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Abstract
The reinforcement learning paradigm is a popular way to address problems that have only limited
environmental feedback, rather than correctly labeled examples, as is common in other machine
learning contexts. While significant progress has been made to improve learning in a single task,
the idea oftransfer learninghas only recently been applied to reinforcement learning tasks. The
core idea of transfer is that experience gained in learning to perform one task can help improve
learning performance in a related, but different, task. In this article we present a framework that
classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey
the existing literature, as well as to suggest future directions for transfer learning work.
Keywords: transfer learning, reinforcement learning, multi-task learning

1. Transfer Learning Objectives

In reinforcement learning(RL) (Sutton and Barto, 1998) problems, leaning agents take sequential
actions with the goal of maximizing a reward signal, which may be time-delayed. For example,
an agent could learn to play a game by being told whether it wins or loses, butis never given the
“correct” action at any given point in time. The RL framework has gained popularity as learning
methods have been developed that are capable of handling increasingly complex problems. How-
ever, when RL agents begin learningtabula rasa, mastering difficult tasks is often slow or infeasible,
and thus a significant amount of current RL research focuses on improving the speed of learning
by exploiting domain expertise with varying amounts of human-provided knowledge. Common ap-
proaches include deconstructing the task into a hierarchy of subtasks (cf., Dietterich, 2000); learning
with higher-level, temporally abstract, actions (e.g.,options, Sutton et al. 1999) rather than simple
one-step actions; and efficiently abstracting over the state space (e.g., viafunction approximation)
so that the agent may generalize its experience more efficiently.

The insight behindtransfer learning(TL) is that generalization may occur not only within tasks,
but alsoacross tasks. This insight is not new; transfer has long been studied in the psychological
literature (cf., Thorndike and Woodworth, 1901; Skinner, 1953). More relevant are a number of
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Figure 1: This article focuses on transfer between reinforcement learning tasks.

approaches that transfer between machine learning tasks (Caruana, 1995; Thrun, 1996), for planning
tasks (Fern et al., 2004; Ilghami et al., 2005), and in the context of cognitive architectures (Laird
et al., 1986; Choi et al., 2007). However, TL for RL tasks has only recently been gaining attention
in the artificial intelligence community. Others have written surveys for reinforcement learning
(Kaelbling et al., 1996), and for transfer across machine learning tasks(Thrun and Pratt, 1998),
which we will not attempt to duplicate; this article instead focuses on transferbetween RL tasks(see
Figure 1) to provide an overview of a new, growing area of research.

Transfer learning in RL is an important topic to address at this time for three reasons. First, in
recent years RL techniques have achieved notable successes in difficult tasks which other machine
learning techniques are either unable or ill-equipped to address (e.g., TDGammon Tesauro 1994,
job shop scheduling Zhang and Dietterich 1995, elevator control Crites and Barto 1996, helicopter
control Ng et al. 2004, marble maze control Bentivegna et al. 2004, Robot Soccer Keepaway Stone
et al. 2005, and quadruped locomotion Saggar et al. 2007 and Kolter et al. 2008). Second, classical
machine learning techniques such as rule induction and classification are sufficiently mature that
they may now easily be leveraged to assist with TL. Third, promising initial results show that not
only are such transfer methods possible, but they can be very effective at speeding up learning.
The 2005 DARPA Transfer Learning program (DARPA, 2005) helpedincrease interest in transfer
learning. There have also been some recent workshops providing exposure for RL techniques that
use transfer. The 2005 NIPS workshop, “Inductive Transfer: 10Years Later,” (Silver et al., 2005)
had few RL-related transfer papers, the 2006 ICML workshop, “Structural Knowledge Transfer for
Machine Learning,” (Banerjee et al., 2006) had many, and the 2008 AAAI workshop, “Transfer
Learning for Complex Tasks,” (Taylor et al., 2008a) focused on RL.

1.1 Paper Overview

The goals of this survey are to introduce the reader to the transfer learning problem in RL domains,
to organize and discuss current transfer methods, and to enumerate important open questions in
RL transfer. In transfer, knowledge from one or moresource task(s)is used to learn one or more
target task(s)faster than if transfer was not used. The literature surveyed is structured primarily
by grouping methods according to how they allow source and target tasks todiffer. We further
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distinguish methods according to five different dimensions (see Section 2.2). Some of the questions
that distinguish transfer methods include:

• What are the goals of the transfer method? By what metric(s) will success be measured? Sec-
tion 2 examines commonly used metrics, as well as different settings where transfer learning
can improve learning.

• What assumptions, if any, are made regarding the similarity between the tasks?Section 3.2.1
enumerates common differences, such as changes to the space in which agents operate, al-
lowing the agents to have different goals, or letting agents have differentsets of actions.

• How does a transfer method identify what information can/should be transferable? Sec-
tion 3.2.2 enumerates possibilities ranging from assumingall previously seen tasks are di-
rectly useful to autonomously learning which source task(s) are usefulfor learning in the
current target task.

• What information is transferred between tasks? Section 3.2.3 discusses possibilities ranging
from very low-level information (such as direct control knowledge) to high-level information
(such as rules regarding how a particular domain functions).

The following section presents a discussion about how to best evaluate transfer in RL. There are
many different situations in which transfer can be useful and these different situations may entail
different metrics. This discussion will prepare the reader to better understand how transfer may be
used. Section 3.1 will briefly discuss reinforcement learning and the notation used in the article.
Section 3.2 enumerates the ways in which transfer methods can differ, providing a skeleton for the
structure of this survey. Sections 3.3 and 3.4 provide additional high-level categorization of TL
methods and Section 3.5 discusses related learning paradigms which are explicitly not discussed in
this survey.

The bulk of the remainder of the article (Sections 4–8) discuss contemporary TL methods, ar-
ranged by the goals of, and methods employed by, the designers. Lastly, Section 9 discusses current
open questions in transfer and concludes.

2. Evaluating Transfer Learning Methods

Transfer techniques assume varying degrees of autonomy and make manydifferent assumptions. To
be fully autonomous, an RL transfer agent would have to perform all of the following steps:

1. Given a target task, select an appropriate source task or set of tasks from which to transfer.

2. Learn how the source task(s) and target task are related.

3. Effectively transfer knowledge from the source task(s) to the target task.

While the mechanisms used for these steps will necessarily be interdependent, TL research has
focused on each independently, and no TL methods are currently capable of robustly accomplishing
all three goals.

A key challenge in TL research is to define evaluation metrics, precisely because there are many
possible measurement options and algorithms may focus on any of the three steps above. This
section focuses on how to best evaluate TL algorithms so that the reader maybetter understand the
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different goals of transfer and the situations where transfer may be beneficial.1 For instance, it is not
always clear how to treat learning in the source task: whether to charge itto the TL algorithm or to
consider it as a “sunk cost.” On the one hand, a possible goal of transfer is to reduce the overall time
required to learn a complex task. In this scenario, atotal time scenario, which explicitly includes
the time needed to learn the source task or tasks, would be most appropriate.On the other hand,
a second reasonable goal of transfer is to effectively reuse past knowledge in a novel task. In this
case, atarget task time scenario, which only accounts for the time spent learning in the target task,
is reasonable.

The total time scenario may be more appropriate when an agent is explicitly guided by a human.
Suppose that a user wants an agent to learn to perform a task, but recognizes that the agent may be
able to learn a sequence of tasks faster than if it directly tackled the difficulttask. The human can
construct a series of tasks for the agent, suggesting to the agent how thetasks are related. Thus
the agent’s TL method will easily accomplish steps 1 and 2 above, but it must efficiently transfer
knowledge between tasks (step 3). To successfully transfer in this setting,the agent would have to
learn the entire sequence of tasks faster than if it had spent its time learning the final target task
directly (see the total time scenario in Figure 2).

The target task time scenario is more appropriate for a fully autonomous learner. A fully au-
tonomous agent must be able to perform steps 1–3 on its own. However, metrics for this scenario do
not need to take into account the cost of learning source tasks. The target task time scenario empha-
sizes the agent’s ability to use knowledge from one or more previously learned source tasks without
being charged for the time spent learning them (see the target task time scenario in Figure 2). In
this survey we will see that the majority of existing transfer algorithms assume a human-guided sce-
nario, but disregard time spent training in the source task. When discussingindividual TL methods,
we will specifically call attention to the methods that do account for the total training time and do
not treat the time spent learning a source task as a sunk cost.

Many metrics to measure the benefits of transfer are possible (shown in Figure 3, replicated
from our past transfer learning work, Taylor and Stone 2007b):

1. Jumpstart: The initial performance of an agent in a target task may be improved by transfer
from a source task.

2. Asymptotic Performance: The final learned performance of an agent in the target task may be
improved via transfer.

3. Total Reward: The total reward accumulated by an agent (i.e., the area under the learning
curve) may be improved if it uses transfer, compared to learning without transfer.

4. Transfer Ratio: The ratio of the total reward accumulated by the transfer learner and the total
reward accumulated by the non-transfer learner.

5. Time to Threshold: The learning time needed by the agent to achieve a pre-specified perfor-
mance level may be reduced via knowledge transfer.

Metrics 1–4 are most appropriate in the fully autonomous scenario as they donot charge the agent
for time spent learning any source tasks. To measure the total time, the metric must account for time

1. Evaluation is particularly important because there are very few theoretical results supporting TL for RL methods,
as discussed further in Section 9.3. Instead, practitioners rely on empirical methods to evaluate the efficacy of their
methods.
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Figure 2: Successful TL methods may be able to reduce the total training time (left). In some
scenarios, it is more appropriate to treat the source task time as a sunk costand test
whether the method can effectively reuse past knowledge to reduce the target task time
(right).

spent learning one or more source tasks, which is natural when using metric 5. Other metrics have
been proposed in the literature, but we choose to focus on these five because they are sufficient to
describe the methods surveyed in this article.

For this article, we may think of learning time as a surrogate forsample complexity. Sample
complexity (or data complexity) in RL refers to the amount of data required by an algorithm to
learn. It is strongly correlated with learning time because RL agents only gaindata by collecting it
through repeated interactions with an environment.

2.1 Empirical Transfer Comparisons

The previous section enumerated five possible TL metrics, and while others are possible, these
represent the methods most commonly used. However, each metric has drawbacks and none are
sufficient to fully describe the benefits of any transfer method. Rather than attempting to create a
total order ranking of different methods, which may indeed by impossible, we instead suggest that a
multi-dimensional evaluation with multiple metrics is most useful. Specifically, some methods may
“win” on a set of metrics relative to other methods, but “lose” on a different set. As the field better
understands why different methods achieve different levels of success on different metrics, it should
become easier to map TL methods appropriately to TL problems. Although the machine learning
community has defined standard metrics (such as precision vs. recall curves for classification and
mean squared error for regression), RL has no such standard. Empirically comparing two RL algo-
rithms is a current topic of debate within the community, although there is some process towards
standardizing comparisons (Whiteson et al., 2008). Theoretical comparisons are also not clear-cut,
as samples to convergence, asymptotic performance, and the computationalcomplexity are all valid
axes along which to evaluate RL algorithms.
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Figure 3: Many different metrics for measuring TL are possible. This graph show benefits to the
jumpstart, asymptotic performance, time to threshold, and total reward (the area under
the learning curve).

The first proposed transfer measure considers the agent’s initial performance in a target task and
answers the question, “can transfer be used so that the initial performance is increased relative to
the performance of an initial (random) policy?” While such an initial jumpstart isappealing, such
a metric fails to capture the behavior oflearning in the target task and instead only focuses on the
performance before learning occurs.

Asymptotic performance, the second proposed metric, compares the final performance of learn-
ers in the target task both with and without transfer. However, it may be difficult to tell when the
learner has indeed converged (particularly in tasks with infinite state spaces) or convergence may
take prohibitively long. In many settings the number of samples required to learn is most critical,
not the performance of a learner with an infinite number of samples. Further,it is possible for differ-
ent learning algorithms to converge to the same asymptotic performance but require very different
numbers of samples to reach the same performance.

A third possible measure is that of the total reward accumulated during training. Improving
initial performance and achieving a faster learning rate will help agents accumulate more on-line
reward. RL methods are often not guaranteed to converge with function approximation and even
when they do, learners may converge to different, sub-optimal performance levels. If enough sam-
ples are provided to agents (or, equivalently, learners are provided sufficient training time), a learn-
ing method which achieves a high performance relatively quickly will have less total reward than a
learning method which learns very slowly but eventually plateaus at a slightly higher performance
level. This metric is most appropriate for tasks that have a well-defined duration.
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A fourth measure of transfer efficacy is that of the ratio of areas defined by two learning curves.
Consider two learning curves in the target task where one uses transferand one does not. Assuming
that the transfer learner accrues more reward, the area under the transfer leaning curve will be greater
than the area under the non-transfer learning curve. The ratio

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer

gives a metric that quantifies improvement from TL. This metric is most appropriate if the same
final performance is achieved, or there is a predetermined time for the task.Otherwise the ratio will
directly depend on how long the agents act in the target task.

While such a metric may be appealing as a candidate for inter-task comparisons, we note that
the transfer ratio is not scale invariant. For instance, if the area under thetransfer curve were 1000
units and the area under the non-transfer curve were 500, the transfer ratio would be 1.0. If all
rewards were multiplied by a constant, this ratio would not change. But if an offset were added
(e.g., each agent is given an extra +1 at the end of each episode, regardless of the final state), the
ratio would change. The evaluation of a TL algorithm with the transfer ratio is therefore closely
related to the reward structure of the target task being tested. Lastly, we note that although none of
the papers surveyed in this article use such a metric, we hope that it will be used more often in the
future.

The final metric, Time to Threshold, suffers from having to specify a (potentially arbitrary) per-
formance agents must achieve. While there have been some suggestions how to pick such thresholds
appropriately (Taylor et al., 2007a), the relative benefit of TL methods will clearly depend on the
exact threshold chosen, which will necessarily be domain- and learning method-dependent. While
choosing a range of thresholds to compare over may produce more representative measures (cf.,
Taylor et al., 2007b), this leads to having to generating a time vs. threshold curve rather than pro-
ducing a single real valued number that evaluates a transfer algorithm’s efficacy.

