Journal of Machine Learning Research 10 (2009) 1633-1685 bm8ted 6/08; Revised 5/09; Published 7/09

Transfer Learning for Reinforcement Learning Domains: A Survey

Matthew E. Taylor* TAYLORM @USC.EDU
Computer Science Department

The University of Southern California

Los Angeles, CA 90089-0781

Peter Stone PSTONEQCS.UTEXAS.EDU
Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

Editor: Sridhar Mahadevan

Abstract

The reinforcement learning paradigm is a popular way to esklproblems that have only limited
environmental feedback, rather than correctly labeledrgtes, as is common in other machine
learning contexts. While significant progress has been nadegrove learning in a single task,
the idea oftransfer learninghas only recently been applied to reinforcement learnisgstaThe
core idea of transfer is that experience gained in learringetform one task can help improve
learning performance in a related, but different, task.his article we present a framework that
classifies transfer learning methods in terms of their cifiab and goals, and then use it to survey
the existing literature, as well as to suggest future divestfor transfer learning work.

Keywords: transfer learning, reinforcement learning, multi-taskriéng

1. Transfer Learning Objectives

In reinforcement learningRL) (Sutton and Barto, 1998) problems, leaning agents take sequential
actions with the goal of maximizing a reward signal, which may be time-delayedexample,
an agent could learn to play a game by being told whether it wins or loseis bever given the
“correct” action at any given point in time. The RL framework has gaineputearity as learning
methods have been developed that are capable of handling increasingiyex problems. How-
ever, when RL agents begin learnitadpula rasa mastering difficult tasks is often slow or infeasible,
and thus a significant amount of current RL research focuses onvingrthe speed of learning
by exploiting domain expertise with varying amounts of human-provided krimgeleCommon ap-
proaches include deconstructing the task into a hierarchy of subtdskiétterich, 2000); learning
with higher-level, temporally abstract, actions (eaptions Sutton et al. 1999) rather than simple
one-step actions; and efficiently abstracting over the state space (e funsii@n approximation)
so that the agent may generalize its experience more efficiently.

The insight behindransfer learning(TL) is that generalization may occur not only within tasks,
but alsoacross tasks This insight is not new; transfer has long been studied in the psychalogic
literature (cf., Thorndike and Woodworth, 1901; Skinner, 1953). éMi@levant are a number of

x. The first author wrote the majority of this article while a graduate studehedtiniversity of Texas at Austin.

(©2009 Matthew E. Taylor and Peter Stone.

TAYLOR AND STONE

Scalingup RL Transfer Learning

Case based reasoninyg

State Abstraction

Neural Network
Transfer

Temporal Abstraction

Hypothesis Space
Transfer

Hierarchical Learning

etc.

This Survey

Figure 1: This article focuses on transfer between reinforcemenimegtiasks.

approaches that transfer between machine learning tasks (Car@86aThrun, 1996), for planning
tasks (Fern et al., 2004; lighami et al., 2005), and in the context ofitbegmarchitectures (Laird
et al., 1986; Choi et al., 2007). However, TL for RL tasks has onlgmédg been gaining attention
in the artificial intelligence community. Others have written surveys for retefment learning
(Kaelbling et al., 1996), and for transfer across machine learning {a@sksn and Pratt, 1998),
which we will not attempt to duplicate; this article instead focuses on trahsfereen RL tasksee
Figure 1) to provide an overview of a new, growing area of research.

