to as a symbolic
and motion planning algorithm (Cambon et al., 2009). The gap between task and motion plan-
ners was bridged via a set of predefined roadmaps in aSyMov, where a roadmap node represents a
configuration and an arc represents a collision-free motion. The search was conducted at the mo-
tion level within roadmaps using a motion planning system called Move3D (Simeon et al., 2001)
and across roadmaps using a task planning system called Metric-FF (Hoffmann, 2003). Another
early TMP algorithm is the so-called semantic attachment approach that calls external functions to
evaluate grounded predicates and fluent changes. Semantic attachments have been integrated into
PDDL planners through adding external “modules.” The main difference between PETLON and the
above-mentioned methods is that PETLON guarantees task-level optimality.

Hierarchical task networks (HTNs) (Nau et al., 2003), as a framework for task planning, have
been integrated with motion planners. One resulting algorithm is SAHTN (Wolfe et al., 2010). To
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improve the HTN-level search efficiency, SAHTN uses an irrelevance function to rule out irrele-
vant domain variables (e.g., objects not blocking the way are not modeled in navigation actions).
Although SAHTN is a “hierarchically optimal” algorithm, i.e., its optimality is conditioned on the
hierarchy, it requires an irrelevance function that is frequently unavailable in practice. Hierarchi-
cal task and motion Planning in the Now (HPN) uses depth-first traversal and interleaves planning
and execution (Kaelbling & Lozano-Pérez, 2011). HPN’s hierarchical representation is similar to
ABSTRIPS (Sacerdoti, 1974). More recently, HPN has been extended to model the uncertainty in
action outcomes and observability (Kaelbling & Lozano-Pérez, 2013). SAHTN and HPN aggres-
sively trade optimality for efficiency. As a result, they can solve extremely long-horizon planning
problems, though plan quality may be sacrificed.

Another realization of TMP was achieved via introducing symbolic state constraints at the task
level (Erdem et al., 2011), where new constraints are added into the task planner when no feasible
kinematic solution can be found for the plan generated by the current task planner. Task-level op-
timal solutions can be found in that work, only if costs of all actions are evaluated at the motion
level, which can be prohibitively time-consuming in practice, whereas PETLON is specifically de-
signed to improve the overall efficiency by avoiding evaluations of all actions’ costs. In the work
of Dantam, Kingston, Chaudhuri, and Kavraki (2018), this idea was formalized to achieve proba-
bilistically complete TMP, leveraging the incremental solution capability of Satisfiability Modulo
Theories (SMT) (De Moura & Bjørner, 2011). The work of Wang, Dantam, Chaudhuri, and Kavraki
focused on environments that include uncontrollable agents (such as humans), and produced a pol-
icy synthesis approach for TMP problems (Wang et al., 2016).

Off-the-shelf task and motion planners can be integrated using a planner-independent inter-
face (Srivastava et al., 2014). Their task planner is optimistic at the very beginning and generates
very short plans that are frequently infeasible at the motion level. To update the task planner, their
interface needs to explain the motion-level failures to the task planners. While their approach is
applicable to our navigation domains, failure diagnosis is generally a difficult reasoning problem,
especially when a relatively large number of objects and their properties need to be considered.

Learning algorithms have been incorporated to guide the search in task and motion planning
problems. For instance, the framework produced by Srivastava et al. was improved by incorporating
reinforcement learning (RL) for plan refinement and learning from expert demonstrations to guide
the search at the task level (Chitnis et al., 2016). Recent work aims at predicting solution constraints
to reduce the search space in task and motion planning problems (Kim et al., 2017). In that work,
a new representation was developed to facilitate the transfer of knowledge (in the form of solution
constraints) from one problem instance to another to significantly reduce the search space.

Recently, an algorithm called FFRob has been developed for task and motion planning (Garrett
et al., 2018a). FFRob does not require a motion planner, but directly conducts task planning over
a set of samples generated in the configuration space. In order to efficiently search in this large
sample space, FFRob extends the FastForwad heuristic (Hoffmann & Nebel, 2001) to generate a set
of heuristics (to reason with geometric constraints) to guide the search. FFRob aims at plans of the
shortest length (or “mode-sequence” length in their terms), which is different from our focus. This
idea has been further extended to plan in factored transition systems for exposing the topology of
their solution space (Garrett et al., 2017a), and to reason with possibly infinite sequences of object
poses and static predicates (Garrett et al., 2017b). Separately, a generative adversarial network
(GAN) (Goodfellow et al., 2014) was used to learn an action sampler (Kim et al., 2018) for TMP
problems, which has been shown to be more effective than a heuristic-based task planner.
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Instead of aiming at a general planning framework, researchers have developed algorithms that
focus on individual aspects of the TMP problems. Lagriffoul et al. developed algorithms for reject-
ing inconsistent task actions for kinematically restricted problems (Lagriffoul et al., 2014), where
an intermediate layer of constraints is generated and maintained by both task and motion planners.
Toussaint developed a layered approach for TMP problems where the goal is specified with a cost
function (e.g., to construct a stack of objects while maximizing the height of the physically stable
construction), instead of a symbolic goal description (Toussaint, 2015). Focusing on efficient ex-
ploration, a selective sampling approach was developed to compute collision-free trajectories that
satisfy high-level specifications (Plaku & Hager, 2010). These algorithms focus on one or more as-
pects of the TMP problem, and can be used to improve the performance of general TMP algorithms.

There has recently been an effort of developing a set of platform-independent benchmark prob-
lems for comparing TMP algorithms (Lagriffoul et al., 2018). Each benchmark problem includes a
task specification, a motion specification, and a specification of task-motion interaction. However,
the evaluations of the current benchmarks do not include optimality, and none of the current bench-
marks require long-distance navigation actions. In comparison, PETLON aims at enabling mobile
robots to plan efficiently to accomplish tasks that frequently require multiple navigation actions,
while minimizing overall action costs.

Focusing on manipulation tasks, e.g., pick-and-place and box-pushing, researchers have devel-
oped asymptotically optimal algorithms with piecewise-analytic constraints (Vega-Brown & Roy,
2016; Schmitt et al., 2017). The algorithms went beyond planning in continuous geometric spaces
through discretizing configuration spaces of grasping and ungrasping. Similarly to many TMP
methods, the discretization significantly improves the efficiency of planning for solving complex
tasks (manipulation or not). Despite the fact that these methods focus on manipulation tasks, the
idea of “factoring” configuration spaces (Vega-Brown & Roy, 2016), which was further studied in
constraint spaces (Garrett et al., 2018b) can potentially be employed to enhance PETLON to make
it a globally optimal algorithm.