A further level of analysis that could be combined with any of the above methods would be to
calculate a ratio comparing the performance of a TL algorithm with that of a human learner. For
instance, a set of human subjects could learn a given target task with and without having first trained
on a source task. By averaging over their performances, different human transfer metrics could be
calculated and compared to that of a TL algorithm. However, there are many ways to manipulate
such a meta-metric. For instance, if a target task is chosen that humans are relatively proficient
at, transfer will provide them very little benefit. If that same target task is difficult for a machine
learning algorithm, it will be relatively easy to show that the TL algorithm is quite effective relative
to human transfer, even if the agent’s absolute performance is extremely poor.

A major drawback of all the metrics discussed is that none are appropriate for inter-domain com-
parisons. The vast majority of papers in this survey compare learning with and without transfer—
their authors often do not attempt to directly compare different transfer methods. Developing fair
metrics that apply across multiple problem domains would facilitate better comparisons of methods.
Such inter-domain metrics may be infeasible in practice, in which case standardizing on a set of test
domains would assist in comparing different TL methods (as discussed further in Section 9). In
the absence of either a set of inter-domain metrics or a standard benchmarksuite of domains, we
limit our comparisons of different TL methods in this survey to their applicability,assumptions, and
algorithmic differences. When discussing different methods, we may opine on the method’s relative
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performance, but we remind the reader that such commentary is largely based on intuition rather
than empirical data.

2.2 Dimensions of Comparison

In addition to differing on evaluation metrics, we categorize TL algorithms alongfive dimensions,
which we use as the main organizing framework for our survey of the literature:

I Task difference assumptions: What assumptions does the TL method make about how the
source and target are allowed to differ? Examples of things that can differ between the source
and target tasks include different system dynamics (i.e., the target task becomes harder to
solve is some incremental way), or different sets of possible actions at some states. Such
assumptions define the types of source and target tasks that the method cantransfer between.
Allowing transfer to occur between less similar source and target tasks gives more flexibility
to a human designer in the human-guided scenario. In the fully autonomous scenario, more
flexible methods are more likely to be able to successfully apply past knowledge to novel
target tasks.

II Source task selection: In the simplest case, the agent assumes that a human has performed
source task selection (the human-guided scenario), and transfers from one or more selected
tasks. More complex methods allow the agent to select a source task or set of source tasks.
Such a selection mechanism may additionally be designed to guard againstnegative transfer,
where transfer hurts the learner’s performance. The more robust theselection mechanism,
the more likely it is that transfer will be able to provide a benefit. While no definitive answer
to this problem exists, successful techniques will likely have to account for specific target
task characteristics. For instance, Carroll and Seppi (2005) motivate the need for general task
similarity metrics to enable robust transfer, propose three different metrics, and then proceed
to demonstrate that none is always “best,” just as there is never a “best” inductive bias in a
learning algorithm.

III Task Mappings: Many methods require a mapping to transfer effectively: in addition to know-
ing that a source task and target task are related, they need to knowhow they are related.
Inter-task mappings(discussed in detail later in Section 3.4) are a way to define how two
tasks are related. If a human is in the loop, the method may assume that such taskmappings
are provided; if the agent is expected to transfer autonomously, such mappings have to be
learned. Different methods use a variety of techniques to enable transfer, both on-line (while
learning the target task) and offline (after learning the source task but before learning the tar-
get task). Such learning methods attempt to minimize the number of samples neededand/or
the computational complexity of the learning method, while still learning a mapping to enable
effective transfer.

IV Transferred Knowledge: What type of information is transferred between the source and
target tasks? This information can range from very low-level information about a specific
task (i.e., the expected outcome when performing an action in a particular location) to general
heuristics that attempt to guide learning. Different types of knowledge may transfer better or
worse depending on task similarity. For instance, low-level information may transfer across
closely related tasks, while high-level concepts may transfer across pairs of less similar tasks.
The mechanism that transfers knowledge from one task to another is closely related to what
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is being transferred, how the task mappings are defined (III), and what assumptions about the
two tasks are made (I).

V Allowed Learners: Does the TL method place restrictions on what RL algorithm is used,
such as applying only to temporal difference methods? Different learningalgorithms have
different biases. Ideally an experimenter or agent would select the RL algorithm to use based
on characteristics of the task, not on the TL algorithm. Some TL methods require that the
source and target tasks be learned with the same method, other allow a class of methods to be
used in both tasks, but the most flexible methods decouple the agents’ learning algorithms in
the two tasks.

An alternate TL framework may be found in the related work section of Lazaric (2008), a
recent PhD thesis on TL in RL tasks. Lazaric compares TL methods in terms ofthe type of benefit
(jumpstart, total reward, and asymptotic performance), the allowed differences between source and
target (different goal states, different transition functions but the same reward function, and different
state and action spaces) and the type of transferred knowledge (experience or structural knowledge).
Our article is more detailed both in the number of approaches considered, thedepth of description
about each approach, and also uses a different organizational structure. In particular, we specify
which of the methods improve which of five TL metrics, we note which of the methods account
for source task training time rather than treating it as a sunk cost, and we differentiate methods
according to five dimensions above.

3. Transfer for Reinforcement Learning

In this section we first give a brief overview of notation. We then summarize the methods discussed
in this survey using the five dimensions previously discussed, as well as enumerating the possible at-
tributes for these dimensions. Lastly, learning paradigms with goals similar to transfer are discussed
in Section 3.5.

3.1 Reinforcement Learning Background

RL problems are typically framed in terms ofMarkov decision processes(MDPs) (Puterman, 1994).
For the purposes of this article,MDPandtaskare used interchangeably. In an MDP, there is some set
of possible perceptions of the currentstateof the world,s∈ S, and a learning agent has one or more
initial starting states,sinitial . The reward function, R : S 7→ R, maps each state of the environment
to a single number which is the instantaneous reward achieved for reachingthe state. If the task is
episodic, the agent begins at a start state and executes actions in the environment until it reaches
a terminal state (one or more of the states insf inal, which may be referred to as agoal state), at
which point the agent is returned to a start state. An agent in an episodic task typically attempts to
maximize the average reward per episode. In non-episodic tasks, the agent attempts to maximize
the total reward, which may be discounted. By using a discount factor,γ, the agent can weigh
immediate rewards more heavily than future rewards, allowing it to maximize a non-infinite sum of
rewards.
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An agent knows its current state in the environment,s∈S.2 TL methods are particularly relevant
in MDPs that have a large or continuous state, as these are the problems which are slow to learn
tabula rasaand for which transfer may provide substantial benefits. Such tasks typically factor
the state usingstate variables(or features), so thats= 〈x1,x2, . . . ,xn〉 (see Figure 4). The agent’s
observed state may be different from the true state if there is perceptual noise. The setA describes
the actionsavailable to the agent, although not every action may be possible in every state.3 The
transition function, T : S×A 7→S, takes a state and an action and returns the state of the environment
after the action is performed. Transitions may be non-deterministic, making the transition function
a probability distribution function. A learner senses the current state,s, and typically knowsA and
what state variables compriseS; however, it is generally not givenRor T.

A policy, π : S 7→ A, fully defines how a learner interacts with the environment by mapping
perceived environmental states to actions. The success of an agent is determined by how well it
maximizes the total reward it receives in the long run while acting under some policy π. An optimal
policy, π∗, is a policy which does maximize the expectation of this value. Any reasonable learning
algorithm attempts to modifyπ over time so that the agent’s performance approaches that ofπ∗ in
the limit.

There are many possible approaches to learning such a policy (depicted as a black box in Fig-
ure 4), including:

• Temporal difference(TD) methods, such asQ-learning (Sutton, 1988; Watkins, 1989) and
Sarsa(Rummery and Niranjan, 1994; Singh and Sutton, 1996), learn by backingup experi-
enced rewards through time. An estimatedaction-value function, Q : S×A 7→ R is learned,
whereQ(s,a) is the expected return found when executing actiona from states, and greedily
following the current policy thereafter. The current best policy is generated fromQ by sim-
ply selecting the action that has the highest value for the current state.Exploration, when the
agent chooses an action to learn more about the environment, must be balanced withexploita-
tion, when the agent selects what it believes to be the best action. One simple approach that
balances the two isε-greedy action selection: the agent selects an random action with chance
ε, and the current best action is selected with probability 1− ε (whereε is in [0,1]).

• Policy searchmethods, such as policy iteration (dynamic programming), policy gradient
(Williams, 1992; Baxter and Bartlett, 2001), and direct policy search (Ng and Jordan, 2000),
are in some sense simpler than TD methods because they directly modify a policy over time
to increase the expected long-term reward by using search or other optimization techniques.

• Dynamic programming(Bellman, 1957) approaches assume that a full model of the environ-
ment is known (i.e.,S, A, T, andR are provided to the agent and are correct). No interaction
with the environment is necessary, but the agent must iteratively compute approximations for
the true value or action-value function, improving them over time.

• Model-basedor Model-learningmethods (Moore and Atkeson, 1993; Kearns and Singh,
1998) attempt to estimate the true model of the environment (i.e.,T andR) by interacting

2. If the agent only receivesobservationsand does not know the true state, the agent may treat approximate its true state
as the observation (cf., Stone et al., 2005), or it may learn using the Partially Observable Markov Decision Process
(POMDP) (cf., Kaelbling et al., 1998) problem formulation, which is beyond the scope of this survey.

3. Although possible in principle, we are aware of no TL methods currentlyaddress MDPs with continuous actions.
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Figure 4: An agent interacts with an environment by sequentially selecting anaction in an observed
state, with the objective of maximizing an environmental reward signal.

with the environment over time.Instance based methods(Ormoneit and Sen, 2002) save
observed interactions with the environment and leverage the instance directly to predict the
model. Bayesian RL(Dearden et al., 1999) approaches use a mathematical model to explic-
itly represent uncertainty in the components of the model, updating expectations over time.
The learned model is then typically used to help the agent decide how to efficiently explore or
plan trajectories so that it can accrue higher rewards. While very successful in small tasks, few
such methods handle continuous state spaces (cf., Jong and Stone, 2007), and they generally
have trouble scaling to tasks with many state variables due to the “curse of dimensionality.”

• Relational reinforcement learning(RRL) (Dzeroski et al., 2001) uses a different learning
algorithm as well as a different state representation. RRL may be appropriate if the state
of an MDP can be described in a relational or first-order language. Such methods work by
reasoning over individual objects (e.g., a single block in a Blocksworld task) and thus may be
robust to changes in numbers of objects in a task.

• Batch learning methods (e.g.,Least Squares Policy Iteration(Lagoudakis and Parr, 2003)
and Fitted-Q Iteration (Ernst et al., 2005) are offline and do not attempt to learn as the agent
interacts with the environment. Batch methods are designed to be more sample efficient, as
they can store a number of interactions with the environment and use the data multiple times
for learning. Additionally, such methods allow a clear separation of the learning mechanism
from the exploration mechanism (which much decide whether to attempt to gathermore data
about the environment or exploit the current best policy).

In tasks with small, discrete state spaces,Q andπ can be fully represented in a table. As the
state space grows, using a table becomes impractical, or impossible if the state space is continuous.
In such cases, RL learning methods usefunction approximators, such as artificial neural networks,
which rely on concise, parameterized functions and use supervised learning methods to set these
parameters. Function approximation is used in large or continuous tasks to better generalize experi-
ence. Parameters and biases in the approximator are used to abstract the state space so that observed
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data can influence a region of state space, rather than just a single state, and can substantially in-
crease the speed of learning.

Some work in RL (Dean and Givan, 1997; Li et al., 2006; Mahadevan and Maggioni, 2007)
has experimented with more systematic approaches to state abstractions (also called structural ab-
straction). Temporal abstractions have also been successfully used to increase the speed of learning.
These macro-actions oroptions(Sutton et al., 1999) may allow the agent to leverage the sequence
of actions to learn its task with less data. Lastly, hierarchical methods, such as MAXQ (Dietterich,
2000), allow learners exploit a task that is decomposed into different sub-tasks. The decomposition
typically enables an agent to learn each subtask relatively quickly and thencombine them, resulting
in an overall learning speed improvement (compared to methods that do not leverage such a sub-task
hierarchy).

3.2 Transfer Approaches

Having provided a brief overview of the RL notation used in this survey, wenow enumerate possible
approaches for transfer between RL tasks. This section lists attributes ofmethods used in the TL
literature for each of the five dimensions discussed in Section 2.2, and summarizes the surveyed
works in Table 1. The first two groups of methods apply to tasks which havethe same state variables
and actions. (Section 4 discusses the TL methods in the first block, and Section 5 discusses the
multi-task methods in the second block.) Groups three and four consider methods that transfer
between tasks with different state variables and actions. (Section 6 discusses methods that use a
representation that does not change when the underlying MDP changes, while Section 7 presents
methods that must explicitly account for such changes.) The last group ofmethods (discussed
in Section 8) learns a mapping between tasks like those used by methods in the fourth group of
methods. Table 2 concisely enumerates the possible values for the attributes,as well as providing a
key to Table 1.

In this section themountain cartask (Moore, 1991; Singh and Sutton, 1996), a standard RL
benchmark, will serve as a running example. In mountain car, an under-powered car moves along
a curve and attempts to reach a goal state at the top of the right “mountain” by selecting between
three actions on every timestep:{Forward , Neutral , Backward }, whereForward accelerates the
car in the positive x direction andBackward accelerates the car in the negative x direction. The
agent’s state is described by two state variables: the horizontal position,x, and velocity, ˙x. The
agent receives a reward of−1 on each time step. If the agent reaches the goal state the episode ends
and the agent is reset to the start state (often the bottom of the hill, with zero velocity).