Transfer learning in RL is an important topic to address at this time for thesmns. First, in
recent years RL techniques have achieved notable successes intdd&s which other machine
learning techniques are either unable or ill-equipped to address (e.gamm@n Tesauro 1994,
job shop scheduling Zhang and Dietterich 1995, elevator control Critk8ario 1996, helicopter
control Ng et al. 2004, marble maze control Bentivegna et al. 2004ofR®xdiccer Keepaway Stone
et al. 2005, and quadruped locomotion Saggar et al. 2007 and Kolte2608). Second, classical
machine learning techniques such as rule induction and classificationfceestly mature that
they may now easily be leveraged to assist with TL. Third, promising initialliseshow that not
only are such transfer methods possible, but they can be very effexttispeeding up learning.
The 2005 DARPA Transfer Learning program (DARPA, 2005) helipegease interest in transfer
learning. There have also been some recent workshops providingumepfor RL techniques that
use transfer. The 2005 NIPS workshop, “Inductive Transferyd#xs Later,” (Silver et al., 2005)
had few RL-related transfer papers, the 2006 ICML workshop, tBtral Knowledge Transfer for
Machine Learning,” (Banerjee et al., 2006) had many, and the 20081A#okkshop, “Transfer
Learning for Complex Tasks,” (Taylor et al., 2008a) focused on RL.

1.1 Paper Overview

The goals of this survey are to introduce the reader to the transfer lggmrablem in RL domains,
to organize and discuss current transfer methods, and to enumeraté¢aimppen questions in
RL transfer. In transfer, knowledge from one or memairce task(sj)s used to learn one or more
target task(sy¥aster than if transfer was not used. The literature surveyed is stedcpuimarily
by grouping methods according to how they allow source and target taskfelo We further

1634

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

distinguish methods according to five different dimensions (see SectiarGaf)e of the questions
that distinguish transfer methods include:

e What are the goals of the transfer method? By what metric(s) will suceasehsured? Sec-
tion 2 examines commonly used metrics, as well as different settings whertetri@asning
can improve learning.

e What assumptions, if any, are made regarding the similarity between the Beksen 3.2.1
enumerates common differences, such as changes to the space in wdnth Gguerate, al-
lowing the agents to have different goals, or letting agents have diffse¢mbf actions.

e How does a transfer method identify what information can/should be trahd® Sec-
tion 3.2.2 enumerates possibilities ranging from assuraihgreviously seen tasks are di-
rectly useful to autonomously learning which source task(s) are uksflarning in the
current target task.

e What information is transferred between tasks? Section 3.2.3 discussaBilitees ranging
from very low-level information (such as direct control knowledge)igghHevel information
(such as rules regarding how a particular domain functions).

The following section presents a discussion about how to best evaluagéetran RL. There are
many different situations in which transfer can be useful and thesediiffsituations may entail
different metrics. This discussion will prepare the reader to better stadet how transfer may be
used. Section 3.1 will briefly discuss reinforcement learning and the notased in the article.
Section 3.2 enumerates the ways in which transfer methods can diffeidipgpa skeleton for the
structure of this survey. Sections 3.3 and 3.4 provide additional high-dewegorization of TL
methods and Section 3.5 discusses related learning paradigms which lagigdlyexrpt discussed in
this survey.

The bulk of the remainder of the article (Sections 4-8) discuss contemypBblranethods, ar-
ranged by the goals of, and methods employed by, the designers. Lastigr® discusses current
open questions in transfer and concludes.

2. Evaluating Transfer Learning Methods

Transfer techniques assume varying degrees of autonomy and makéifferent assumptions. To
be fully autonomous, an RL transfer agent would have to perform alleofattowing steps:

1. Given a target task, select an appropriate source task or seksfitas which to transfer.
2. Learn how the source task(s) and target task are related.

3. Effectively transfer knowledge from the source task(s) to the téagk.

While the mechanisms used for these steps will necessarily be interdepefidaesearch has
focused on each independently, and no TL methods are currentlyleagabbustly accomplishing
all three goals.

A key challenge in TL research is to define evaluation metrics, precisefusedhere are many
possible measurement options and algorithms may focus on any of the thpeeabtave. This
section focuses on how to best evaluate TL algorithms so that the readéretteryunderstand the

1635

TAYLOR AND STONE

different goals of transfer and the situations where transfer may kefibeh’ For instance, it is not
always clear how to treat learning in the source task: whether to chamthé TL algorithm or to
consider it as a “sunk cost.” On the one hand, a possible goal of érargb reduce the overall time
required to learn a complex task. In this scenaritgtal time scenaripwhich explicitly includes
the time needed to learn the source task or tasks, would be most approfnmtbe other hand,

a second reasonable goal of transfer is to effectively reuse pasidaige in a novel task. In this
case, aarget task time scenarjavhich only accounts for the time spent learning in the target task,
is reasonable.