Although the algorithms discussed in this section are built on very different assumptions, two
observations are shared across all of them: I) although some involve navigation actions, manipula-
tion has been the main challenge at the motion level, e.g., grasping and ungrasping; and II) none
of them guarantees task-level optimality.1 PETLON is an algorithm that is guaranteed to produce
task-level-optimal TMP solutions without requiring the evaluations of all actions’ costs. As a re-
sult, PETLON is applicable to large-scale robot navigation domains that include both low-level
(navigational) constraints and high-level (task ordering) constraints.

3. Problem Statement

Within the context of task and motion planning (TMP) problems, existing research has been con-
ducted with very different assumptions and goals (see Section 2). In this section, we formalize TMP
for navigation (TMP-N) problems at task and motion levels.

1. The work of Erdem et al. (2011) is an exception, where task-level optimality is achieved in a computationally
expensive way. Methods that pre-evaluate all action costs, including that of Erdem et al. (2011), are referred to
as “Brute force” in our experiments. PETLON is a more efficient algorithm that retains the guarantee of task-level
optimality.
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3.1 Planning at Task and Motion Levels

Task Level: Let Dt specify a task planning domain that includes a set of states, S, and a set of
actions, A. We assume a factored state space such that each state s ∈ S is defined by the values of a
fixed set of variables. Each action a ∈ A is defined by its preconditions and effects. A cost function
Cost maps the state transition to a real number: Cost(〈s,a,s′〉)→ R, which represents the cost of
action a being executed in state s.

Given domain Dt , a task planning problem is defined by an initial state sinit ∈ S and a specifica-
tion of the goal that corresponds to a set of goal states SG ⊆ S. A plan, p ∈ P, includes a sequence
of transitions that can be represented as: p = 〈s0,a0, · · · ,sN−1,aN−1,sN〉, where s0 = sinit ,sN ∈ SG

and P is the set of satisfactory plans.
Solving a task planning problem, using optimal task plannerP t , produces plan p∗ that is optimal

among all satisfiable plans p ∈ P:

p∗ = argmin
p∈P

∑
〈s,a,s′〉∈p

Cost(〈s,a,s′〉). (1)

Motion Level: Let Dm specify a motion planning domain, where we directly search in the 2D
workspace, since in this work we focus on only 2D navigation problems for motion planning. The
2D space is represented as a region in Cartesian space such that the position and orientation of the
robot can be uniquely represented as a pose (x,y,θ), to define the physical state x ∈ X of the robot.
X is the physical robot state space.

Given Dm and a robot modelM, which includes the physical constraints of the robot, a motion
planning problem can be specified by an initial pose xinit and a goal set Xgoal . Some parts of the space
are designated as free space, and the rest is designated as an obstacle. M specifies the kinematic
constraints of the robot to plan while checking for collisions with the environment.M also specifies
the dynamical constraints, including actuation limits, response time, and non-holonomic constraints
of the platform, to forward simulate the dynamics of the robot x→ x′.

The motion planning problem is solved by the motion planner Pm to compute a collision-free
trajectory ξ ∗ (connecting xinit to a pose xgoal ∈ Xgoal taking into account any physical constraints
specified inM) with minimal trajectory length, or execution cost, e.g. time duration Len(ξ ) = L.
We use Ξ to represent the trajectory set that includes all collision-free trajectories. The optimal
trajectory is

ξ
∗ = argmin

ξ∈Ξ

Len(ξ ), (2)

where ξ (0) = xinit and ξ (L) = xgoal ∈ Xgoal .

Task and Motion Planning: A symbolic state s in Dt corresponds to a geometric constraint in
Dm that can be represented as a set of poses X in the configuration space. For instance, the symbol
“beside a table” corresponds to a (infinite) set of positions within a small range of the table. The
geometric constraints ensure the motion-level feasibility between task state transitions.

We use a state mapping function, f : S→ X , to map the symbolic state s ∈ S into a set of feasible
poses X in continuous space, for the algorithm to sample from. We assume the availability of at least
one pose x ∈ X in each state s, such that the robot is in the free space of Dm. If it is not the case, the
state s is declared infeasible. The state mapping function has been referred to in different ways in the
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literature, e.g., it has been referred to as a scene graph refinement function in the constraint-based
TMP literature (Dantam et al., 2018).

It should be noted that such state mapping functions break global optimality. We would like to
be able to guarantee full motion-level optimality. But in continuous domains, such a guarantee is
elusive due to the fundamental difference between representations at the two levels (Konidaris et al.,
2018). In line with past research (Cambon et al., 2009; Erdem et al., 2011; Srivastava et al., 2014),
we use a state mapping function, which makes it possible for us to achieve task-level optimality,
i.e., optimality conditioned on the motion planner and state mapping function, which is formally
defined in the next subsection.

3.2 Definition of Task-Level-Optimal TMP-N

Building on the definitions of task and motion planning problems in the previous subsection, we for-
mulate TMP-N problems, and define the task-level optimality of algorithms for TMP-N problems.
The input of a TMP-N problem is a six-tuple

Ω : 〈Dt ,Dm,sinit ,SG,xinit , f ,M〉

where xinit ∈ f (sinit), meaning that the geometric initial position is consistent with the symbolic
initial state.

A satisfactory output of a TMP-N problem is a two-tuple,

〈p, [ξ0,ξ1, · · · ,ξN−1]〉

that includes a symbolic plan and a set of collision-free trajectories, where p(0) = sinit , p(N) ∈ SG,
|p|= N, ξ0(0) = xinit , ξi(0) ∈ f (si), and ξi(Ti) ∈ f (si+1) for i = {0,1, . . . ,N−1}. Ti is the end time
of trajectory ξi.

Finally, we define a task-level optimal plan to be a lowest-cost plan p∗, conditioned on a motion
planner Pm and state-mapping function f :

p∗ = argmin
p∈P

(
∑

0≤i<|p|
Len(ξi)|Pm, f

)
, (3)

where ξi = Pm(〈si−1,ai−1,si〉, f ,Dm,M) is the trajectory returned by Pm given state transition
〈si−1,ai−1,si〉 ∈ p. In comparison to Equation 1, the added challenge here is that the motion cost
function (here Len) is initially unknown and can only be estimated by the motion planner Pm with
added computational expense.

Constrained State Mapping Function: The output of state mapping function f is defined as a
set of feasible poses in continuous space in Section 3.2. This definition offers more flexibility in
implementing f in domains with dynamic obstacles, but breaks the independence of cost evaluations
of actions. In order to analyze the optimality of PETLON, we consider a constrained form of f in
the following discussion, where the output is a single pose in continuous space.