3.2.1 ALLOWED TASK DIFFERENCES

TL methods can transfer between MDPs that have different transition functions (denoted by t in
Table 1), state spaces (s), start states (si), goal states (sf ), state variables (v), reward functions (r),
and/or action sets (a). For two of the methods, the agent’s representation of the world (theagent-
space, describing physical sensors and actuators) remains the same, while the true state variables
and actions (theproblem-space, describing the task’s state variables and macro-actions) can change
(p in Table 1, discussed further in Section 6). There is also a branch of work that focuses on transfer
between tasks which are composed of some number of objects that may change between the source
and the target task, such as when learning with RRL (# in Table 1). When summarizing the allowed
task differences, we will concentrate on the most salient features. For instance, when the source task
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and target task are allowed to have different state variables and actions,the state space of the two
tasks is different because the states are described differently, and thetransition function and reward
function must also change, but we only indicate “a” and “v.”

These differences in the example mountain car task could be exhibited as:

• t: using a more powerful car motor or changing the surface friction of the hill

• s: changing the range of the state variables

• si : changing where the car starts each episode

• sf : changing the goal state of the car

• v: describing the agent’s state only by its velocity

• r: rather than a reward of−1 on every step, the reward could be a function of the distance
from the goal state

• a: disabling theNeutral action

• p: the agent could describe the state by using extra state variables, such as the velocity on the
previous timestep, but the agent only directly measures its current position and velocity

• #: the agent may need to control two cars simultaneously on the hill

3.2.2 SOURCETASK SELECTION

The simplest method for selecting a source task for a given target task is to assume that only a single
source task has been learned and that a human has picked it, assuring that the agent should use it for
transfer (h in Table 1). Some TL algorithms allow the agent to learn multiple source tasks and then
use them all for transfer (all). More sophisticated algorithms build a library of seen tasks and use
only the most relevant for transfer (lib). Some methods are able to automaticallymodify a single
source task so that the knowledge it gains from the modified task will likely be more useful in the
target task (mod). However, none of the existing TL algorithms for RL can guarantee that the source
tasks will be useful; a current open question is how to robustly avoid attempting to transfer from an
irrelevant task.

3.2.3 TRANSFERREDKNOWLEDGE

The type of knowledge transferred can be primarily characterized by its specificity. Low-level
knowledge, such as〈 s, a, r, s′ 〉 instances (I in Table 1), an action-value function (Q), a policy
(π), a full task model (model), or prior distributions (pri), could all be directlyleveraged by the TL
algorithm to initialize a learner in the target task. Higher level knowledge, such as what action to
use in some situations (A: a subset of the full set of actions), partial policies or options (πp), rules
or advice (rule), important features for learning (fea), proto-value functions (pvf: a type of learned
feature), shaping rewards (R), or subtask definitions (sub) may not be directly used by the algorithm
to fully define an initial policy, but such information may help guide the agent during learning in
the target task.
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3.2.4 TASK MAPPINGS

The majority of TL algorithms in this survey assume that no explicit task mappings are necessary
because the source and target task have the same state variables and actions. In addition to having
the same labels, the state variables and actions need to have the same semantic meanings in both
tasks. For instance, consider again the mountain car domain. Suppose thatthe source task had
the actionsA = {Forward, Neutral, Backward }. If the target task had the actionsA = {Right,
Neutral, Left }, a TL method would need some kind of mapping because the actions had different
labels. Furthermore, suppose that the target task had the same actions as the source (A = {Forward,
Neutral, Backward }) but the car was facing the opposite direction, so thatForward accelerated
the car in the negative x direction andBackward accelerated the car in the positive x direction. If
the source and target task actions have different semantic meanings, there will also need to be some
kind of inter-task mapping to enable transfer.

Methods that do not use a task mapping are marked as “N/A” in Table 1. TL methods which aim
to transfer between tasks with different state variables or actions typically rely on a task mapping to
define how the tasks are related (as defined in Section 3.4). Methods that use mappings and assume
that they are human-supplied mappings are marked as “sup” in Table 1. A few algorithms leverage
experience gained in the source task and target task (exp) or a high-level description of the MDPs
in order to learn task mappings.

Methods using description-level knowledge differ primarily in what assumptions they make
about what will be provided. One method assumes a qualitative understanding of the transition
function (T), which would correspond to knowledge like “taking the action Neutral tends to have a
positive influence on the velocity in the positive x direction.” Two methods assume knowledge of
one mapping (Ma: the “action mapping”) to learn a second mapping (the “state variable mapping”
in Section 3.4). Three methods assume that the state variables are “grouped” together to describe
objects (svg). An example of the state variable grouping can be demonstrated in a mountain car
task with multiple cars: if the agent knew which position state variables referred to the same car
as certain velocity state variables, it would know something about the grouping of state variables.
These different assumptions are discussed in detail in Section 8.

3.2.5 ALLOWED LEARNERS

The type of knowledge transferred directly affects the type of learner that is applicable (as dis-
cussed in Section 3.1). For instance, a TL method that transfers an action-value function would
likely require that the target task agent use a temporal difference method toexploit the transferred
knowledge. The majority of methods in the literature use a standard form of temporal difference
learning (TD in Table 1), such as Sarsa. Other methods include Bayesian learning (B), hierarchical
approaches (H), model-based learning (MB), direct policy search (PS), and relational reinforcement
learning (RRL). Some TL methods focus on batch learning (Batch), ratherthan on-line learning.
Two methods usecase based reasoning(CBR) (Aamodt and Plaza, 1994) to help match previously
learned instances with new instances, and one uses linear programming (LP) to calculate a value
function from a given model (as part of a dynamic programming routine).

3.3 Multi-Task Learning

Closely related to TL algorithms, and discussed in Section 5, aremulti-task learning(MTL) algo-
rithms. The primary distinction between MTL and TL is that multi-task learning methods assume
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

DifferencesSelection

Same state variables and actions: Section 4
Selfridge et al. (1985) t h N/A Q TD tt†

Asada et al. (1994) si h N/A Q TD tt
Singh (1992) r all N/A Q TD ap, tr

Atkeson and Santamaria (1997) r all N/A model MB ap, j, tr
Asadi and Huber (2007) r h N/A πp H tt

Andre and Russell (2002) r, s h N/A πp H tr
Ravindran and Barto (2003b) s, t h N/A πp TD tr

Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt
Sherstov and Stone (2005) sf , t mod N/A A TD tr

Madden and Howley (2004) s, t all N/A rule TD tt, tr
Lazaric (2008) s, t lib N/A I Batch j, tr

Multi-Task learning: Section 5
Mehta et al. (2008) r lib N/A πp H tr

Perkins and Precup (1999) t all N/A πp TD tt
Foster and Dayan (2004) sf all N/A sub TD, H j, tr

Fernandez and Veloso (2006) si , sf lib N/A π TD tr
Tanaka and Yamamura (2003) t all N/A Q TD j, tr

Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, sf all N/A pri B j, tr
Walsh et al. (2006) r, s all N/A fea any tt

Lazaric (2008)⋆ r all N/A fea Batch ap, tr
Different state variables and actions – no explicit task mappings: Section 6

Konidaris and Barto (2006) p h N/A R TD j, tr
Konidaris and Barto (2007) p h N/A πp TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr

Guestrin et al. (2003) # h N/A Q LP j
Croonenborghs et al. (2007) # h N/A πp RRL ap, j, tr

Ramon et al. (2007) # h N/A Q RRL ap, j, tt†, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr

Different state variables and actions – inter-task mappings used: Section7
Taylor et al. (2007a) a, v h sup Q TD tt†

Taylor et al. (2007b) a, v h sup π PS tt†

Taylor et al. (2008b) a, v h sup I MB ap, tr
Torrey et al. (2005)

a, r, v h sup rule TD j, tr
Torrey et al. (2006)
Torrey et al. (2007) a, r, v h sup πp TD j, tr

Taylor and Stone (2007b) a, r, v h sup rule any/TD j, tt†, tr

Learning inter-task mappings: Section 8
Kuhlmann and Stone (2007) a, v h T Q TD j, tr

Liu and Stone (2006) a, v h T N/A all N/A
Soni and Singh (2006) a, v h Ma, svg, exp N/A all ap, j, tr

Talvitie and Singh (2007) a, v h Ma, svg, exp N/A all j
Taylor et al. (2007b)⋆ a, v h svg, exp N/A all tt†

Taylor et al. (2008c) a, v h exp N/A all j, tr

Table 1: This table lists all the TL methods discussed in this survey and classifies each in terms of
the five transfer dimensions (the key for abbreviations is in Table 2). Two entries, marked
with a ⋆, are repeated due to multiple contributions. Metrics that account for source task
learning time, rather than ignoring it, are marked with a †.
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Allowed Task Differences Transferred Knowledge
a action set may differ A an action set
p problem-space may differ fea task features

(agent-space must be identical) I experience instances
r reward function may differ model task model
si the start state may change π policies
sf goal state may move πp partial policies (e.g., options)
t transition function may differ pri distribution priors
v state variables may differ pvf proto-value function
# number of objects in state may differ Q action-value function

R shaping reward
rule rules or advice
sub subtask definitions

Source Task Selection
all all previously seen tasks are used Allowed Learners
h one source task is used (human selected) B Bayesian learner

lib tasks are organized into a library Batch batch learner
and one or more may be used CBR case based reasoning

mod a human provides a source task that H hierarchical value-function learner
the agent automatically modifies LP linear programming

MB model based learner
Task Mappings PS policy search learner

exp agent learns the mappings from experience RRL relational reinforcement learning
Ma the method must be provided with an TD temporal difference learner

action mapping (learns state variable mapping)
N/A no mapping is used TL Metrics
sup a human supplies the task mappings ap asymptotic performance increased
svg method is provided groupings of state variables j jumpstart demonstrated
T higher-level knowledge is provided tr total reward increased

about transfer functions to learn mapping tt task learning time reduced

Table 2: This key provides a reference to the abbreviations in Table 1.

all problems experienced by the agent are drawn from the same distribution,while TL methods may
allow for arbitrary source and target tasks. For example, a MTL task could be to learn a series of
mountain car tasks, each of which had a transition function that was drawn from a fixed distribution
of functions that specified a range of surface frictions. Because of this assumption, MTL methods
generally do not need task mappings (dimension III in Section 2.2). MTL algorithms may be used
to transfer knowledge between learners, similar to TL algorithms, or they canattempt to learn how
to act on the entire class of problems.

When discussing supervised multitask learning (cf., Caruana, 1995, 1997), data from multiple
tasks can be considered simultaneously. In an RL setting, rather than tryingto learn multiple prob-
lems simultaneously (i.e., acting in multiple MDPs), agents tackle a sequence of tasks which are
more closely related than in TL settings. It is possible that RL agents could learn multiple tasks
simultaneously in a multiagent setting (Stone and Veloso, 2000), but this has not yet been explored
in the literature. For the purposes of this survey, we will assume, as in othertransfer settings, that
tasks are learned in a sequential order.
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Sutton et al. (2007) motivate this approach to transfer by suggesting that a single large task
may be most appropriately tackled as a sequential series of subtasks. If the learner can track which
subtask it is currently in, it may be able to transfer knowledge between the different subtasks, which
are all presumably related because they are part of the same overall task. Such a setting may provide
a well-grounded way of selecting a distribution of tasks to train over, either inthe context of transfer
or for multi-task learning. Note also that the additional assumptions in an MTL setting may be
leveraged to allow a more rigorous theoretical analysis than in TL (cf., Kalmár and Szepesvári,
1999).

3.4 Inter-Task Mappings

Transfer methods that assume the source and target tasks use the same state variables and actions, as
is the case in MTL, typically do not need an explicit mapping between task. In order to enable TL
methods to transfer between tasks that do have such differences, the agent must know how the tasks
are related. This section provides a brief overview ofinter-task mappings(Taylor et al., 2007a), one
formulation of task mappings. Task mappings like these are used by transfermethods discussed in
Section 7.

To transfer effectively, when an agent is presented with a target task that has a set of actions
(A′), it must know how those actions are related to the action set in the source task (A). (For the sake
of exposition we focus on actions, but an analogous argument holds forstate variables.) If the TL
method knows that the two action sets are identical, no action mapping is necessary. However, if
this is not the case, the agent needs to be told, or learn, how the two tasks are related. For instance,
if the agent learns to act in a source task with the actionsForward andBackward , but the target task
uses the actionsRight andLeft , the correspondence between these action sets may not be obvious.
Even if the action labels were the same, if the actions had different semantic meanings, the default
correspondence may be incorrect. Furthermore, if the cardinality ofA andA′ are not equal, there
are actions without exact equivalences.

One option is to define anaction mapping(χA) such that actions in the two tasks are mapped so
that their effects are “similar,” where similarity depends on the transfer andreward functions in the
two MDPs.4 Figure 5 depicts an action mapping as well as astate-variable mapping(χX) between
two tasks. A second option is to define apartial mapping(Taylor et al., 2007b), such that any novel
actions in the target task are ignored. Consider adding an action in a mountaincar target task,pull
hand brake , which did not have an analog in the source task. The partial mapping couldmap
Forward to Forward , andBackward to Backward , but not mappull hand brake to any source
task action. Because inter-task mappings are not functions, they are typically assumed to be easily
invertible (i.e., mapping source task actions into target task actions, rather than target task actions
to source task actions).

It is possible that mappings between states, rather than between state variables, could be used for
transfer, although no work has currently explored this formulation.5 Another possible extension is
to link the mappings rather than making them independent. For instance, the action mapping could
depend on the state that the agent is in, or the state variable mapping could depend on the action

4. An inter-task mapping often maps multiple entities in the target task to single entities in the source task because the
target task is more complex than the source, but the mappings may be one-to-many, one-to-one, or many-to-many.

5. However, there are many possibilities for using this approach for transfer learning, such as through bisimulation (see
Section 9).
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Figure 5: χA andχX are independent mappings that describe similarities between two MDPs. These
mappings describe how actions in the target task are similar to actions in the source task
and how state variables in the target task are similar to state variables in the source task,
respectively.

selected. Though these extensions may be necessary based on the demands of particular MDPs,
current methods have functioned well in a variety of tasks without such enhancements.

For a given pair of tasks, there could be many ways to formulate inter-task mappings. Much of
the current TL work assumes that a human has provided a (correct) mapping to the learner. Work
that attempts to learn a mapping that can be effectively used for transfer is discussed in Section 8.