The total time scenario may be more appropriate when an agent is explicithyddudehuman.
Suppose that a user wants an agent to learn to perform a task, bgnizzthat the agent may be
able to learn a sequence of tasks faster than if it directly tackled the diffé&=kt The human can
construct a series of tasks for the agent, suggesting to the agent hosskiseare related. Thus
the agent’s TL method will easily accomplish steps 1 and 2 above, but it nficseetfly transfer
knowledge between tasks (step 3). To successfully transfer in this sefttinggent would have to
learn the entire sequence of tasks faster than if it had spent its time learrifigdahtarget task
directly (see the total time scenario in Figure 2).

The target task time scenario is more appropriate for a fully autonomousteakriully au-
tonomous agent must be able to perform steps 1-3 on its own. Howevdacafetthis scenario do
not need to take into account the cost of learning source tasks. Tleet@sl time scenario empha-
sizes the agent’s ability to use knowledge from one or more previouslydéaaurce tasks without
being charged for the time spent learning them (see the target task timeigderidgure 2). In
this survey we will see that the majority of existing transfer algorithms assummarirguided sce-
nario, but disregard time spent training in the source task. When discusdiniglual TL methods,
we will specifically call attention to the methods that do account for the totalimigainrme and do
not treat the time spent learning a source task as a sunk cost.

Many metrics to measure the benefits of transfer are possible (shown ire Bgueplicated
from our past transfer learning work, Taylor and Stone 2007b):

1. Jumpstart The initial performance of an agent in a target task may be improved bsféran
from a source task.

2. Asymptotic Performancé he final learned performance of an agent in the target task may be
improved via transfer.

3. Total Reward The total reward accumulated by an agent (i.e., the area under the garnin
curve) may be improved if it uses transfer, compared to learning withmsgfera

4. Transfer Ratio The ratio of the total reward accumulated by the transfer learner andtéhe to
reward accumulated by the non-transfer learner.

5. Time to ThresholdThe learning time needed by the agent to achieve a pre-specified-perfor
mance level may be reduced via knowledge transfer.

Metrics 1-4 are most appropriate in the fully autonomous scenario as theyt dbarge the agent
for time spent learning any source tasks. To measure the total time, the mettigaooignt for time

1. Evaluation is particularly important because there are very few ttiemreesults supporting TL for RL methods,
as discussed further in Section 9.3. Instead, practitioners rely onieatpirethods to evaluate the efficacy of their
methods.

1636

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Total Time Scenario Target Task Time Scenario

3 @ Re 5

g i g 3

> IS Transfer Improvement > IS Transfer Improvement
g S

9] = @ 5

14 § 14 §

g = g £

— @ —

= : 2 = 3

2 = o 2 E v
= i~ =

c = D = £ E

=1 X C 0 = X =

©] [© 7] =

= < - 8 = < x5
— Q5 = = ol o
© S E @ g
= 2 = B 5
[= =)
= = = =

Source Task Time =

Figure 2: Successful TL methods may be able to reduce the total training tiftje (i@ some
scenarios, it is more appropriate to treat the source task time as a sun&ndotst
whether the method can effectively reuse past knowledge to reducegie¢ task time

(right).

spent learning one or more source tasks, which is natural when usinig B1e®ther metrics have
been proposed in the literature, but we choose to focus on these fizadeethey are sufficient to
describe the methods surveyed in this article.

For this article, we may think of learning time as a surrogatestonple complexitySample
complexity (or data complexity) in RL refers to the amount of data requirednbglgorithm to
learn. It is strongly correlated with learning time because RL agents onlydgagnby collecting it
through repeated interactions with an environment.