Next, we present our task-level-optimal algorithm for TMP-N problems, and its two variations
that produce different trade-offs over computational expenses between task and motion planning.
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Figure 2: Overview of PETLON to efficiently solve TMP-N problems, with guaranteed task-level
optimality.

4. Algorithm

PETLON (Planning Efficiently for Task-Level-Optimal Navigation), is visualized in Figure 2, where
task planner P t and motion planner Pm serve as the two main components. The task planner in-
teracts with humans by taking their service requests and generates symbolic plans. The motion
planner generates realistic motion costs of each symbolic action. Our guarantee of task-level opti-
mality relies on an admissible heuristic for motion costs, which can be easily obtained in practice,
e.g., through straight-line distance in 2D space.

Before introducing the algorithm, it is necessary to first define three functions for evaluating the
costs of navigation actions:

• Heuristic cost function (h): we use h to represent our admissible heuristic cost function that
computes the Euclidean distance between x and x′ in 2D space.

h(x,x′) = ||x− x′||2 (4)

• Evaluated cost function (Ĉ): function Ĉ calls our motion plannerPm to estimate the geometric-
level cost of traversing from x ∈ f (s) to x′ ∈ f (s′) given robot workspace Dm:

Ĉ(x,x′) = Len
(
Pm(〈s,a,s′〉, f ,Dm,M)

)
. (5)

• Maintained cost function (Cost): values of Cost(s,a,s′) are initialized to h(x,x′), and then are
selectively updated by Ĉ as the algorithm proceeds.

Overall, h is a very inexpensive operation compared to Ĉ that relies on calling a motion planner,
and h underestimates motion cost. The following relationship among the three cost functions holds
throughout the steps in PETLON:

h(x,x′)≤Cost(s,a,s′)≤ Ĉ(x,x′). (6)

where x ∈ f (s), x′ ∈ f (s′), and a is an action that leads the state transition from s to s′.
Therefore, PETLON is efficient to the extent that it minimizes the number of times the motion

planner is called, while still ensuring that the returned plan is the same as if the costs of all actions
had been evaluated by the motion planner.

Algorithm 1 presents PETLON, taking the following terms as input:
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Algorithm 1 PETLON algorithm
Require: sinit , xinit ,SG, f , h, Dt , Dm,M, P t , Pm

Ensure: Symbolic plan p that is optimal at the task level
1: Initialize sampled poses x ∈ f (s) and function Cost with h: Cost(s,a,s′)← h(x,x′)
2: Initialize empty state-action-state array: Aevld

3: Initialize the so-far-best cost: Cs f b← Inf
4: while true do
5: [p̂∗,P]← P t(sinit,SG,Cost,Dt), where p̂∗ is optimal given Cost, P includes a set of (near-

optimal) plans, and p̂∗ ∈ P
6: if 〈s,a,s′〉 ∈ Aevld ,∀〈s,a,s′〉 ∈ p̂∗ then
7: return p̂∗

8: end if
9: for each p ∈ P and Cost(p)<Cs f b do

10: for each 〈s,a,s′〉 ∈ p do
11: Update motion planner Pm

12: if 〈s,a,s′〉 /∈ Aevld then
13: while x′ /∈ FreeSpace(Dm|M) do
14: Re-sample x′ ∈ f (s′)
15: end while
16: Evaluate motion cost: Cost(s,a.s′)← Ĉ(x,x′)
17: Append 〈s,a,s′〉 to Aevld

18: end if
19: end for
20: Cplan = ∑

〈s,a,s′〉∈p
Cost(s,a,s′)

21: Cs f b = min (Cplan, Cs f b)
22: end for
23: end while

• Initial state sinit , initial position xinit (in free space of Dm), and goal specification SG

• State mapping function f : S→ X

• Admissible heuristic cost function h : (x,x′)→ R (to initialize the maintained cost function
Cost)

• Task domain description Dt , motion domain description Dm, and robot modelM

• Task planner P t : (sinit ,SG,Cost,Dt)→ p

• Motion planner Pm : (〈s,a,s′〉, f ,Dm,M)→ ξ

PETLON starts by initializing: the maintained cost function Cost with our (admissible) heuris-
tic function h (Line 1), an empty plan array to store evaluated state-action-state tuple (Line 2), and
a scalar cost value Cs f b with Inf, indicating the “evaluated” cost of the so-far-best plan (Line 3).2

2. A “so-far-best” plan is the plan that is currently believed to be optimal using the maintained cost function. PETLON
keeps updating the so-far-best plan as more action costs are evaluated.
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Entering the first while-loop, PETLON computes a set of symbolic plans P, including the current
estimate of optimal plan p̂∗, using the maintained cost function Cost. If all actions in the cur-
rent optimal solution have been evaluated, PETLON returns p̂∗ as the optimal task-level solution
p∗(Line 6-8). If not, PETLON enters the outer for-loop (Lines 9-22), processing one plan p ∈ P at
each iteration. In the inner for-loop, each state-action-state tuple is considered, in a forward order
(Lines 10-19). First, Pm is updated based on post-conditions of the previous action (Line 11), to
adapt to potential changes inM, Dm, and feasibility of sampled poses in Pm. If state-action-state
tuple 〈s,a,s′〉 has not been evaluated before, PETLON first checks the feasibility of the sampled end
pose x′ (Lines 13-15, not necessary if considering static robot configuration space), then evaluates
the cost value by calling Ĉ (Line 16), and last appends 〈s,a,s′〉 to the evaluated state-action-state set
Aevld (Line 17).

The so-far-best cost Cs f b is updated if the current plan has lower evaluated cost value Cplan
(Line 21). It maintains the lowest evaluated cost value among all evaluated plans.

4.1 Proof of Task-Level Optimality of PETLON

Proposition 1. Given motion planner Pm and state mapping function f , Algorithm 1 returns p∗

that has the lowest cost over all satisfactory plans, i.e., the plan returned by Algorithm 1 satisfies
Equation 3.