3.5 Related Paradigms

In this survey, we consider transfer learning algorithms that use one or more source tasks to better
learn in a different, but related, target task. There is a wide range of methods designed to improve
the learning speed of RL methods. This section discusses four alternate classes of techniques for
speeding up learning and differentiates them from transfer. While some TLalgorithms may rea-
sonably fit into one or more of the following categories, we believe that enumerating the types of
methodsnot surveyed in this article will help clarify our subject of interest.

3.5.1 LIFELONG LEARNING

Thrun (1996) suggested the notion of lifelong learning where an agent may experience a sequence
of tasks. Others (cf., Sutton et al., 2007) later extended this idea to the RL setting, suggesting
than an agent interacting with the world for an extended period of time will necessarily have to
perform in a sequence of tasks. Alternately, the agent may discover a series of spatially, rather
than temporally, separated sub-tasks. Transfer would be a key component of any such system, but
the lifelong learning framework is more demanding than that of transfer. First, transfer algorithms
may reasonably focus on transfer between a single pair of related tasks,rather than attempting to
account for any future task that an agent could encounter. Second,transfer algorithms are typically
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told when a new task has begun, whereas in lifelong learning, agents may bereasonably expected
to automatically identify new sub-tasks within the global MDP (i.e., the real world).

3.5.2 IMITATION LEARNING

The primary motivations for imitation methods are to allow agents to learn by watchinganother
agent with similar abilities (Price and Boutilier, 2003; Syed and Schapier, 2007) or a human (Abbeel
and Ng, 2005; Kolter et al., 2008) perform a task. Such algorithms attempt tolearn a policy by
observing an outside actor, potentially improving upon the inferred policy. In contrast, our definition
of transfer learning focuses on agents successfully reusing internalknowledge on novel problems.

3.5.3 HUMAN ADVICE

There is a growing body of work integrating human advice into RL learners.For instance, a human
may provide action suggestions to the agent (cf., Maclin and Shavlik, 1996;Maclin et al., 2005)
or guide the agent through on-line feedback (cf., Knox and Stone, 2008). Leveraging humans’
background and task-specific knowledge can significantly improve agents’ learning ability, but it
relies on a human being tightly integrated into the learning loop, providing feedback in an on-line
manner. This survey instead concentrates on transfer methods in which a human is not continuously
available and agents must learn autonomously.

3.5.4 SHAPING

Reward shaping(Colombetti and Dorigo, 1993; Mataric, 1994) in an RL context typically refers to
allowing agent to train on an artificial reward signal rather thanR. For instance, in the mountain
car task, the agent could be given a higher reward as it gets closer to thegoal state, rather then
receiving−1 at every state except the goal. However, if the human can compute such areward,
s/he would probably already know the goal location, knowledge that the agent typically does not
have. Additionally, the constructed reward function must be a potential function. If it is not, the
optimal policy for the new MDP could be different from that of the original (Ng et al., 1999). A
second definition of shaping follows Skinner’s research (Skinner, 1953) where the reward function
is modified over time in order to direct the behavior of the learner. This method,as well as the
approach of using a static artificial reward, are ways of injecting human knowledge into the task
definition to improve learning efficacy.

Erez and Smart (2008) have argued for a third definition of shaping as any supervised, iterative,
process to assist learning. This includes modifying the dynamics of the task over time, modifying the
internal learning parameters over time, increasing the actions available to the agent, and extending
the agent’s policy time horizon (e.g., as done in value iteration). All of these methods rely on a
human to intelligently assist the agent in its learning task and may leverage transfer-like methods
to successfully reuse knowledge between slightly different tasks. Whendiscussing transfer, we will
emphasize how knowledge is successfully reused rather than how a humanmay modify tasks to
achieve the desired agent behavior improve agent learning performance.

3.5.5 REPRESENTATIONTRANSFER

Transfer learning problems are typically framed as leveraging knowledgelearned on a source task
to improve learning on a related, but different, target task. Taylor and Stone (2007a) examine the
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Allowed Source Task TransferredAllowed TL
Citation Task Task Mappings KnowledgeLearnersMetrics

DifferencesSelection

Same state variables and actions: Section 4
Selfridge et al. (1985) t h N/A Q TD tt†

Asada et al. (1994) si h N/A Q TD tt
Singh (1992) r all N/A Q TD ap, tr

Atkeson and Santamaria (1997) r all N/A model MB ap, j, tr
Asadi and Huber (2007) r h N/A πp H tt

Andre and Russell (2002) r, s h N/A πp H tr
Ravindran and Barto (2003b) s, t h N/A πp TD tr

Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt
Sherstov and Stone (2005) sf , t mod N/A A TD tr

Madden and Howley (2004) s, t all N/A rule TD tt, tr
Lazaric (2008) s, t lib N/A I Batch j, tr

Table 3: This table reproduces the first group of methods from Table 1.

complimentary task of transferring knowledge between agents with different internal representa-
tions (i.e., the function approximator or learning algorithm) of thesametask. Allowing for such
shifts in representation gives additional flexibility to an agent designer; past experience may be
transferred rather than discarded if a new representation is desired. Amore important benefit is
that changing representations partway through learning can allow agentsto achieve better perfor-
mance in less time. Selecting a representation is often key for solving a problem(cf., themutilated
checkerboard problemMcCarthy 1964 where humans’ internal representations of a problem dras-
tically changes the problem’s solvability) and different representations maymake transfer more or
less difficult. However, representation selection is a difficult problem in RLin general and discus-
sions of representation selection (or its applications to transfer efficacy)are beyond the scope of this
article.

4. Transfer Methods for Fixed State Variables and Actions

To begin our survey of TL methods, we examine the first group of methods in Table 1, reproduced
in Table 3. These techniques may be used for transfer when the source and target tasks use the same
state variables and when agents in both tasks have the same set of actions (see Figure 6).

In one of the earliest TL works for RL, Selfridge et al. (1985) demonstrated that it was faster
to learn to balance a pole on a cart by changing the task’s transition function, T, over time. The
learner was first trained on a long and light pole. Once it successfully learned to balance the pole
the task was made harder: the pole was shortened and made heavier. The total time spent training
on a sequence of tasks and reusing the learned function approximator was faster than training on the
hardest task directly.6

Similarly, the idea oflearning from easy missions(Asada et al., 1994) also relies on a human
constructing a set of tasks for the learner. In this work, the task (for example, a maze) is made
incrementally harder not by changing the dynamics of the task, but by movingthe agent’s initial

6. As discussed in Section 3.5.3, we classify this work as transfer rather than as a “human advice” method; while the
human may assist the agent in task selection, s/he does not provide direct on-line feedback while the agent learns.
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Figure 6: Methods in Section 4 are able to transfer between tasks that havedifferent state spaces,
different transition functions, and different reward functions, but only if the source and
target tasks have the same actions and state variables. Dashed circles indicate the MDP
components which may differ between the source task and target task.

state,sinitial , further and further from the goal state. The agent incrementally learnshow to navigate
to the exit faster than if it had tried to learn how to navigate the full maze directly.This method
relies on having a known goal state from which a human can construct a series of source tasks of
increasing difficulty.

Selfridge et al. (1985) and Asada et al. (1994) provide useful methods for improving learning,
which follow from Skinner’s animal training work. While they require a humanto be in the loop, and
to understand the task well enough to provide the appropriate guidance to the learner, these methods
are relatively easy ways to leverage human knowledge. Additionally, they may be combined with
many of the transfer methods that follow.

Rather than change a task over time, one could consider breaking down a task into a series
of smaller tasks. This approach can be considered a type of transfer in that a single large target
task can be treated as a series of simpler source tasks. Singh (1992) uses a technique he labels
compositional learningto discover how to separate temporally sequential subtasks in a monolithic
task. Each subtask has distinct beginning and termination conditions, and each subtask will be
significantly easier to learn in isolation than in the context of the full task. Only the reward function,
R, is allowed to change between the different subtasks and none of the other MDP components
may vary, but the total reward can be increased. If subtasks in a problem are recognizable by state
features, such subtasks may be automatically identified via vision algorithms (Drummond, 2002).
Again, breaking a task into smaller subtasks can improve both the total rewardand the asymptotic
performance. This particular method is only directly applicable to tasks in whichfeatures clearly
define subtasks due to limitations in the vision algorithm used. For instance, in a 2D navigation
task each room may be a subtask and the steep value function gradient between impassable walls is
easily identifiable. However, if the value function gradient is not distinct between different subtasks,
or the subtask regions of state space are not polygonal, the algorithm will likely fail to automatically
identify subtasks.

In Atkeson and Santamaria (1997), transfer between tasks in which only the reward function
can differ are again considered. Their method successfully transfersa locally weighted regression
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model of the transition function, which is learned in a source task, by directlyapplying it to a target
task. Because their model enables planning over the transition function anddoes not account for the
reward function, they show significant improvement to the jumpstart and totalreward, as well as the
asymptotic performance.

The next three methods transfer partial policies, or options, between different tasks. First, Asadi
and Huber (2007) have the agent identify states that “locally form a significantly stronger ‘attractor’
for state space trajectories” as subgoals in the source task (i.e., a doorway between rooms that is
visited relatively often compared to other parts of the state space). The agent then learns options to
reach these subgoals via a learned action-value function, termed thedecision-levelmodel. A second
action-value function, theevaluation-levelmodel, includes all actions and the full state space. The
agent selects actions by only considering the decision-level model but uses discrepancies between
the two models to automatically increase the complexity of the decision-level model as needed.
The model is represented as aHierarchical Bounded Parameter SMDP, constructed so that the
performance of an optimal policy in the simplified model will be within some fixed bound of the
performance of the optimal policy on the initial model. Experiments show that transferring both
the learned options and the decision-level representation allow the target task agent to learn faster
on a task with a different reward function. In the roughly 20,000 target task states, only 81 distinct
states are needed in the decision-level model, as most states do not need to be distinguished when
selecting from learned options.

Second, Andre and Russell (2002) transfer learned subroutines between tasks, which are similar
to options. The authors assume that the source and target tasks have a hierarchical structure, such as
in the taxi domain(Dietterich, 2000). On-line analysis can uncover similarities between two tasks
if there are only small differences in the state space (e.g., the state variablesdo not change) and
then directly copy over the subroutine, which functions as a partial policy,thereby increasing the
total reward in the target task. This method highlights the connection between state abstraction and
transfer; if similarities can be found between parts of the state space in the twotasks, it is likely that
good local controllers or local policies can be directly transferred.

Third, Ravindran and Barto (2003b) learnrelativized optionsin a small, human selected source
task. When learning in the target task, the agent is provided these options and a set of possible
transformations it could apply to them so that they were relevant in the targettask. For instance, if
the source task were a small grid navigation task, the target task could be a large grid composed of
rooms with similar shape to the source task and the transformations could be rotation and reflection
operators. The agent uses experience in the target and Bayesian parameter estimation to select
which transformations to use so that the target task’s total reward is increased. Learning time in the
source task is ignored, but is assumed to be small compared to the target tasklearning time.

Next, Ferguson and Mahadevan (2006) take a unique approach to transfer information about the
source task’s structure.Proto-value functions(PVFs) (Mahadevan and Maggioni, 2007) specify an
ortho-normal set of basis functions, without regard toR, which can be used to learn an action-value
function. After PVFs are learned in a small source task, they can be transferred to another discrete
MDP that has a different goal or small changes to the state space. The target task can be learned
faster and achieve higher total reward with the transferred PVFs than without. Additionally, the
PVF can be scaled to larger tasks. For example, the target maze could havetwice the width and
height of the source maze:R, S, andT are all scaled by the same factor. In all cases only the target
task time is counted.
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The goal of learning PVFs is potentially very useful for RL in general and TL in particular.
It makes intuitive sense that high-level information about how to best learnin a domain, such as
appropriate features to reason over, may transfer well across tasks.There are few examples of meta-
learners where TL algorithms learn high level knowledge to assist the agent in learning, rather than
lower-level knowledge about how to act. However, we believe that thereis ample room for such
methods, including methods to learn other domain-specific learning parameters, such as learning
rates, function approximator representations, an so on.

Instead of biasing the target task agent’s learning representation by transferring a set of basis
functions, Sherstov and Stone (2005) consider how to bias an agent bytransferring an appropriate
action set. If tasks have large action sets, all actions could be consideredwhen learning each task,
but learning would be much faster if only a subset of the actions needed to be evaluated. If a reduced
action set is selected such that using it could produce near-optimal behavior, learning would be much
faster with very little loss in final performance. The standard MDP formalism ismodified so that the
agent reasons aboutoutcomesandclasses. Informally, rather than reasoning over the probability of
reaching a given state after an action, the learner reasons over the actions’ effect, or outcome. States
are grouped together in classes such that the probability of a given outcome from a given action will
be the same for any state in a class. The authors then use their formalism to bound the value lost by
using their abstraction of the MDP. If the source and target are very similar, the source task can be
learned with the full action set, the optimal action set can be found from the learned Q-values, and
learning the target with this smaller action set can speed up learning in the target task. The authors
also introducerandom task perturbation(RTP) which creates aseriesof source tasks from a single
source task, thereby producing an action set which will perform well in target tasks that are less
similar to the source task. Transfer with and without RTP is experimentally compared to learning
without transfer. While direct action transfer can perform worse than learning without transfer, RTP
was able to handle misleading source task experience so that performancewas improved relative to
no transfer in all target tasks and performance using the transferred actions approaches that of the
optimal target task action set. Performance was judged by the total reward accumulated in the target
task. Leffler et al. (2007) extends the work of Sherstov and Stone by applying the outcome/class
framework to learn asingletask significantly faster, and provides empirical evidence of correctness
in both simulated and physical domains.

The idea of RTP is not only unique in this survey, but it is also potentially a very useful idea for
transfer in general. While a number of TL methods are able to learn from a set of source tasks, no
others attempt to automatically generate these source tasks. If the goal of anagent is perform as well
as possible in a novel target task, it makes sense that the agent would try totrain on many source
tasks, even if they are artificial. How to best generate such source tasksso that they are most likely
to be useful for an arbitrary target task in the same domain is an important areaof open research.