2.1 Empirical Transfer Comparisons

The previous section enumerated five possible TL metrics, and while otleersoasible, these
represent the methods most commonly used. However, each metric hdsmdkavand none are
sufficient to fully describe the benefits of any transfer method. Ratharatiampting to create a
total order ranking of different methods, which may indeed by impossitdenstead suggest that a
multi-dimensional evaluation with multiple metrics is most useful. Specifically, some uethay
“win” on a set of metrics relative to other methods, but “lose” on a diffeset. As the field better
understands why different methods achieve different levels of ssaredifferent metrics, it should
become easier to map TL methods appropriately to TL problems. Although thermadeharning
community has defined standard metrics (such as precision vs. recabdorclassification and
mean squared error for regression), RL has no such standard.i€&tpicomparing two RL algo-
rithms is a current topic of debate within the community, although there is somegsréawards
standardizing comparisons (Whiteson et al., 2008). Theoretical coraparmse also not clear-cut,
as samples to convergence, asymptotic performance, and the computtiopsxity are all valid
axes along which to evaluate RL algorithms.

1637

TAYLOR AND STONE

24 r
Time to Threshold *‘T Asymptotic
22 r ,_,_—-/I, ¥ Performance
_________ " _ .
W
:
&
ih]
[l
0T Jumpstart
Transfer
g | No Transfer
o . . . Threshold Performance — — -
8] 5 10 15 20 25 30 35 40

Training Time (sample complexity)

Figure 3: Many different metrics for measuring TL are possible. Thiplyshow benefits to the
jumpstart, asymptotic performance, time to threshold, and total reward (theuader
the learning curve).

The first proposed transfer measure considers the agent’s initiatpenfice in a target task and
answers the question, “can transfer be used so that the initial perfoenmincreased relative to
the performance of an initial (random) policy?” While such an initial jumpstaapigealing, such
a metric fails to capture the behaviorlefrningin the target task and instead only focuses on the
performance before learning occurs.

Asymptotic performance, the second proposed metric, compares thedif@ipance of learn-
ers in the target task both with and without transfer. However, it may beuliftio tell when the
learner has indeed converged (particularly in tasks with infinite state $paceonvergence may
take prohibitively long. In many settings the number of samples required to ieanost critical,
not the performance of a learner with an infinite number of samples. Fuittisgrpssible for differ-
ent learning algorithms to converge to the same asymptotic performancegbirereery different
numbers of samples to reach the same performance.

A third possible measure is that of the total reward accumulated during traifimgroving
initial performance and achieving a faster learning rate will help agentsradate more on-line
reward. RL methods are often not guaranteed to converge with fungtignoximation and even
when they do, learners may converge to different, sub-optimal perfaenavels. If enough sam-
ples are provided to agents (or, equivalently, learners are providiicient training time), a learn-
ing method which achieves a high performance relatively quickly will havett#al reward than a
learning method which learns very slowly but eventually plateaus at a sligigthehperformance
level. This metric is most appropriate for tasks that have a well-definedialura

1638

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

A fourth measure of transfer efficacy is that of the ratio of areas defigéwo learning curves.
Consider two learning curves in the target task where one uses transfene does not. Assuming
that the transfer learner accrues more reward, the area under fetiaaning curve will be greater
than the area under the non-transfer learning curve. The ratio

_areaunder curve with transfer - area under curve without transfer
area under curve without transfer

gives a metric that quantifies improvement from TL. This metric is most apiatepf the same
final performance is achieved, or there is a predetermined time for theQ#sérwise the ratio will
directly depend on how long the agents act in the target task.

While such a metric may be appealing as a candidate for inter-task compassonste that
the transfer ratio is not scale invariant. For instance, if the area undeatisfer curve were 1000
units and the area under the non-transfer curve were 500, the traastewould be 1.0. If all
rewards were multiplied by a constant, this ratio would not change. But ifffaetavere added
(e.g., each agent is given an extra +1 at the end of each episodellesgaof the final state), the
ratio would change. The evaluation of a TL algorithm with the transfer ratioeigetbre closely
related to the reward structure of the target task being tested. Lastly,tev¢had although none of
the papers surveyed in this article use such a metric, we hope that it wilkeldenugre often in the
future.