Proof : Suppose this proposition is false, meaning that there exists at least one plan, p, whose
geometric-level cost is lower than that of p∗, the plan returned by PETLON:

∑
〈s,a,s′〉∈p

Ĉ(s,a,s′)< ∑
〈s,a,s′〉∈p∗

Ĉ(s,a,s′) (7)

where Ĉ is the evaluated cost function as is detailed in Section 4 in the main paper.
In Algorithm 1, the task planner uses function Cost, the maintained cost function, and ensures

that the returned plan is optimal given Cost:

∑
〈s,a,s′〉∈p∗

Cost(s,a,s′)≤ ∑
〈s,a,s′〉∈p

Cost(s,a,s′). (8)

where p is an arbitrary satisfactory plan.
Algorithm 1 (Lines 12-18) also ensures that all action costs of the returned plan are evaluated

by the motion planner:

∑
〈s,a,s′〉∈p∗

Cost(s,a,s′) = ∑
〈s,a,s′〉∈p∗

Ĉ(s,a,s′). (9)

We also know that the maintained cost function, Cost, cannot return a value that is higher than
the evaluated cost, because function Cost is initialized by our heuristic cost function, h, that never
overestimates the cost (Inequality 6):

∑
〈s,a,s′〉∈p

Cost(s,a,s′)≤ ∑
〈s,a,s′〉∈p

Ĉ(s,a,s′) (10)

From Inequalities 8 and 10, and Equation 9, we draw conclusion:

∑
〈s,a,s′〉∈p∗

Ĉ(s,a,s′)≤ ∑
〈s,a,s′〉∈p

Ĉ(s,a,s′) (11)
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Inequality 7 therefore contradicts with Inequality 11, proving the task-level optimality guarantee
of p∗, which concludes the proof by contradiction. �

PETLON practitioners should be aware that the task-level optimality of PETLON (Proposi-
tion 1) is guaranteed, only if the following requirements are satisfied in the implementation.

• The returned plan p∗ is optimal using the maintained Cost, i.e., the task planner is optimal.

• The returned plan p∗ has all its action costs evaluated by the motion planner.

• The heuristic function h is admissible.

The first two items lead to the following necessary condition for PETLON to ensure task-level
optimality:

Corollary 1.1. To ensure task-level optimality, Algorithm 1 (PETLON) must evaluate the optimal
task-level solution at least one iteration prior to convergence.

Proposition 2. Given motion planner Pm and state mapping function f , PETLON returns the opti-
mal task plan (p∗) in finite steps.

Proof : Algorithm 1 terminates when the returned plan p has all its action costs evaluated by the
motion planner, as suggested in Line 6. PETLON conducts at least one action cost evaluation
at each iteration before termination. Given that the state space at the task level is finite, we can
guarantee the convergence of Algorithm 1 within finite iterations. �

Although Proposition 2 and its proof are rather straightforward, they are included here to high-
light that PETLON terminates in finite time, while improving the clarity and completeness of this
article. It should be noted that the above proof of PETLON’s task-level optimality (Proposition 1)
builds on a constrained form of the state mapping function ( f ) as explained in Section 3.2. Under
the constrained form of f , PETLON is optimal at the task level, and is globally suboptimal. If we
consider the original form of f , PETLON will be downgraded to a locally suboptimal algorithm:
there can be shorter motion plan consistent with the task-level symbolic plan. It is acknowledged
that there exist TMP algorithms that ensure local optimality using gradient-based optimization (Tou-
ssaint, 2015), and global optimality using abstractions (Vega-Brown & Roy, 2018). In contrast, we
use off-the-shelf task planners from the literature of classical AI. Such planners provide more flexi-
bility in task specification and planner construction, but are less flexible to the interplay with motion
planners.

4.2 Variations of PETLON

Based on Corollary 1.1, in Line 5 of Algorithm 1, the returned plan set P by the task planner can
include an arbitrary number of feasible plans for evaluation and not necessarily the optimal solution
using Cost until close to convergence. Depending on the desired trade-off among task planner
computation, number of iterations before convergence, and number of calls for motion evaluation
Ĉ, PETLON has various options for its task planner behavior on Line 5 3:

3. The options are not mutually exclusive, but rather indicate “properties” of the generated plans. Many task planners
generate suboptimal plans before the optimal solution is computed, which can be used to populate the sets of plans
specified by Options 1, 2, and 3.
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Option 1. Find a non-empty set of feasible plans. (A plan is feasible if its final state in the goal
state space sN ∈ SG satisfies the goal specification.)

Option 2. Find a non-empty set of feasible plans that have plan cost less than or equal to Cs f b based
on the maintained Cost function.

Option 3. Find a non-empty set of feasible plans that includes the optimal plan p̂∗ based on the
maintained Cost function.

The last option is the most computationally expensive, but is required at least one iteration before
convergence to ensure task-level optimality, according to Corollary 1.1. The first and second options
are computationally cheaper, and their output of feasible plans also helps narrow down the candidate
set of potentially good plans. The higher the number of feasible plans that the task planner returns
(with possibly higher computational cost), potentially the earlier PETLON converges. This trend
arises because more potentially-good actions are returned at each iteration for evaluation.

Therefore, at each iteration, based on the choice of options in task planner behavior and how
close the algorithm is to convergence, PETLON can choose to evaluate various numbers of plans in
P that potentially contribute to the optimal solution. Convergence can be estimated by observing if
Cs f b has improved in the past iterations. With different combinations of task planner behavior and
number of actions being evaluated, PETLON can maintain the desired computation performance
in the target domain. More practical configurations and implementation details can be found in
Section 6. We here present the two basic configurations of PETLON that we use in our experiments:

• OptOne: At each iteration, given the maintained Cost, only the motion costs of the actions
in the optimal p̂∗ are evaluated.

• OptAll: At each iteration, the actions in all plans in P whose costs are lower than the so-far-
best cost Cs f b (the lowest cost over all evaluated plans) are evaluated.

The two configurations both require that the optimal plan p̂∗ is computed by the task planner
in each iteration (Option 3). As OptOne only evaluates the optimal task plan p̂∗, this configuration
reduces the number of calls to the motion planner, which is beneficial when the motion planner
is computationally expensive and the task planner is very efficient. OptAll on the other hand has
computational advantages when the task planner is relatively expensive, because it trades more
action cost evaluations for fewer iterations to converge compared to OptOne. It should be noted that
OptAll requires the functionality of a task planner returning not only the optimal plans but also some
suboptimal ones. This functionality is not supported by some off-the-shelf task planning systems,
e.g., Fast-Downward (Helmert, 2006).

These two configurations are evaluated with two different task planners in Section 6, where
more configurations are also introduced to illustrate the computational trade-offs.

Illustrative Example: Figure 3 shows a complete example of using PETLON (OptOne configura-
tion) to generate a task-level-optimal solution without pre-evaluating costs of all actions. The robot
needs to collect a hot dog (which requires a cooler) and a newspaper for camping, and move both
of them to a storage room in the top-right corner. Lengths of trajectories in each subfigure represent
the current maintained cost function of Cost(s,a,s′). Each line segment being replaced by a dashed
trajectory corresponds to calling the evaluated cost function of ˆC(x,x′) to evaluate action costs using
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(a) (b)

(c) (d)

(e) (f)

Figure 3: An illustrative example of PETLON (OptOne configuration) generating a task-level-
optimal TMP solution, while avoiding pre-computing costs of all actions. Solid trajec-
tories correspond to action costs from h, our admissible heuristic action cost function.
Dashed trajectories correspond to action costs that are evaluated by the motion planner.
Bold trajectories (in red color) correspond to the so-far-best solutions.

the motion planner, i.e., Line 16 in Algorithm 1. For instance, from Figure 3(c) to Figure 3(d), costs
of two actions are evaluated by the motion planner.