Similar to previously discussed work (Selfridge et al., 1985; Asada et al., 1994), Progressive
RL (Madden and Howley, 2004) is a method for transferring between a progression of tasks of in-
creasing difficulty, but is limited to discrete MDPs. After learning a source task, the agent performs
introspectionwhere a symbolic learner extracts rules for acting based on learned Q-values from all
previously learned tasks. The RL algorithm and introspection use different state features. Thus the
two learning mechanisms learn in different state spaces, where the state features for the symbolic
learner are higher-level and contain information otherwise hidden from the agent. When the agent
acts in a novel task, the first time it reaches a novel state it initialize the Q-values of that state so that
the action suggested by the learned rule is preferred. Progressive RLallows agents to learn infor-
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mation in a set of tasks and then abstract the knowledge to a higher-level representation, allowing
the agent to achieve higher total reward and reach the goal state for the first time faster. Time spent
in the source task(s) is not counted.

Finally, Lazaric (2008) demonstrates that source taskinstancescan be usefully transferred be-
tween tasks. After learning one or more source tasks, some experience isgathered in the target task,
which may have a different state space or transition function. Saved instances (that is, observed
〈s,a, r,s′〉 tuples) are compared to instances from the target task. Instances from the source tasks
that are most similar, as judged by their distance and alignment with target task data, are transferred.
A batch learning algorithm then uses both source instances and target instances to achieve a higher
reward and a jumpstart.Region transfertakes the idea one step further by looking at similarity with
the target task per-sample, rather than per task. Thus, if source tasks have different regions of the
state space which are more similar to the target, only those most similar regions canbe transferred.
In these experiments, time spent training in the target task is not counted towards the TL algorithm.

Region transfer is the only method surveyed which explicitly reasons abouttask similarity in
different partsof the state space, and then selects source task(s) to transfer from. In domains where
target tasks have regions of the state space that are similar to one or more source tasks, and other
areas which are similar to other source tasks (or are similar to no source tasks), region transfer may
provide significant performance improvements. As such, this method provides a unique approach to
measuring, and exploiting, task similarity on-line. It is likely that this approach will inform future
transfer methods, and is one possible way of accomplishing step # 1 in Section2: Given a target
task, select an appropriate source task from which to transfer, if one exists.

Taken together, these TL methods show that it is possible to efficiently transfer many different
types of information between tasks with a variety of differences. It is worthre-emphasizing that
many TL methods may be combined with other speedup methods, such as rewardshaping, or with
other transfer methods. For instance, when transferring between maze tasks, basis functions could
be learned (Ferguson and Mahadevan, 2006) in the source task, a set of actions to transfer could
be selected after training on a set of additional generated source tasks (Sherstov and Stone, 2005),
and then parts of different source tasks could be leveraged to learn a target task (Lazaric, 2008). A
second example would be to start with a simple source task and change it overtime by modifying
the transition function (Selfridge et al., 1985) and start state (Asada et al.,1994), while learning
options (Ravindran and Barto, 2003b), until a difficult target task is learned. By examining how the
source and target task differ and what base learning method is used, RLpractitioners may select
one or more TL method to apply to their domain of interest. However, in the absence of theoretical
guarantees of transfer efficacy, any TL method has the potential to be harmful, as discussed further
in Section 9.2.

5. Multi-Task Learning Methods

This section discusses scenarios where the source tasks and target task have the same state variables
and actions. However, these methods (see Table 4, reproduced from Table 1) are explicitly MTL,
and all methods in this section are designed to use multiple source tasks (see Figure 7). Some
methods leverage all experienced source tasks when learning a novel target task and others are able
to choose a subset of previously experienced tasks. Which approachis most appropriate depends
on the assumptions about the task distribution: if tasks are expected to be similarenough that all
past experience is useful, there is no need to select a subset. On the other hand, if the distribution of
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Allowed Source Task TransferredAllowed TL
Citation Task Task Mappings KnowledgeLearnersMetrics

DifferencesSelection

Multi-Task learning: Section 5
Mehta et al. (2008) r lib N/A πp H tr

Perkins and Precup (1999) t all N/A πp TD tt
Foster and Dayan (2004) sf all N/A sub TD, H j, tr

Fernandez and Veloso (2006) si , sf lib N/A π TD tr
Tanaka and Yamamura (2003) t all N/A Q TD j, tr

Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, sf all N/A pri B j, tr
Walsh et al. (2006) r, s all N/A fea any tt

Lazaric (2008) r all N/A fea Batch ap, tr

Table 4: This table reproduces the group of MTL methods from Table 1.
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Figure 7: Multi-task learning methods assume tasks are chosen from a fixeddistribution, use one
or more source tasks to help learn the current task, and assume that all thetasks have the
same actions and state variables. Dashed circles indicate the MDP componentswhich
may differ between tasks.

tasks is multi-modal, it is likely that transferring from all tasks is sub-optimal. None of the methods
account for time spent learning in the source task(s) as the primary concern is effective learning on
the next task chosen at random from an unknown (but fixed) distribution of MDPs.

Variable-reward hierarchical reinforcement learning(Mehta et al., 2008) assumes that the learner
will train on a sequence of tasks which are identical except for different reward weights. The re-
ward weights define how much reward is assigned via a linear combination ofreward features. The
authors provide the reward features to the agent for a given set of tasks. For instance, in a real-time
strategy domain different tasks could change the reward features, such as the benefit from collecting
units of gold or from damaging the enemy. However, it is unclear how many domains of interest
have reward features, which are provided to the agent at the start of each task. Using a hierarchical
RL method, subtask policies are learned. When a novel target task is encountered, the agent sets the
initial policy to that of the most similar source task, as determined by the dot product with previ-
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ously observed reward weight vectors. The agent then uses anε-greedy action selection method at
each level of the task hierarchy to decide whether to use the best known sub-task policy or explore.
Some sub-tasks, such as navigation, will never need to be relearned fordifferent tasks because they
are unaffected by the reward weights, but any suboptimal sub-task policies will be improved. As the
agent experiences more tasks, the total reward in each new target task increases, relative to learning
the task without transfer.

A different problem formulation is posed by Perkins and Precup (1999)where the transition
function,T, may change after reaching the goal. Upon reaching the goal, the agent isreturned to
the start state and is not told if, or how, the transition function has changed,but it knows thatT is
drawn randomly from some fixed distribution. The agent is provided a set of hand-coded options
which assist in learning on this set of tasks. Over time, the agent learns an accurate action-value
function over these options. Thus, a single action-value function is learned over a set of tasks,
allowing the agent to more quickly reach the goal on tasks with novel transitionfunctions.

Instead of transferring options, Foster and Dayan (2004) aim to identifysub-tasks in a source
task and use this information in a target task, a motivation similar to that of Singh (1992). Tasks
are allowed to differ in the placement of the goal state. As optimal value functions are learned
in source tasks, anexpectation-maximizationalgorithm (Dempster et al., 1977) identifies different
“fragmentations,” or sub-tasks, across all learned tasks. Once learned, the fragmentations are used to
augment the state of the agent. Each sub-problem can be learned independently; when encountering
a new task, much of the learning is already complete because the majority of sub-problems are
unchanged. The fragmentations work with both a flat learner (i.e., TD) andan explicitly hierarchical
learner to improve the jumpstart and total reward.

Probabilistic policy reuse(Fernandez and Veloso, 2006) also considers a distribution of tasks in
which only the goal state differs, but is one of the most robust MTL methods interms of appropriate
source task selection. Although the method allows a single goal state to differ between the tasks,
it requires thatS, A, andT remain constant. If a newly learned policy is significantly different
from existing policies, it is added to a policy library. When the agent is placedin a novel task, on
every timestep, it can choose to: exploit a learned source task policy, exploit the current best policy
for the target task, or randomly explore. If the agent has multiple learned policies in its library,
it probabilistically selects between policies so that over time more useful policieswill be selected
more often. While this method allows for probabilistic mixing of the policies, it may be possible
to treat the past policies as options which can be executed until some terminationcondition is met,
similar to a number of previously discussed methods. By comparing the relativebenefits of mixing
past policies and treating them as options, it may be possible to better understand when each of the
two approaches is most useful.

The idea of constructing an explicit policy library is likely to be useful in future TL research,
particularly for agents that train on a number of source tasks that have large qualitative differences
(and thus very different learned behaviors). Although other methods also separately record infor-
mation from multiple source tasks (cf., Mehta et al., 2008; Lazaric, 2008), Fernandez and Veloso
explicitly reason about the library. In addition to reasoning over the amountof information stored,
as a function of number and type of source tasks, it will be useful to understand how many target
task samples are needed to select the most useful source task(s).

Unlike probabilistic policy reuse, which selectively transfers information from a single source
task, Tanaka and Yamamura (2003) gather statistics aboutall previous tasks and use this amalga-
mated knowledge to learn novel tasks faster. Specifically, the learner keeps track of the average
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and the deviation of the action value for each(s,a) pair observed in all tasks. When the agent
encounters a new task, it initializes the action-value function so that every(s,a) pair is set to the
current average for that pair, which provides a benefit relative to uninformed initialization. As the
agent learns the target task with Q-learning and prioritized sweeping,7 the agent uses the standard
deviation of states’ Q-values to set priorities on TD backups. If the current Q-value is far from the
average for that(s,a) pair, its value should be adjusted more quickly, since it is likely incorrect (and
thus should be corrected before affecting other Q-values). Additionally, another term accounting for
the variance within individual trials is added to the priority; Q-values that fluctuate often within a
particular trial are likely wrong. Experiments show that this method, when applied to sets of discrete
tasks with different transition functions, can provide significant improvement to jumpstart and total
reward.

The next two methods consider how priors can be effectively learned bya Bayesian MTL agent.
First, Sunmola and Wyatt (2006) introduce two methods that use instances from source tasks to set
priors in a Bayesian learner. Both methods constrain the probabilities of the target task’s transition
function by using previous instances as a type of prior. The first method uses the working prior to
generate possible models which are then tested against data in the target task. The second method
uses a probability perturbation method in conjunction with observed data to improve models gen-
erated by the prior. Initial experiments show that the jumpstart and total reward can be improved if
the agent has an accurate estimation of the prior distributions of the class from which the target is
drawn. Second, Wilson et al. (2007) consider learning in a hierarchical Bayesian RL setting. Setting
the prior for Bayesian models is often difficult, but in this work the prior may betransferred from
previously learned tasks, significantly increasing the learning rate. Additionally, the algorithm can
handle “classes” of MDPs, which have similar model parameters, and then recognize when a novel
class of MDP is introduced. The novel class may then be added to the hierarchy and a distinct prior
may be learned, rather than forcing the MDP to fit into an existing class. The location of the goal
state and the parameterized reward function may differ between the tasks. Learning on subsequent
tasks shows a clear performance improvement in total reward, and some improvement in jumpstart.

While Bayesian methods have been shown to be successful when transferring between classi-
fication tasks (Roy and Kaelbling, 2007), and in non-transfer RL (Dearden et al., 1999), only the
two methods above use it in RL transfer. The learner’s bias is important in all machine learning
settings. However, Bayesian learning makes such bias explicit. Being able toset the bias through
transfer from similar tasks may prove to be a very useful heuristic—we hope that additional transfer
methods will be developed to initialize Bayesian learners from past tasks.

Walsh et al. (2006) observe that “deciding what knowledge to transferbetween environments
can be construed as determining the correct state abstraction scheme for aset of source [tasks] and
then applying this compaction to a target [task].” Their suggested framework solves a set of MDPs,
builds abstractions from the solutions, extracts relevant features, and then applies the feature-based
abstraction function to a novel target task. A simple experiment using tasks with different state
spaces and reward functions shows that the time to learn a target task is decreased by using MTL.
Building upon their five defined types of state abstractions (as defined in Liet al. 2006), they give
theoretical results showing that when the number of source tasks is large (relative to the differences

7. Prioritized sweeping (Moore and Atkeson, 1993) is an RL method that orders adjustments to the value function based
on their “urgency,” which can lead to faster convergence than when updating the value function in the order of visited
states.
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Allowed Source Task TransferredAllowed TL
Citation Task Task Mappings Knowledge Learners Metrics

DifferencesSelection

Different state variables and actions – no explicit task mappings: Section 6
Konidaris and Barto (2006) p h N/A R TD j, tr
Konidaris and Barto (2007) p h N/A πp TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr

Guestrin et al. (2003) # h N/A Q LP j
Croonenborghs et al. (2007) # h N/A πp RRL ap, j, tr

Ramon et al. (2007) # h N/A Q RRL ap, j, tt†, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr

Table 5: This table reproduces the third group of methods from Table 1.

between the different tasks), four of the five types of abstractions areguaranteed to produce the
optimal policy in a target task using Q-learning.

Similar to Walsh et al. (2006), Lazaric (2008) also discovers features to transfer. Rather than
learning tasks sequentially, as in all the papers above, one could consider learning different tasks
in parallel and using the shared information to learn the tasks better than if each were learned in
isolation. Specifically, Lazaric (2008) learns a set of tasks with different reward functions using
the batch methodFitted Q-iteration(Ernst et al., 2005). By leveraging a multi-task feature learning
algorithm (Argyrious et al., 2007), the problem can be formulated as a jointoptimization problem
to find the best features and learning parameters across observed datain all tasks. Experiments
demonstrate that this method can improve the total reward and can help the agent to ignore irrel-
evant features (i.e., features which do not provide useful information). Furthermore, since it may
be possible to learn a superior representation, asymptotic performance maybe improved as well,
relative to learning tasks in isolation.

The work in this section, as summarized in the second section of Table 1, explicitly assumes
that all MDPs an agent experiences are drawn from the same distribution.Different tasks in a single
distribution could, in principal, have different state variables and actions,and future work should
investigate when allowing such flexibility would be beneficial.

6. Transferring Task-Invariant Knowledge Between Tasks with Differing State
Variables and Actions

This section, unlike the previous two, discusses methods that allow the source task and target task to
have different state variables and actions (see Figure 8 and the methods inTable 5). These methods
formulate the problem so that no explicit mapping between the tasks is needed.Instead the agent
reasons over abstractions of the MDP that are invariant when the actionsor state variables change.