The final metric, Time to Threshold, suffers from having to specify a (r@Hty arbitrary) per-
formance agents must achieve. While there have been some suggestidngiak such thresholds
appropriately (Taylor et al., 2007a), the relative benefit of TL methatisigarly depend on the
exact threshold chosen, which will necessarily be domain- and learnitigppchdependent. While
choosing a range of thresholds to compare over may produce morsesfave measures (cf.,
Taylor et al., 2007b), this leads to having to generating a time vs. threshodd @ther than pro-
ducing a single real valued number that evaluates a transfer algoritHioacgf

A further level of analysis that could be combined with any of the above rdstivould be to
calculate a ratio comparing the performance of a TL algorithm with that of a huezener. For
instance, a set of human subjects could learn a given target task withtlodithaving first trained
on a source task. By averaging over their performances, diffetanaih transfer metrics could be
calculated and compared to that of a TL algorithm. However, there are mays t& manipulate
such a meta-metric. For instance, if a target task is chosen that humansativelyeproficient
at, transfer will provide them very little benefit. If that same target task iscdlifffor a machine
learning algorithm, it will be relatively easy to show that the TL algorithm is qufecéve relative
to human transfer, even if the agent’s absolute performance is extrenuly po

A major drawback of all the metrics discussed is that none are appromiatgdr-domain com-
parisons. The vast majority of papers in this survey compare learning ndthviahout transfer—
their authors often do not attempt to directly compare different transferadsttDeveloping fair
metrics that apply across multiple problem domains would facilitate better compsinémethods.
Such inter-domain metrics may be infeasible in practice, in which case st&idgroh a set of test
domains would assist in comparing different TL methods (as discusstifun Section 9). In
the absence of either a set of inter-domain metrics or a standard bencsuitarkf domains, we
limit our comparisons of different TL methods in this survey to their applicabdiggumptions, and
algorithmic differences. When discussing different methods, we may opitireeanethod’s relative

1639

TAYLOR AND STONE

performance, but we remind the reader that such commentary is largelgt basintuition rather
than empirical data.

2.2 Dimensions of Comparison

In addition to differing on evaluation metrics, we categorize TL algorithms afimegdimensions,
which we use as the main organizing framework for our survey of the literatu

| Task difference assumptiongvhat assumptions does the TL method make about how the

source and target are allowed to differ? Examples of things that can liffereen the source
and target tasks include different system dynamics (i.e., the target tasknbe harder to
solve is some incremental way), or different sets of possible actiongra states. Such
assumptions define the types of source and target tasks that the methicahséar between.
Allowing transfer to occur between less similar source and target tasis giere flexibility

to a human designer in the human-guided scenario. In the fully autonomensriss; more
flexible methods are more likely to be able to successfully apply past knogledgovel
target tasks.

Il Source task selectiorin the simplest case, the agent assumes that a human has performed
source task selection (the human-guided scenario), and transfer®fr® or more selected
tasks. More complex methods allow the agent to select a source task drssetrce tasks.
Such a selection mechanism may additionally be designed to guard agzgasie transfer
where transfer hurts the learner’s performance. The more robusetaetion mechanism,
the more likely it is that transfer will be able to provide a benefit. While no defsnainswer
to this problem exists, successful techniques will likely have to accourggecific target
task characteristics. For instance, Carroll and Seppi (2005) motivateettd for general task
similarity metrics to enable robust transfer, propose three different medndsthen proceed
to demonstrate that none is always “best,” just as there is never a “bdsttive bias in a
learning algorithm.