At the beginning, the robot has not used the motion planner to evaluate any motion costs, and
its maintained cost function, Cost, stores the same cost values as in the heuristic cost function, h.
The task planner computes a plan as shown in Figure 3(a), which turns out to be suboptimal after
the two cost evaluations shown in Figure 3(b). PETLON then merges the evaluated costs of the two
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actions into Cost, and reactivates the task planner. The resulting plan is shown in Figure 3(c), which
once again turns out to be suboptimal after costs of all involved actions are evaluated. After a total
of seven action cost evaluations, the final TMP solution is generated as shown in Figure 3(f), which
is guaranteed to be task-level-optimal as proven in Section 4.1.4

4.3 Task-level Optimality vs. Motion-level Optimality

Task-level optimality of a TMP problem is defined in Eq. 3 as to only optimize over the task action
sequence, given sampled poses from f and motion planner Pm. In comparison, to ensure motion-
level optimality of TMP problems, the TMP system is required to directly optimize at the motion
level, while considering the constraints from the task level. Motion-level optimality is equivalent to
global optimality within the TMP context.

If the feasible sampled poses X ∈ f (s) cover a relatively small area, which can be achievable
by appropriately choosing the task-level state abstraction, the lack of global motion-level optimality
does not deteriorate the final plan quality very much. This condition often holds in large-scale
navigation domains. For example, when entering a narrow corridor, the precise location from where
the robot enters has limited impact on the final travel length along the corridor.

However, in situations where this assumption is not true, to ensure the overall plan quality and
therefore the meaningfulness of task-level optimality, one needs to take further steps: either to refine
the task-level action description to cover smaller-area-of-coverage sets of potential action poses, or
to maintain separate trees for each task plan p, which keep track of all sampled poses of each task-
level action and optimizes globally the choices of samples along the task-action sequence. This
procedure could be treated as a separate thread on motion refinement of task actions sequences,
but would break the use of piece-wise motion refinement in PETLON to potentially achieve better
overall plan quality. Due to the fact that such a process is unnecessary in our experiment domain
(and most navigation domains in general) and the extra computation (|X |N to search among all
possible poses for each plan p), we leave defining such a procedure for future work and focus here
instead on ensuring PETLON’s task-level optimality.

4.4 Highly Constrained and Dynamic Environments

In this subsection, we discuss the applications of PETLON to highly constrained and dynamic
environments.

Highly Constrained Environments In highly constrained TMP domains (e.g., the ones that re-
quire manipulation actions in high-dimensional space), existing research has developed methods to
ensure motion-level feasibility of task-level actions while remaining computationally efficient. Ex-
ample methods include efficient end-pose re-sampling (Erdem et al., 2011; Srivastava et al., 2014),
backtracking at the task level to re-sample action sequences (Stilman & Kuffner, 2005; Lagriffoul
et al., 2014), and supervised learning approaches (Kim et al., 2018; Konidaris et al., 2018). Take ac-
tion backtracking for example; when failing to sample feasible poses for the current symbolic state,
it re-samples the end poses of previous task actions, in order to sample new initial poses for the
current task action. PETLON can leverage these methods to enhance its efficiency and applicability

4. In comparison, current task-level-optimal methods, e.g., the one from Erdem et al. (2011), would require the agent
to pre-evaluate costs of all actions. In this example, using these baseline methods, there are totally 21 actions whose
costs must be pre-evaluated so as to guarantee the task-level-optimal solution.
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in kinematically more challenging domains. TMP-N domains, e.g., robots operating in large areas
such as airport terminals, do not generally fall into this category.

Theoretically, pose re-sampling triggers motion-cost updates of related task-level actions, i.e.,
costs of all 〈s,a,s′〉 tuples in Aevld , to ensure the task-level optimality suggested in Proposition 1
(Section 4.1). This process ensures that the costs of navigation actions in Aevld are up to date. As
for our test domains, the re-sampling process (Line 14 in Algorithm 1) is seldom reached.

Dynamic Environments The evaluated cost function Ĉ defined in Equation 5 and implemented in
Line 16 takes in the motion planning domainDm and estimates the geometric-level cost of traversing
from x ∈ f (s) to x′ ∈ f (s′). In static environments, such geometric-level cost corresponds to the
effort required to travel between locations, taking into account the known static obstacles. Travel
cost estimates through planning path length using traditional motion planning algorithms, e.g. A∗,
Dijkstra’s, PRM, and RRT, can then serve as a good metric given accurate map information and
robot sensing capability, as the uncertainty in planning is limited in static environments.

Real-world environments are however oftentimes highly dynamic. It is still ongoing research to
estimate travel cost in dynamic environments, given motion uncertainties by humans, time-variant
events in the environment and limited sensing (Yi et al., 2015). We do not elaborate on those
techniques, but acknowledge their impact on the plan quality of TMP solutions. They are impor-
tant when deploying robots in the real world. Techniques to address such challenges are often
developed as additive features to motion planning algorithms, e.g. to maintain a time-variant cost
map, pre-trained from past data, for real-time travel estimation between waypoint traversal in the
workspace (Shiarlis et al., 2017). These approaches will not break the task-level optimality guaran-
tee of PETLON, as long as an admissible heuristic h (a lower-bounded cost estimator) and an upper
bounded cost estimator Ĉ are available, as shown in Inequality 6.