For example, Konidaris and Barto (2006) have separated the standard RL problem intoagent-
spaceandproblem-spacerepresentations. The agent-space is determined by the agent’s capabil-
ities, which remain fixed (e.g., physical sensors and actuators), although such a space may be
non-Markovian.8 The problem-space, on the other hand, may change between source andtarget

8. A standard assumption is that a task is Markovian, meaning that the probability distribution over next states is in-
dependent of the agent’s state and action history. Thus, saving a historywould not assist the agent when selecting
actions, and it can consider each state in isolation.
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Figure 8: Methods in Section 6 are able to transfer between tasks with different state spaces. Al-
thoughT, R, A, and the state variables may also technically change, the agent’s internal
representation is formulated so that they remain fixed between source and target tasks.
MDP components with a dashed circle may change between the source task and target
task.

problems and is assumed to be Markovian. The authors’ method learns a shaping reward on-line in
agent-space while learning a source task. If a later target task has a similarreward structure and ac-
tion set, the learned shaping reward will help the agent achieve a jumpstart and higher total reward.
For example, suppose that one of the agent’s sensors measures the distance between it and a partic-
ular important state (such as a beacon located near the goal state). The agent may learn a shaping
reward that assigns reward when the state variable describing its distanceto the beacon is reduced,
even in the absence of an environmental reward. The authors assume that there are no novel actions
(i.e., actions which are not in the source task’s problem-space) but any new state variables can be
handled if they can be mapped from the novel problem-space into the familiar agent-space. Addi-
tionally, the authors acknowledge that the transfer must be betweenreward-linkedtasks, where “the
reward function in each environment consistently allocates rewards to the same types of interactions
across environments.” Determining whether or not a sequence of tasks meet this criterion is left for
future work.

In later work (Konidaris and Barto, 2007), the authors assume knowledge of “pre-specified
salient events,” which make learning options tractable. While it may be possibleto learn options
without requiring such events to be specified, the paper focuses on howto use such options rather
than option learning. Specifically, when the agent achieves one of these subgoals, such as unlock-
ing a door or moving through a doorway, it may learn an option to achieve the event again in the
future. As expected, problem-space options speed up learning a single task. More interesting, when
the agent trains on a series of tasks, options in both agent-space and problem-space significantly
increase the jumpstart and total reward in the target task (time spent learningthe source task is dis-
counted). The authors suggest that agent-space options will likely be moreportable than problem-
space options in cases where the source and target tasks are less similar—indeed, problem-space
options will only be portable when source and target tasks are very similar.

In our opinion, agent- and problem-space are ideas that should be further explored as they will
likely yield additional benefits. Particularly in the case of physical agents, itis intuitive that agent
sensors and actuators will be static, allowing information to be easily reused.Task-specific items,
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such as features and actions, may change, but should be faster to learnif the agent has already
learned something about its unchanging agent-space.

If transfer is applied to game trees, changes in actions and state variables may be less prob-
lematic. Banerjee and Stone (2007) are able to transfer between games by focusing on this more
abstract formulation. For instance, in experiments the learner identified the concept of afork, a state
where the player could win on the subsequent turn regardless of what move the opponent took next.
After training in the source task, analyzing the source task data for such features, and then setting
the value for a given feature based on the source task data, such features of the game tree were used
in a variety of target tasks. This analysis focuses on the effects of actions on the game tree and thus
the actions and state variables describing the source and target game can differ without requiring
an inter-task mapping. Source task time is discounted, but jumpstart, total reward, and asymptotic
performance are all improved via transfer. Although the experiments in the paper use only temporal
difference learning, it is likely that this technique would work well with other types of learners.

Guestrin et al. (2003) examine a similar problem in the context of planning in what they term
a relational MDP. Rather than learning a standard value function, an agent-centered value function
for eachclassof agents is calculated in a source task, forcing all agents of a given class type to
all have the same value function. However, these class value functions are defined so that they are
independent of the number of agents in a task, allowing them to be directly used in a target task
which has additional (or fewer) agents. No further learning is done in thetarget task, but the trans-
ferred value functions perform better than a handcoded strategy provided by the authors, despite
having additional friendly and adversarial agents. However, the authors note that the technique will
not perform well in heterogeneous environments or domains with “strong and constant interactions
between many objects.”

Relational Reinforcement Learning may also be used for effective transfer. Rather than reason-
ing about states as input from an agent’s sensors, an RRL learner typically reasons about a state
in propositional form by constructing first-order rules. The learner can easily abstract over specific
object identities as well as the number of objects in the world; transfer between tasks with different
number of objects is simplified. For instance, Croonenborghs et al. (2007) first learn a source task
policy with RRL. The learned policy is used to create examples of state-action pairs, which are then
used to build a relational decision tree. This tree predicts, for a given state, which action would be
executed by the policy. Lastly, the trees are mined to producerelational options. These options are
directly used in the target task with the assumption that the tasks are similar enough that no trans-
lation of the relational options is necessary. The authors consider three pairs of source/target tasks
where relational options learned in the source directly apply to the target task (only the number of
objects in the tasks may change), and learning is significantly improved in terms of jumpstart, total
reward, and asymptotic performance.

Other work using RRL for transfer (Ramon et al., 2007) introduces the TGR algorithm, a rela-
tional decision tree algorithm. TGR incrementally builds a decision tree in which internal nodes use
first-order logic to analyze the current state and where the tree’s leavescontain action-values. The
algorithm uses four tree-restructuring operators to effectively use available memory and increase
sample efficacy. Both target task time and total time are reduced by first training on a simple source
task and then on a related target task. Jumpstart, total reward, and asymptotic performance also
appear to improve via transfer.

RRL is a particularly attractive formulation in the context of transfer learning. In RRL, agents
can typically act in tasks with additional objects without reformulating their, although additional
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training may be needed to achieve optimal (or even acceptable) performance levels. When it is
possible to frame a domain of interest as an RRL task, transfer between tasks with different numbers
of objects or agents will likely be relatively straightforward.

With motivation similar to that of RRL, some learning problems can be framed so thatagents
choose between high-level actions that function regardless of the number of objects being reasoned
about. Sharma et al. (2007) combines case-based reasoning with RL in theCAse-Based Reinforce-
ment Learner(CARL), a multi-level architecture includes three modules: a planner, a controller,
and a learner. The tactical layer uses the learner to choose between high-level actions which are in-
dependent of the number of objects in the task. The cases are indexed by: high-level state variables
(again independent of the number of objects in the task), the actions available, the Q-values of the
actions, and the cumulative contribution of that case on previous timesteps. Similarity between the
current situation and past cases is determined by Euclidean distance. Because the state variables and
actions are defined so that the number of objects in the task can change, thesource and target tasks
can have different numbers of objects (in the example domain, the authors use different numbers
of player and opponent troops in the source and target tasks). Time spent learning the source task
is not counted, but the target task performance is measured in terms of jumpstart, asymptotic gain
(a metric related to the improvement in average reward over learning), andoverall gain(a metric
based on the total reward accrued).

In summary, methods surveyed in this section all allow transfer between taskswith different
state variables and actions, as well as transfer functions, state spaces,and reward functions. By
framing the task in an agent-centric space, limiting the domain to game trees, or using a learning
method that reasons about variable numbers of objects, knowledge can be transferred between tasks
with relative ease because problem representations do not change from the learner’s perspective.
In general, not all tasks may be formulated so that they conform to the assumptions made by TL
methods presented in this section.

7. Explicit Mappings to Transfer between Different Actions and State
Representations

This section of the survey focuses on a set of methods which are more flexible than those previously
discussed as they allow the state variables and available actions to differ between source and target
tasks (see Table 6 and Figure 9). All methods in this section use inter-task mappings, enabling
transfer between pairs of tasks that could not be addressed by methodsin the previous section. Note
that because of changes in state variables and actions,R, S, andT, all technically change as well
(they are functions defined over actions and state variables). However, as we elaborate below, some
of the methods allow for significant changes in reward functions between the tasks, while most do
not.

In Taylor et al. (2007a), the authors assume that a mapping between the source and target tasks
is provided to the learner. The learner first trains in a source task using avalue-function-learning
method. Before learning begins in the target task, every action-value foreach state in the target
task is initialized via learned source task values. This work experimentally demonstrates that value-
function transfer can cause significant speedup by transferring between tasks that have different state
variables and actions. Additionally, different methods for performing the value-function transfer
are examined, different function approximators are successfully used, and multi-step transfer is
demonstrated (i.e., transfer from task A to task B to task C). This TL method demonstrates that when
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Allowed Source Task TransferredAllowed TL
Citation Task Task Mappings KnowledgeLearnersMetrics

DifferencesSelection

Different state variables and actions – inter-task mappings used: Section 7
Taylor et al. (2007a) a, v h sup Q TD tt†

Taylor et al. (2007b) a, v h sup π PS tt†

Taylor et al. (2008b) a, v h sup I MB ap, tr
Torrey et al. (2005)

a, r, v h sup rule TD j, tr
Torrey et al. (2006)
Torrey et al. (2007) a, r, v h sup πp TD j, tr

Taylor and Stone (2007b) a, r, v h sup rule any/TD j, tt†, tr

Table 6: This table reproduces the fourth group of methods from Table 1.
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Figure 9: Methods in Section 7 focus on transferring between tasks with different state features,
action sets, and possible reward functions (which, in turn, causes the state space and
transition function to differ as well). As in previous figures, MDP components with a
dashed circle may change between the source task and target task.

faced with a difficult task, it may be faster overall to first train on an artificial source task or tasks
and then transfer the knowledge to the target task, rather than training on the target task directly.
The authors provide no theoretical guarantees about their method’s effectiveness, but hypothesize
conditions under which their TL method will and will not perform well, and provide examples of
when their method fails to reduce the training time via transfer.

In subsequent work, Taylor et al. (2007b) transfer entire policies between tasks with different
state variables and actions, rather than action-value functions. A set of policies is first learned via
a genetic algorithm in the source task and then transformed via inter-task mappings. Additionally,
partial inter-task mappings are introduced, which may be easier for a humanto intuit in many
domains. Specifically, those actions and state variables in the target which have “very similar”
actions and state variables in the source task are mapped, while novel state variables and actions in
the target task are left unmapped. Policies are transformed using one of the inter-task mappings and
then used to seed the learning algorithm in the target task. As in the previous work, this TL method
can successfully reduce both the target task time and the total time.
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Later, Taylor et al. (2008b) again consider pairs of tasks where the actions differ, the state vari-
ables differ, and inter-task mappings are available to the learner. In this work, the authors allow
transfer between model-learning methods by transferring instances, which is similar in spirit to
Lazaric (2008). Fitted R-MAX (Jong and Stone, 2007), an instance-based model-learning method
capable of learning in continuous state spaces, is used as the base RL method, and source task
instances are transferred into the target task to better approximate the target task’s model. Exper-
iments in a simple continuous domain show that transfer can improve the jumpstart, total reward,
and asymptotic performance in the target task.

Another way to transfer is via learnedadviceor preferences. Torrey et al. (2005) automatically
extract such advice from a source task by identifying actions which havehigher Q-values than other
available actions.9 Such advice is mapped via human-provided inter-task mappings to the target task
as preferences given to the target task learner. In this work, Q-values are learned via support vector
regression, and thenPreference Knowledge Based Kernel Regression(KBKR) (Maclin et al., 2005)
adds the advice as soft constraints in the target, setting relative preferences for different actions in
different states. The advice is successfully leveraged by the target task learner and decreases the
target task learning time, even when the source task has different state variables and actions. Ad-
ditionally, the reward structure of the tasks may differ substantially: their experiments use a source
task whose reward is an unbounded score based on episode length, while the target task’s reward is
binary, depending on if the agents reached a goal state or not. Source task time is discounted and
the target task learning is improved slightly in terms of total reward and asymptoticperformance.

Later work (Torrey et al., 2006) improves upon this method by usinginductive logic program-
ming(ILP) to identify skills that are useful to the agent in a source task. A trace of the agent in the
source task is examined and both positive and negative examples are extracted. Positive and neg-
ative examples are identified by observing which action was executed, the resulting outcome, the
Q-value of the action, and the relative Q-value of other available actions. Skills are extracted using
the ILP engine Aleph (Srinivasan, 2001) by using the F1 score (the harmonic mean of precision and
recall). These skills are then mapped by a human into the target task, where they improve learning
via KBKR. Source task time is not counted towards the target task time, jumpstartmay be improved,
and the total reward is improved. The source and target tasks again differ in terms of state variables,
actions, and reward structure. The authors also show how human-provided advice may be easily
incorporated in addition to advice generated in the source task. Finally, the authors experimentally
demonstrate that giving bad advice to the learner is only temporarily harmful and that the learner
can “unlearn” bad advice over time, which may be important for minimizing the impact of negative
transfer.

Torrey et al. (2007) further generalize their technique to transferstrategies, which may require
composing several skills together, and are defined as a finite-state machine(FSM). Thestructure
learningphase of their algorithm analyzes source task data to find sequences of actions that distin-
guish between successful and unsuccessful games (e.g., whether ornot a goal was reached), and
composes the actions into a FSM. The second phase,ruleset learning, learns when each action in
the strategy should be taken based on state features, and when the FSM should transition to the
next state. Experience in the source task is again divided into positive andnegative sequences for
Aleph. Once the strategies are re-mapped to the target task via a human-provided mapping, they are
used todemonstratea strategy to the target task learner. Rather than explore randomly, the target

9. While this survey focuses on automatically learned knowledge in a source task, rather than human-provided knowl-
edge, Torrey et al. (2005) show that both kinds of knowledge can be effectively leveraged.
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task learner always executes the transferred strategies for the first 100 episodes and thus learns to
estimate the Q-values of the actions selected by the transferred strategies. After this demonstration
phase, the learner chooses from the MDP’s actions, not the high-levelstrategies, and can learn to
improve on the transferred strategies. Experiments demonstrate that strategy transfer significantly
improves the jumpstart and total reward in the target task when the source and target tasks have
different state variables and actions (source task time is again discounted).

Similar to strategy transfer, Taylor and Stone (2007b) learnruleswith RIPPER (Cohen, 1995)
that summarize a learned source task policy. The rules are then transformed via handcoded inter-
task mappings so that they could apply to a target task with different state variables and actions.
The target task learner may then bootstrap learning by incorporating the rules as an extra action,
essentially adding an ever-present option “take the action suggested by the source task policy,”
resulting in an improved jumpstart and total reward. By using rules as an intermediary between
the two tasks, the authors argue that the source and target tasks can usedifferent learning methods,
effectively de-coupling the two learners. Similarities with Torrey et al. (2007) include a significant
improvement in initial performance and no provision to automatically handle scaledifferences.10

The methods differ primarily in how advice is incorporated into the target learner and the choice of
rule learner.

Additionally, Taylor and Stone (2007b) demonstrated thatinter-domaintransfer is possible.
The two source tasks in this paper were discrete, fully observable, and one was deterministic. The
target task, however, had a continuous state space, was partially observable, and had stochastic
actions. Because the source tasks required orders of magnitude less time,the total time was roughly
equal to the target task time. Our past work has used the term “inter-domain transfer” for transfer
between qualitatively different domains, such as between a board game and a soccer simulation.
However, this term is not well defined, or even agreed upon in the community. For instance, Swarup
and Ray (2006) use the term “cross-domain transfer” to describe the reuse of a neural network
structure between classification tasks with different numbers of boolean inputs and a single output.
However, our hope is that researchers will continue improve transfer methods so that they may
usefully transfer from very dissimilar tasks, similar to the way that humans may transfer high level
ideas between very different domains.

This survey has discussed examples of of low- and high-level knowledge transfer. For instance,
learning general rules or advice may be seen as relatively high level, whereas transferring specific Q-
values or observed instances is quite task-specific. Our intuition is that higher-level knowledge may
be more useful when transferring between very dissimilar tasks. For instance, it is unlikely that Q-
values learned for a checkers game will transfer to chess, but the concept of a fork may transfer well.
This has not been definitely shown, however, nor is there a quantitative way to classify knowledge in
terms of low- or high-level. We hope that future work will confirm or disconfirm this hypothesis, as
well as generate guidelines as to when different types of transferred knowledge is most appropriate.

All methods in this section use some type of inter-task mapping to allow transfer between MDPs
with very different specifications. While these results show that transfercan provide a significant
benefit, they presuppose that the mappings are provided to the learner. The following section con-
siders methods that work to autonomously learn such inter-task mappings.

10. To our knowledge, there is currently no published method to automatically scale rule constants. Such scaling would
be necessary if, for instance, source task distances were measuredin feet, but target task distances were measured in
meters.
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Allowed Source Task TransferredAllowed TL
Citation Task Task Mappings KnowledgeLearnersMetrics

DifferencesSelection

Learning inter-task mappings: Section 8
Kuhlmann and Stone (2007) a, v h T Q TD j, tr

Liu and Stone (2006) a, v h T N/A all N/A
Soni and Singh (2006) a, v h Ma, svg, exp N/A all ap, j, tr

Talvitie and Singh (2007) a, v h Ma, svg, exp N/A all j
Taylor et al. (2007b)⋆ a, v h svg, exp N/A all tt†

Taylor et al. (2008c) a, v h exp N/A all j, tr

Table 7: This table reproduces the group of inter-task learning methods from Table 1.

8. Learning Task Mappings

The transfer algorithms considered thus far have assumed that a hand-coded mapping between tasks
was provided, or that no mapping was needed. In this section we considerthe less-well explored
question of how a mapping between tasks can be learned, such that source task knowledge may
be exploited in a novel target task with different state variables and actions(see Figure 10 and
the final group in Table 1). Note that in this section, all but one of the methodshave N/A for
transfer method—with the exception of Kuhlmann and Stone (2007), the papers covered in this
section introduce mapping-learning methods and then use existing methods to validate the mapping
efficacy.

One current challenge of TL research is to reduce the amount of information provided to the
learner about the relationship between the source and target tasks. If ahuman is directing the learner
through a series of tasks, the similarities (or analogies) between the tasks willlikely be provided
by the human’s intuition. If transfer is to succeed in an autonomous setting, however, the learner
must first determine how (and whether) two tasks are related, and only thenmay the agent leverage
its past knowledge to learn in a target task. Learning task relationships is critical if agents are to
transfer without human input, either because the human is outside the loop, orbecause the human
is unableto provide similarities between tasks. Methods in this section differ primarily in what
information must be provided. At one end of the spectrum, Kuhlmann and Stone (2007) assume
that a complete description ofR, S, andT are given, while at the other, Taylor et al. (2008c) learn
the mapping exclusively from experience gathered via environmental interactions.

Given a complete description of a game (i.e., the full model of the MDP), Kuhlmann and Stone
(2007) analyze the game to produce arule graph, an abstract representation of a deterministic, full
information game. A learner first trains on a series of source task games, storing the rule graphs and
learned value functions. When a novel target task is presented to the learner, it first constructs the
target task’s rule graph and then attempts to find a source task that has an isomorphic rule graph.
The learner assumes that a transition function is provided and uses value-function-based learning to
estimate values forafterstatesof games. Only state variables need to be mapped between source and
target tasks, and this is exactly the mapping found by graph matching. For each state in the target
task, initial Q-values are set by finding the value of the corresponding state in the source task. Three
types of transfer are considered: direct, which copies afterstate values over without modification;
inverse, which accounts for a reversed goal or switched roles; and average, with copies the average
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Figure 10: Section 8 presents methods to learn the relationship between taskswith different state
variables and actions. As in previous figures, MDP components with a dashed circle
may change between the source task and target task.

of a set of Q-values and can be used for boards with different sizes.Source task time is ignored but
jumpstart and total reward can both be improved in the target task.

The previous work assumes full knowledge of a transition function. A moregeneral approach
could assume that the agent has only a qualitative understanding of the transition function. For
instance,qualitative dynamic Bayes networks(QDBNs) (Liu and Stone, 2006), summarize the ef-
fects of actions on state variables but are not precise (for instance, they could not be used as a
generative model for planning). If QDBNs are provided to an agent, a graph mapping technique
can automatically find a mapping between actions and state variables in two tasks with relatively
little computational cost. The authors show that mappings can be learned autonomously, effectively
enabling value function transfer between tasks with different state variables and actions. However,
it remains an open question as to whether or not QDBNs are learnable fromexperience, rather than
being hand-coded.

The next three methods assume knowledge about how state variables are used to describe objects
in a multi-player task. For instance, an agent may know that a pair of state variables describe
“distance to teammate” and “distance from teammate to marker,” but the agent is not told which
teammate the state variables describe. First, Soni and Singh (2006) supply an agent with a series of
possible state transformations and an inter-task action mapping. There is onesuch transformation,
X, for every possible mapping of target task variables to source task variables. After learning the
source task, the agent’s goal is to learn the correct transformation: in each target task states, the
agent can randomly explore the target task actions, or it may choose to takethe actionπsource(X(s)).
This method has a similar motivation to that of Fernandez and Veloso (2006), but here the authors
are learning to select between possible mappings rather than possible previous policies. Over time
the agent uses Q-learning to select the best state variable mapping as well as learn the action-
values for the target task. The jumpstart, total reward, and asymptotic performance are all slightly
improved when using this method, but its efficacy will be heavily dependent on the number of
possible mappings between any source and target task.

Second,AtEase(Talvitie and Singh, 2007) also generates a number of possible state variable
mappings. The action mapping is again assumed and the target task learner treats each of the
possible mappings as an arm on a multi-armed bandit (Bellman, 1956). The authors prove their
algorithm learns in time proportional to the number of possible mappings rather than the size of
the problem: “in time polynomial inT, [the algorithm] accomplishes an actual return close to the
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asymptotic return of the best expert that has mixing time at mostT.” This approach focuses efficient
selection of a proposed state variable mappings and does not allow target task learning.

Third, these assumptions are relaxed slightly by Taylor et al. (2007b), who show that it is possi-
ble to learn both the action and state variable mapping simultaneously by leveraging a classification
technique, although it again relies on the pre-specified state variable groupings (i.e., knowing that
“distance to teammate” refers to a teammate, but not which teammate). Action and state variable
classifiers are trained using recorded source task data. For instance,the source task agent records
ssource, asource, s′source tuples as it interacts with the environment. An action classifier is trained so
thatC(ssource,ob ject,s′source,ob ject) = asourcefor each object present in the source task. Later, the target
task agent again recordsstarget, atarget, s′target tuples. Then the action classifier can again be used
for to classify tuples for every target task object:C(starget,ob ject,s′target,ob ject) = asource, where such a
classification would indicate a mapping betweenatarget andasource. Relatively little data is needed
for accurate classification; the number of samples needed to learn in the target task far outweighs
the number of samples used by the mapping-leaning step. While the resulting mappings are not
always optimal for transfer, they do serve to effectively reduce target task training time as well as
the total training time.

The MASTER algorithm (Taylor et al., 2008c) was designed to further relax the knowledge re-
quirements of Taylor et al. (2007b): no state variable groupings are required. The key idea of
MASTER is to save experienced source task instances, build an approximate transition model from a
small set of experienced target task instances, and then test possible mappings offline by measuring
the prediction error of the target-task models on source task data. This approach is sample efficient
at the expense of high computational complexity, particularly as the number ofstate variables and
actions increase. The method uses an exhaustive search to find the inter-task mappings that minimize
the prediction error, but more sophisticated (e.g., heuristic) search methodscould be incorporated.
Experiments show that the learned inter-task mappings can successfully improve jumpstart and total
reward. A set of experiments also shows how the algorithm can assist with source task selection by
selecting the source task which is best able to minimize the offline prediction error. The primary
contribution ofMASTER is to demonstrate that autonomous transfer is possible, as the algorithm
can learn inter-task mappings autonomously, which may then be used by any of the TL methods
discussed in the previous section of this survey (Section 7).

In summary, this last section of the survey has discussed several methodsable to learn inter-
task mappings with different amounts of data. Although all make some assumptions about the
amount of knowledge provided to the learner or the similarity between sourceand target tasks,
these approaches represent an important step towards achieving fully autonomous transfer.

The methods in the section have been loosely ordered in terms of increasing autonomy. By
learning inter-task mappings, these algorithms try to enable a TL agent to use past knowledge on a
novel task without human intervention, even if the state variables or actions change. However, the
question remains whether fully autonomous transfer would ever be usefulin practice. Specifically,
if there are no restrictions on the type of target task that could be encountered, why would one
expect that past knowledge (a type of bias) would be useful when learning an encountered task, or
even on the majority of tasks that could be encountered? This question is directly tied to the ability
of TL algorithms to recognize when tasks are similar and when negative transfer may occur, both of
which are discussed in more detail in the following section.
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9. Open Questions

Although transfer learning in RL has made significant progress in recentyears, there are still a num-
ber of open questions to be addressed. This section presents a selectionof questions that we find
particularly important. Section 9.1 discusses ways in which methods in the survey could potentially
be extended and serves to highlight some of the methods most promising for future work. Sec-
tion 9.2 then discusses the problem of negative transfer, currently one of the most troubling open
questions. Lastly, Section 9.3 presents a set of possible research directions that the authors’ believe
will be most beneficial to the field of TL.

9.1 Potential Enhancements

One apparent gap in our taxonomy is a dearth of model-learning methods. Because model-learning
algorithms are often more sample efficient than model-free algorithms, it is likely that TL will have
a large impact on sample complexity when coupled with such efficient RL methods. Moreover,
when a full model of the environment is learned in a source task, it may be possible for the target
task learner to explicitly reason about how to refine or extend the model as itencounters disparities
between it and the target task.

As mentioned in Section 5, transfer is an appealing way to set priors in a Bayesian setting.
When in a MTL setting, it may be possible to accurately learn priors over a distribution of tasks,
enabling a learner to better avoid negative transfer. One of the main benefits of transfer learning
is the ability to bias learners so that they may find better solutions with less data; making these bi-
ases explicit through Bayesian priors may allow more efficient (and human-understandable) transfer
methods. While there will likely be difficulties associated with scaling up currentmethods to handle
complex tasks, possibly with a complex distribution hierarchy, it seems like Bayesian methods are
particularly appropriate for transfer.

The idea of automatically modifying source tasks (cf., RTP Sherstov and Stone 2005, and sug-
gested by Kuhlmann and Stone 2007) has not yet been widely adopted. However, such methods
have the potential to improving transfer efficacy in settings where the targettask learning perfor-
mance is paramount. By developing methods that allow training on a sequence of automatically
generated variations, TL agents may be able to train autonomously and gain experience that is ex-
ploitable in a novel task. Such an approach would be particularly relevantin the multi-task learning
setting where the agent could leverage some assumptions about the distribution of the target task(s)
it will see in the future.

None of the transfer methods in this survey are able to explicitly take advantage of any knowl-
edge about changes in the reward function between tasks, and it may be particularly easy for humans
to identify qualitative changes in reward functions. For example, if it was known that the target task
rewards were twice that of the source task, it is possible that value-function methods may be able
to automatically modify the source task value function with this background knowledge to enhance
learning. As a second example, consider a pair of tasks where the goal state were moved from
one edge of the state space to the opposite edge. While the learned transition information could be
reused, the policy or value-function would need to be significantly altered toaccount for the new
reward function. It is possible that inter-task mappings could be extendedto account for changes in
R between tasks, in addition to changes inA and in state variables.

Ideas fromtheory revision(Ginsberg, 1988) (alsotheory refinement) may help inform the au-
tomatic construction of inter-task mappings. For example, many methods initialize a target task
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agent to have Q-values similar to those in the source task agent. Transfer islikely to be suc-
cessful (Taylor et al., 2007a) if the target task Q-values are close enough to the optimal Q-values
that learning is improved, relative to not using transfer. There are also situations where asyn-
tactic change to the knowledge would produce better transfer. For instance, ifthe target task’s
reward function were the inverse of the source task function, direct transfer of Q-values would be
far from optimal. However, a TL algorithm that could recognize the inverserelationship may be
able to use the source task knowledge more appropriately (such as initializingits behavior so that
πtarget(starget) 6= πsource(χX(starget)).