4.5 Laziness of PETLON

PETLON has the spirit of lazy learning algorithms that “defer processing of their inputs until they
receive requests for the information” (Aha, 1997). More specifically, both configurations of PET-
LON delay the evaluation of action costs until the corresponding actions are recommended by the
task planner. Bohlin and Kavraki developed the Lazy PRM algorithm for efficient motion planning,
where Lazy PRM defers collision checks in the roadmap until a path is generated (Bohlin & Kavraki,
2000), and this idea was combined with a bi-directional sampling strategy to further improve the
performance (Sánchez & Latombe, 2002). Hauser developed lazy-PRM algorithms that go beyond
generating admissible solutions, and further guarantee that the generated motion trajectories are
asymptotically optimal (Hauser, 2015). Their methods delay collision tests until they are absolutely
needed for checking that a candidate path is a solution. In contrast, the laziness of PETLON lies in
the interplay between task and motion planners, and the motion planner not only checks feasibility
but also evaluates action costs. Within the TMP context, Garrett et al. developed a new formulation,
called a constraint network, for manipulation domains that can be modeled with factored transition
systems (Garrett et al., 2018b). Their representation and algorithms have been demonstrated and
evaluated using motion planning and pick-and-place tasks, and are particularly useful for manipu-
lation domains with many objects. In particular, their Focused Algorithm uses lazy samples that are
optimistically assumed to be satisfying all constraints; optimality was not their focus. In contrast,
PETLON’s laziness on the cost evaluation is in the space of complete motion trajectories, instead
of in the high-dimensional configuration, or constraint space.
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5. Algorithm Instantiation

Our task planner has been implemented using two declarative languages: Answer Set Program-
ming (ASP) (Lifschitz, 2008; Gelfond & Kahl, 2014) and Planning Domain Definition Language
(PDDL) (McDermott et al., 1998). ASP is a popular general knowledge representation and rea-
soning (KRR) language, and has been used for solving task planning problems (Lifschitz, 2002).
PDDL was developed for the International Planning Competition (IPC) and has been maintained
by the IPC community. A recent empirical comparison has shown that PDDL-based planners per-
form better when tasks require long solutions, and ASP-based planners perform better when tasks
require complex reasoning (Jiang et al., 2019b). The goal of implementing both ASP-based and
PDDL-based planners is to provide evidence for our hypothesis that PETLON is not sensitive to
task planner selection.

At the task level, static predicates such as has door and inside describe the spacial constraints
on room accessibility and person locations respectively. We model three actions (moveto, fetch,
and deliver), and represent the task states through non-static predicates (delivered, loaded,

at). To map the task state to continuous space, we include a set of geometric instances using
predicate beside, to describe task states in a small spacial area. For instance, beside(fridge)
can be realized through function f as a pose within small area of the target fridge.

We use PRM∗ (Karaman & Frazzoli, 2011) to implement our motion planner. Compared to
planners using a tree structure, such as RRT (LaValle, 1998), the graph structure of PRM∗ is com-
putationally preferable due to the fact that the graph can be reused for multiple path evaluations with
different start/end points. Further, its asymptotic optimality, meaning almost-sure convergence to
the optimal solution, ensures higher-quality motion plans, at least when using high sampling density.
In cases where the non-holonomic robot dynamics have non-negligible effects on estimated travel
costs, the use of motion primitives (Butzke et al., 2014), or tree-based approaches which forward
simulate robot motion are required. It should be noted that PETLON is not restricted to specific
task or motion planning algorithms. The higher complexity the motion planner has, the greater the
potential advantage PETLON can bring by saving computation for motion evaluation.

We implemented our ASP-based and PDDL-based task planners using award-winning solvers of
Clingo (Gebser et al., 2014) and FastDownward (FD) (Helmert, 2006) respectively. As mentioned in
Section 4.2, suboptimal plans can be used in early phases of PETLON to quickly update Cs f b. Plan-
ners in their greedy modes to find a solution as quickly as possible serve well for this purpose. We
primarily evaluated PETLON with Options 2 and 3 (Section 4.2), which facilitate the planner con-
figurations OptAll and OptOne, as discussed in Section 4.2. When using either OptOne or OptAll,
task-level optimality is guaranteed per Proposition 1. Per Corollary 1.1, different planners (Options
1, 2, or 3) can be used during different planning iterations to maximize computational efficiency
while still ensuring optimality at convergence. For instance, using Option 1, e.g. greedy best-first
search algorithms, can reduce early-stage computation requirements before switching to an optimal
planner (Option 3) to ensure optimality. The performance impact given different implementations
of Option 1 is briefly discussed along with the Anytime property of PETLON in Section 6.3. The
main reason for excluding Option 1 from the evaluation is that the resulting performance highly
depends on the implementation of the greedy planner, making quantitative results less meaningful.

We use a laptop equipped with 2.2GHz i7 processor and 16GB RAM on OS X for all reported
results.
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Figure 4: Left: Robot platform used in this research. Right: Occupancy-grid map (inflated) and
a motion trajectory, indicated by a sequence of green planned for navigating through an
office door.

6. Experiments

PETLON has been implemented on a real robot as shown in Figure 4 (Left). The right of the figure
shows the occupancy-grid map and the robot planning to navigate through an office door. The robot
uses an RMP 110 mobile platform, onboard auxiliary battery, desktop computer (with touchscreen),
and Velodyne VLP-16 for perception (Khandelwal et al., 2017).

The test domain is our office environment, with the map pre-scanned and constructed by run-
ning the SLAM algorithm (Thrun et al., 2005) (loaded before robot planning). Part of the domain
is shown in Figure 4 on the right, containing seven rooms, four people, and four types of items
(accordingly four types of containers). Each type of container has two to three instances. This test
domain is later referred to as the base domain, on which we create variant domains for evaluating
PETLON in different categories.

6.1 Baseline Methods

The goal of PETLON is to significantly reduce overall planning time while guaranteeing task-level
optimality. Therefore, we evaluate PETLON based on both computational time and resulting plan
quality by comparing PETLON (two configurations) to baselines with the following action cost
formulations:

• Constant cost: Task actions are assumed to share the same unit cost. As a result, task planners
generate plans with the fewest actions (Cost = 1). Our hypothesis was that this baseline would
perform the worst in plan quality and the best in efficiency (due to the absence of a motion
planner).

• Heuristic cost: Task actions are assumed to have cost equivalent to the Euclidean distance
traveled (the motion planner is never called, and Cost=h all the time).
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• Brute force: Costs of all task actions are evaluated by the motion planner beforehand (Cost=Ĉ).
Our hypothesis was that this baseline would produce task-level-optimal solutions, but does not
perform as well as PETLON in efficiency.

All three baselines use optimal task planners. However, depending on the motion cost evaluation
strategy, these baselines produce trajectories of dramatically different quality. Only the brute-force
baseline and PETLON (both configurations) generate task-level-optimal plans. Their computational
times are then compared to demonstrate the improvement in planning efficiency introduced by PET-
LON. The other two baselines produce task-level-suboptimal plans.