Given a successful application of transfer, there are potentially two distinct benefits for the
agent. First, transfer may help improve the agent’s exploration so that it discovers higher-valued
states more quickly. Secondly, transfer can help bias the agent’s internalrepresentation (e.g., its
function approximator) so that it may learn faster. It will be important for future work to better
distinguish between these two effects; decoupling the two contributions should allow for a better
understanding of TL’s benefits, as well as provide avenues for future improvements.

Of the thirty-four transfer methods discussed, only five (Tanaka and Yamamura, 2003; Sunmola
and Wyatt, 2006; Ferguson and Mahadevan, 2006; Lazaric, 2008; Wilson et al., 2007) attempt to
discover internal learning parameters (e.g., appropriate features or learning rate) so that future tasks
in the same domain may be learned more efficiently. It is likely that other “meta-learning” methods
could be useful. For instance, it may be possible to learn to use an appropriate function approxima-
tor, an advantageous learning rate, or even the most appropriate RL method. Although likely easier
to accomplish in a MTL setting, such meta-learning may also be possible in transfer, given suffi-
ciently strong assumptions about task similarity. Multiple heuristics regarding thebest way to select
RL methods and learning parameter settings for a particular domain exist, but typically such settings
are chosen in an ad hoc manner. Transfer may be able to assist when settingsuch parameters, rather
than relying on human intuition.

Section 8 discussed methods that learned an inter-task mapping, with the motivation that such a
mapping could enable autonomous transfer. However, it is unclear if fully autonomous TL is real-
istic in an RL setting, or indeed is useful. In the majority of situations, a human will be somewhere
in the loop and full autonomy is not necessary. Instead, it could be that mappings may be learned to
supplementa human’s intuition regarding appropriate mappings, or that a set of learned mappings
could be proposed and then one selected by a human. It would be worthwhile to define realistic sce-
narios when fully autonomous transfer will be necessary, or to instead specify how (limited) human
interaction will be coupled with mapping-learning methods.

Lastly, we hope that the idea of task-invariant knowledge will be extended. Rather than learning
an appropriate representation across tasks, agent-space (Konidarisand Barto, 2007) and RRL tech-
niques attempt to discover knowledge about the agent or the agent’s actions which can be directly
reused in novel tasks. The better techniques can successfully compartmentalize knowledge, separat-
ing what will usefully transfer and what will not will not, the easier it will be toachieve successful
transfer without having to un-learn irrelevant biases.

9.2 Negative Transfer

The majority of TL work in the literature has concentrated on showing that a particular transfer
approach is plausible. None, to our knowledge, has a well-defined methodfor determiningwhenan
approach will fail according to one or more metrics. While we can say that it ispossible to improve
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Figure 11: This figure depicts a pair of tasks that are likely to result in negative transfer for TL
methods.

learning in a target task faster via transfer, we cannot currently decideif an arbitrary pair of tasks are
appropriate for a given transfer method. Therefore, transfer may produce incorrect learning biases
and result in negative transfer.

Methods such asMASTER (Taylor et al., 2008c), which can measure task similarity via model
prediction error, or region transfer (Lazaric, 2008), which examinesthe similarity of tasks at a local
level rather than at a per-task level, can help assist when deciding if the agent should transfer or
what the agent should transfer. However, neither method provides anytheoretical guarantees about
its effectiveness.

As an example of why it is difficult to define a metric for task similarity, consider the pair of tasks
shown in Figure 11, which are extremely similar, but where direct transferof a policy or action-value
function will be detrimental. The source task in Figure 11 (top) is deterministic and discrete. The
agent begins in state I and has one action available:East . Other states in the “hallway” have two
applicable actions:East andWest , except for state A, which also has the actionsNorth andSouth .
Once the agent executesNorth or South in state A, it will remain in state B or C (respectively) and
continue self-transitioning. No transition has a reward, except for the self-transition in state B.

Now consider the target task in Figure 11 (bottom), which is the same as the source task, except
that the self-transition from C′ is the only rewarded transition in the MDP.Q⋆(I′,East ) in the target
task (the optimal action-value function, evaluated at the state I′) is the same asQ⋆(I, East ) in the
source task. Indeed, the optimal policy in the target task differs at only a single state, A′, and the
optimal action-value functions differ only at states A′, B′, and C′.

One potential method for avoiding negative transfer is to leverage the ideasof bisimulation
(Milner, 1982). Ferns et al. (2006) point out that:
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In the context of MDPs, bisimulation can roughly be described as the largest equiva-
lence relation on the state space of an MDP that relates two states precisely when for
every action, they achieve the same immediate reward and have the same probability
of transitioning to classes of equivalent states. This means that bisimilar stateslead to
essentially the same long-term behavior.

However, bisimulation may be too strict because states are either equivalentor not, and may be slow
to compute in practice. The work of Ferns et al. (2005, 2006) relaxes theidea of bisimulation to
that of a (pseudo)metric that can be computed much faster, and gives a similarity measure, rather
than a boolean. It is possible, although not yet shown, that bisimulation approximations can be used
to discover regions of state space that can be transferred from one task to another, or to determine
how similar two tasks arein toto. In addition to this, or perhaps because of it, there are currently no
methods for automaticallyconstructinga source task given a target task.11

Homomorphisms(Ravindran and Barto, 2002) are a different abstraction that can define trans-
formations between MDPs based on transition and reward dynamics, similar in spirit to inter-task
mappings, and have been used successfully for transfer (Soni and Singh, 2006). However, discover-
ing homomorphisms is NP-hard (Ravindran and Barto, 2003a) and homomorphisms are generally
supplied to a learner by an oracle. While these two theoretical frameworks may be able to help avoid
negative transfer, or determine when two tasks are “transfer compatible,” significant work needs to
be done to determine if such approaches are feasible in practice, particularly if the agent is fully
autonomous (i.e., is not provided domain knowledge by a human) and is not provided a full model
of the MDP.

9.3 New Directions

As suggested above, TL in RL domains is one area of machine learning where the empirical work
has outpaced the theoretical. While there has been some work on the theory of transfer between
classification tasks (cf., Baxter, 2000; Ben-David and Borbely, 2008), such analyses do not directly
apply to RL settings. To our knowledge, there is only a single work analyzingthe theoretical
properties of transfer in RL (Phillips, 2006), where the authors use the Kantorovich and full models
of two MDPs to calculate how well an optimal policy in one task will perform in a second task.
Unfortunately, this calculation of policy performance may require more computation than directly
learning in the target task. There is considerable room, and need for, moretheoretical work in RL
(cf., Bowling and Veloso, 1999). For example:

1. Provides guarantees about whether a particular source task can improve learning in a target
task (given a particular type of knowledge transfer).

2. Correlates the amount of knowledge transferred (e.g., the number of samples) with the im-
provement in the source task.

3. Defines what an optimal inter-task mapping is, and demonstrates how transfer efficacy is
impacted by the inter-task mapping used.

11. We distinguish this idea from Sherstov and Stone’s 2005 approach. Their paper shows it is possible to construct
source task perturbations and then allow an agent to spend time learning theset of tasks to attempt to improve
learning on an (unknown) source task. Instead, it may be more effective to tailor a source task to a specific target
task, effectively enabling an agent to reduce the total number of environmental interactions needed to learn.
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The remainder of this section suggests other open areas.
Concept drift(Widmer and Kubat, 1996) in RL has not been directly addressed by any work

in this survey. The idea of concept drift is related to a non-stationary environment: at certain
points in time, the environment may change arbitrarily. As Ramon et al. (2007) note, “for transfer
learning, it is usually known when the context change takes place. For concept drift, this change is
usually unannounced.” Current on-line learning methods may be capableof handling such changes
by continually learning. However, it is likely that RL methods developed specifically to converge
to a policy and then re-start learning when the concept changes will achieve higher performance,
whether such drift is announced or unannounced.

Another question no work in this survey directly addresses is how to determine the optimal
amount of source task training to minimize the target task training time or total trainingtime. If the
source task and target task were identical, the goal of reducing the target task training time would
be trivial (by maximizing the source task training time) and the goal of minimizing totaltraining
time would be impossible. On the other hand, if the source task and target task were unrelated, it
would be impossible to reduce the target task training time through transfer andthe total training
time would be minimized by not training in the source task at all. It is likely that a calculation or
heuristic for determining the optimal amount of source task training time will have toconsider the
structure of the two tasks, their relationship, and what transfer method is used. This optimization
becomes even more difficult in the case of multi-step transfer, as there are two or more tasks that
can be trained for different amounts of time.

Transfer methods in this survey have used source task knowledge in manyforms to better learn
in a target task. However, none explicitly account for scaling differences between the two tasks.
For instance, if a source task measured distance in meters and the target task measured distance in
inches, constants would have to be updated manually rather than learned.

Another question not addressed is how to best explore in a source task ifthe explicit purpose of
the agent is to speed up learning in a target task. One could imagine that a non-standard learning or
exploration strategy may produce better transfer results, relative to standard strategies. For instance,
it may be better to explore more of the source task’s state space than to learn an accurate action-value
function for only part of the state space. While no current TL algorithms take such an approach,
there has been some work on the question of learning a policy that is exploitable (without attempt
to maximize the on-line reward accrued while learning) in non-transfer contexts (Şimşek and Barto,
2006).

Similarly, instead of always transferring information from the end of learning in the source task,
an agent that knows its information will be used in a target task may decide to record information to
transfer partway through training in the source task. For instance Tayloret al. (2007b) showed that
transfer may be more effective when using policies trained for less time in the source task than when
using those trained for more time. Although others have also observed similar behavior Mihalkova
and Mooney (2008), the majority of work shows that increased performance in the source task is
correlated with increased target task performance. Understanding howand why this effect occurs
will help determine the most appropriate time to transfer information from one taskto another.

We now present four possibilities for extending the current RL transferwork to different learning
settings in which transfer has not been successfully applied.

• First, although two of the papers (Banerjee and Stone, 2007; Kuhlmann and Stone, 2007)
in this survey have examined extensive games, none consider repeated normal form games
or stochastic games (Shapley, 1953). For instance, one could considerlearning how to play
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against a set of opponents so that when a new opponent is introduced,the learner may quickly
adapt one of its previous strategies rather than completely re-learning a strategy. Another op-
tion would be for an agent to learn how to play one game and then transfer theknowledge
to a different stochastic game. Due to similarities between RL and these two game play-
ing settings, transfer methods described in this survey may be applied with relatively little
modification.

• A second possibility for extending transfer is into the realm of partially observable MDPs
(POMDPs). It may possible to learn a source POMDP and then use knowledge gained to
heuristically speed up planning in a target POMDP. Additionally, because it istypically as-
sumed that POMDP planners are given a complete and accurate model of a task, it may be
possible to analytically compare source and target tasks before learning inorder to determine
if transfer would be beneficial, and if so, how best to use the past knowledge.

• Third, multi-agent MDP and POMDP learners may also be able to successfullyexploit trans-
fer. None of the work surveyed in this article focuses on explicit multi-agent learning (i.e.,
learning over the joint action space, or in an (adaptive) adversarial setting, as in Stone and
Veloso 2000), but it is likely existing methods may be extended to the cooperative multi-
agent setting. For instance, when formulating a problem as an MMDP or DEC-MDP, the
agents must either reason over a joint action space or explicitly reason about how their ac-
tions affect others. It may be possible for agents to learn over a subsetof actions first, and
then gradually add actions (or joint actions) over time, similar to transferring between tasks
with different action sets. The need for such speedups is particularly critical in distributed
POMDPs, as solving them optimally as been shown to be NEXP-Complete (Bernstein et al.,
2002). Transfer is one possible approach to making such problems more tractable, but to our
knowledge, no such methods have yet been proposed.

• Fourth, as mentioned in Section 3.3, MTL methods in RL consider a sequence of tasks that are
drawn sequentially from the same distribution. However, in supervised learning, multi-task
learning typically involves learning multiple taskssimultaneously. There may be contexts in
which an agent must learn multiple tasks concurrently, such as in hierarchical RL or when the
agent has multiple reward functions or goals. Fully specifying such a scenario, and extending
MTL methods to encompass this setting, could bring additional tools to RL researchers and
help move TL in RL closer to TL in classification.

Lastly, in order to better evaluate TL methods, it would be helpful to have a standard set of
domains and metrics. Ideally there would be a domain-independent metric for transfer learning, but
it is unclear that such a metric can exist (see Section 2). Furthermore, it is unclear whatoptimal
transferwould mean, but would likely depend on the scenario considered. Classification and re-
gression have long benefited from standard metrics, such as precision and recall, and it is likely that
progress in transfer will be likewise enhanced once standard metrics areagreed upon.

Standard test sets, such as the Machine Learning Repository at the University of California,
Irvine (Asuncion and Newman, 2007), have also assisted the growth andprogress of supervised
learning, but there are currently no equivalents for RL. Furthermore,while there are some standard
data sets for for transfer learning in classification,12 none exist for transfer in RL. While there is

12. Found athttp://multitask.cs.berkeley.edu .
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some work in the RL community to standardize on a common interface and set of benchmark tasks
(Tanner et al., 2008; Whiteson et al., 2008), no such standardization has been proposed for the
transfer learning in RL community. Even in the absence of such a framework, we suggest that it is
important for authors working in this area to:

• Clearly specify the setting: Is the source task learning time discounted? Whatassumptions
are made about the relationship between the source target and target task?

• Evaluate the algorithm with a number of metrics: No one metric captures all possible benefits
from transfer.

• Empirically or theoretically compare the performance of novel algorithms: To better evaluate
novel algorithms, existing algorithms should be compared using standard metrics on a single
task task.13

As discussed in Section 2.1, we do not think that TL for RL methods can be strictly ordered in
terms of efficacy, due to the many possible goals of transfer. However, by standardizing on reporting
methodology, TL algorithms can be more easily compared, making it easier to select an appropriate
method in a given experimental setting.

Our hope is that TL questions, such as those presented in this section, will be addressed in the
near future; our expectation is that transfer learning will become an increasingly powerful tool for
the machine learning community.
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