6.2 Illustrative Example

A plan quality comparison between the output from PETLON and the output from the heuristic cost
baseline is shown in Figure 5. In this example, the robot needs to deliver a bottle of juice (5 instances
marked as blue downward triangles) and a newspaper (4 instances marked as magenta upward tri-
angles) to a target person (solid green circle). The initial state is specified using at(corridor) and
beside(init pos), and the goal state is specified using the following four literals:

delivered(alice,n). newspaper(n). delivered(alice,j). juice(j).

where n,j are available locations of newspapers and juices.
While considering an environment with low visibility from one location to another, such as

an office domain, heuristic cost functions (such as suggested in Equation 4) may greatly under-
estimate the true motion cost value, resulting in suboptimal plans (50m vs. 37m in travel length
in this case). In this example, the geometric instances in the task planning domain are of four
types: fridge, newsstand, door, and person. The task planner decides the order of the sub-
tasks (such as fetch(newspaper)), and which instance to fulfill the action preconditions (such as
beside(newsstand1)).

This pairwise example illustrates the necessity of cost evaluations using a motion planner (the
baseline does not do so) and the importance of task-level optimality (the suboptimal solution causes
a significant delay of task completion).

6.3 Experimental Results

Our central hypothesis is that PETLON is more efficient than planning approaches that pre-compute
motion costs of all possible navigation actions, while still producing task-level-optimal solutions.
Accordingly, we conducted the following four sets of experiments focusing on evaluating the per-
formance of PETLON in efficiency and plan quality under different conditions.

For the motion planner, we draw samples with a density of two poses per square meter, and the
resultant plan quality has small variations (mostly within one meter) among trials.

Overall Performance of Six Planning Strategies The two PETLON configurations with Clingo
and FD implementations are compared with the baselines, on the task of delivering two specified
kinds of items to a target person. As explained in Section 5, FD does not output suboptimal solu-
tions, so we can only evaluate the OptOne configuration of PETLON using the FD solver. Each
data point corresponds to an average over eight trials, and there are six strategies in total in this set
of experiments.
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(a) Heuristic cost baseline (b) PETLON

Figure 5: The heuristic cost baseline uses only the Euclidean distance for plan cost value estimate
(28.4m) and results in the suboptimal solution with actual length as 50m. The optimal
solution by PETLON has higher heuristic cost value estimate (31.3m) but shorter actual
length as 37m, compared to the heuristic-cost baseline.
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Figure 6: Plan quality (path length) vs. overall planning time. We compare six different planning
algorithms using the base domain. PETLON (three implementations) significantly re-
duces the overall planning time, while ensuring task-level optimality. Since we prioritize
optimality over planning efficiency in our evaluations, the constant-cost and heuristic-cost
baselines are not included in the following evaluations.

Figure 6 reports their overall performance. We can see that PETLON (all three versions) signif-
icantly reduces the planning time (x-axis) to less than 20 seconds, in comparison to the brute-force
baseline that took more than 30 seconds, while ensuring the best-quality solution (y-axis). It should
be noted that, our domain is not very knowledge-intensive in the sense of the numbers of objects and
their properties. Real-world applications are frequently much more knowledge-intensive than the
brute-force baseline is able to handle; in domains with many objects that are irrelevant to the tested
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Figure 7: Overall planning time given different domain scale-up. PETLON (three versions) is more
efficient than the baseline in every implementation.

Domain scale

1 2 3

OptOne-Clingo 10.75 9.00 11.00
OptOne-FD 13.60 11.00 12.00
OptAll-Clingo 16.00 17.50 25.75
Brute-force baseline 325.00 1295.00 2850.00

Table 1: The average number of cost evaluations conducted in the motion planner, in different do-
main scales.

task request, the brute-force runtime grows exponentially (in the number of objects), and hence is
not applicable for relatively large domains. The outputs of the other two baselines, Constant cost
and Heuristic cost, are much worse in terms of quality due to their ignorance of true action costs.

Efficiency (Planning Time) in Domains of Different Sizes In this experiment, with the same
task specification, we scale up the domain size in terms of both the number of objects (adding
complexity for P t), and map size (adding complexity for Pm) by appending N copies of the base
domain to one another (left to right, then top to down), following its same structure. The initial
positions of the robot are randomly selected in the three domains, to increase the likelihood that the
robot will traverse newly-appended map areas.

The overall planning time includes the time consumed by both the task planner (Clingo-based
or FD-based) and the motion planner. The task planners and motion planner are sensitive to the
increasing number of objects and map size respectively. It should be noted that we add more objects
and increase domain sizes, but the delivery task, as delivering a juice and a newspaper, does not
change. Correspondingly, the length of the generated symbolic plan does not change.
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Figure 8: Overall planning time given tasks of different numbers of object to deliver. PETLON that
uses the FD-based task planner (OptOne configuration) performs the best. The anytime
configuration greatly improves computation compared to other ASP-based implementa-
tions.

Figure 7 shows the results of overall planning time given different levels of domain scale-up
(N = 2 and N = 3). We see PETLON performs significantly better than the brute-force baseline,
because brute-force has to evaluate costs of a combinatorially growing number of actions. Table 1
shows the number of motion cost evaluations in different domain scales. From the last row, we can
see that in the domain setting of 3x scale-up, brute-force conducts 2850 motion cost evaluations,
whereas PETLON evaluates fewer than 26.

Planning Time Given Different Tasks In this set of experiments, we vary the tasks by increasing
the number of objects that need to be delivered using the base domain setup. The goal is to evaluate
how sensitive the planning algorithms are given more complex tasks, i.e., tasks that require more
task-level actions. PETLON may take substantially many iterations to converge given a task that
requires many actions, so the computational expense of task planning can become a concern. We
used both Clingo and FD task planners in our experiment. Intuitively, Clingo can be relatively more
sensitive to plan length as it is a general-purpose reasoner not fine-tuned for planning tasks, whereas
the FD planner is developed specifically for efficiently computing plans that include many actions.

The results are shown in Figure 8. As plan length increases (x-axis), OptOne-FD begins outper-
forming all other implementations, whereas the Clingo task planner is very sensitive to plan length.
In such scenarios, making more calls to the task planner may not trade off favorably against motion
evaluation. To address this issue, we introduce the “Anytime” configuration of PETLON, which
trades off the optimality guarantee with superior efficiency without much loss of plan quality.

Anytime Property of PETLON, an Illustrative Example In situations with strict time bounds, it
can be useful for a planner to have an “anytime” property, meaning that the algorithm can terminate
early while outputting monotonically improved solutions over time. In our case, we would like to
see that PETLON produces good-quality plans (sequence of actions) given an early termination.

Figure 9 shows how the so-far-best cost Cs f b and the cost of p̂∗ computed using Cost evolve over
nine iterations until convergence. Note that Cs f b reaches the optimal value of PETLON (OptOne on
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Figure 9: PETLON is an anytime algorithm that can return a valid solution even if it is interrupted
before termination.

Number of object

2 3 4

OptAll-Clingo 29.6 35.1 44.9
AnyTime-Clingo 29.9 35.1 45.0

Table 2: Plan quality analysis for two to four objects of delivery, units in meter(m): the Anytime
configuration implements OptAll and terminates after the first iteration. Compared to
OptAll, which does not terminate until convergence, the high quality of the Anytime con-
figuration shows the potentially beneficial trade-off between computational efficiency and
guaranteed optimality.

the base domain) by iteration 4, while PETLON continues evaluating other potential satisfiable plans
and finally, at iteration 9, it reports that the plan found at iteration 4 is optimal. This illustrative trial
demonstrates PETLON’s good anytime performance. We collected the time lengths of PETLON
finding the optimal solution (after that, PETLON continues to evaluate other plans to ensure task-
level optimality).

Now, let us come back to the results presented in Figure 8 (the “Anytime-Clingo” curve in
particular). We can see Anytime-Clingo performs the best in terms of computational time. Table 2
shows that Anytime-Clingo produces near-optimal solutions at task level. The computational results
of Anytime-Clingo are reported along with other implementations in Figure 8, where we can see
Anytime-Clingo performs the best in comparison to all other planning strategies.

Note that, Clingo is actually capable of outputting all feasible plans, or all plans with costs lower
than a certain value. With those two implementations, PETLON guarantees optimality within two
calls of the task planner, by setting the second call to output all plans lower than the so-far-best
cost, or, to output all feasible plans in the first iteration, and evaluate the rest without more calls to
the task planner. This implementation is practical given its early convergence and therefore fewer
calls to the task planner. Moreover, due to the convergence criteria of PETLON (per Corollary
1.1), PETLON can apply any efficient task planner in the first iteration, e.g. a best-first search
algorithm, to save computation. PETLON can also directly make use of anytime task planners,
such as LAMA (Richter & Westphal, 2010) and JASPER (Xie et al., 2014), while still guaranteeing
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Figure 10: Plan quality and computation analysis given different density of randomly generated
obstacles: the more dense the obstacles are, the lower the plan quality is, and the more
iterations PETLON take to converge. Such performance degradation is more significant
in the OptOne configuration than in OptAll.

task-level optimality. The experimental setup in Figure 8 is purely to demonstrate potential issues
while using PETLON, given different characteristics brought about by the choices of planners.

Domains with Different Levels of Visibility In motion planning, visibility function V (q) maps
point q to a set of points that are reachable through a local path planner, where a line segment is
the simplest implementation of a local path planner (LaValle, 2006). When planning to travel in
an environment with perfect visibility, i.e., an obstacle-free environment, the Euclidean-distance
heuristic is equivalent to the length of the motion path required to travel between two locations.
As the environment becomes more cluttered, the heuristic estimate becomes less effective, and
PETLON relies more on the motion planner to evaluate the true travel cost, which causes extra
computational expense. Our hypothesis is that, the more cluttered the environment is, the more
motion evaluations/iterations are required to produce the task-level-optimal solution.

In this set of experiments, the robot plans in the base domain to fetch two objects for delivery.
We manipulated domain visibility by randomly sampling different numbers of obstacles, producing
different obstacle densities. Obstacles are of size 0.4m by 0.4m, and are large enough to potentially
block the office entrances or prevent the robot from fetching objects in areas. Table 3 shows that a
larger number of obstacles renders more trials that are identified as being infeasible by the motion
planner.

We forced PETLON to terminate by iteration 10 (if it is ever reached) in each trial. We tested
both OptOne and OptAll configurations, using Clingo for task planning and PRM∗ for motion plan-
ning. Within PRM∗, we used the same setting, described in Section 5, in all experiments (including
the same sample density and number of nearest neighbors) despite their different levels of visibility.
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Number of obstacles

0 120 180

OptAll-Clingo 0% 3% 23%
OptOne-Clingo 0% 17% 28%

Table 3: Percentage of trials (out of totally 64 trials) identified as being infeasible by the motion
planner. As more obstacles are added, the environment’s the visibility decreases, and
the motion planner finds it more difficult to compute geometrically feasible plans, which
results in more infeasible trials.

The experimental results are shown in Figure 10, where each data point corresponds to an av-
erage of 64 trials, and infeasible trials have been excluded. As the environment becomes more
cluttered, the plan quality declines, which corresponds to the generated plan length being higher.
This is not only because the robot needs longer paths to avoid obstacles, but also because it is less
likely that the generated plan converges to the optimal within the allowed ten iterations. This plan
quality reduction is more severe in OptOne, in comparison to OptAll.

7. Conclusions and Future Work

In this article, we introduce a novel algorithm, PETLON, that fully integrates task and motion
planning for mobile robot service tasks. PETLON stands for “Planning Efficiently for Task-Level-
Optimal Navigation” and is designed to produce task-level optimal plans while maintaining efficient
planning time. PETLON has been evaluated using maps modeled after a real office environment,
and has also been implemented on a real robot. Results show that PETLON significantly reduces the
overall planning time compared to a baseline that pre-computes motion costs of all actions, while
still maintaining task-level optimality.

This work opens a number of new research directions on task and motion planning (TMP), es-
pecially in navigational domains (TMP-N). In the future, we intend to extend the work to dynamic
environments, where cost estimates reflect plan quality during real-world execution. Currently we
only use the total length of motion trajectories to evaluate the quality of task plans. Other motion
criteria can be considered for cost evaluations. For instance, actions that involve navigation through
crowds are expected to produce higher costs due to the expected delay in execution. In domains
where safety is a major concern, safety measures can also be incorporated into the evaluation pro-
cess (Ding et al., 2020). We also intend to extend the work with an exploration mechanism, for the
robot to interact with the real world to learn costs of navigation actions (Jiang et al., 2019a).

One of the limitations of this research is the assumption of the existence of a “state mapping
function” presented in Section 3. This function breaks global optimality, and downgrades PETLON
to a task-level-optimal approach. Also, this function itself can be computationally costly, especially
in highly constrained or dynamic environments. There are incremental TMP methods from the lit-
erature that incrementally incorporate motion feasibility information into the task planner, resulting
in a probabilistically-complete TMP method called IDTMP (Dantam et al., 2016). A promising
direction for future work is to exploit the complementary features of PETLON’s optimality and
IDTMP’s completeness toward more advanced TMP algorithms.
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As discussed in Section 2, researchers have developed a number of benchmark domains for
evaluations of TMP algorithms. The work of Lagriffoul et al. (2018) is one such effort. We plan
to better standardize the tasks used in this article, including “camping” and “delivery” tasks, and
use them as benchmarks for the evaluation of TMP-N algorithms. On the other hand, although
developed for navigation domains, there is the potential to apply PETLON in manipulation domains,
where pose sampling and action feasibility becomes challenging.
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