[l Task MappingsMany methods require a mapping to transfer effectively: in addition to know
ing that a source task and target task are related, they need toHowthey are related.
Inter-task mappinggdiscussed in detail later in Section 3.4) are a way to define how two
tasks are related. If a human is in the loop, the method may assume that suctapgsikgs
are provided; if the agent is expected to transfer autonomously, suchimgaghave to be
learned. Different methods use a variety of techniques to enable tranafie on-line (while
learning the target task) and offline (after learning the source taslelforteblearning the tar-
get task). Such learning methods attempt to minimize the number of samples aeedad
the computational complexity of the learning method, while still learning a mappimpioe
effective transfer.

IV Transferred KnowledgeWhat type of information is transferred between the source and
target tasks? This information can range from very low-level informatlwouga specific
task (i.e., the expected outcome when performing an action in a particular lodatigeneral
heuristics that attempt to guide learning. Different types of knowledge raagfer better or
worse depending on task similarity. For instance, low-level information magfiea across
closely related tasks, while high-level concepts may transfer acrossgbééss similar tasks.
The mechanism that transfers knowledge from one task to another i$yalelsgted to what

1640

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

is being transferred, how the task mappings are defined (Ill), antdaglsamptions about the
two tasks are made (I).

V Allowed Learners Does the TL method place restrictions on what RL algorithm is used,
such as applying only to temporal difference methods? Different leaalgayithms have
different biases. Ideally an experimenter or agent would select thdgRkitam to use based
on characteristics of the task, not on the TL algorithm. Some TL methods eettpait the
source and target tasks be learned with the same method, other allow & ohetbads to be
used in both tasks, but the most flexible methods decouple the agents’ ¢ealgamithms in
the two tasks.

An alternate TL framework may be found in the related work section of LaZa008), a
recent PhD thesis on TL in RL tasks. Lazaric compares TL methods in terthe tfpe of benefit
(jumpstart, total reward, and asymptotic performance), the allowed diffesebetween source and
target (different goal states, different transition functions but theesgward function, and different
state and action spaces) and the type of transferred knowledgeiéeqeeor structural knowledge).
Our article is more detailed both in the number of approaches considereatkptieof description
about each approach, and also uses a different organizationetuséru In particular, we specify
which of the methods improve which of five TL metrics, we note which of the metlamdount
for source task training time rather than treating it as a sunk cost, and veeedifiate methods
according to five dimensions above.

3. Transfer for Reinforcement L earning

In this section we first give a brief overview of notation. We then summarzengthods discussed
in this survey using the five dimensions previously discussed, as welliassgating the possible at-
tributes for these dimensions. Lastly, learning paradigms with goals similar sf¢raare discussed
in Section 3.5.

3.1 Reinforcement L earning Background

RL problems are typically framed in termsitarkov decision process€sIDPs) (Puterman, 1994).
For the purposes of this articlelDP andtaskare used interchangeably. In an MDP, there is some set
of possible perceptions of the currestateof the world,s € S, and a learning agent has one or more
initial starting statessnitias - Thereward function R: S— R, maps each state of the environment
to a single number which is the instantaneous reward achieved for redbkistate. If the task is
episodic the agent begins at a start state and executes actions in the enviromileibtreaches

a terminal state (one or more of the statesiiR,, which may be referred to asgoal statg, at
which point the agent is returned to a start state. An agent in an episoklitypésally attempts to
maximize the average reward per episode. In non-episodic tasks, thieadigenpts to maximize
the total reward, which may be discounted. By using a discount fagtdhe agent can weigh
immediate rewards more heavily than future rewards, allowing it to maximize @nfiaite sum of
rewards.

1641

TAYLOR AND STONE

An agent knows its current state in the environmegtS.? TL methods are particularly relevant
in MDPs that have a large or continuous state, as these are the problerhsaniglow to learn
tabula rasaand for which transfer may provide substantial benefits. Such tasks ltypfi@etor
the state usingtate variablegor feature$, so thats= (x1,X2,...,X,) (see Figure 4). The agent’s
observed state may be different from the true state if there is percepigeal Mhe sefA describes
the actionsavailable to the agent, although not every action may be possible in every state
transition functionT : Sx A— S, takes a state and an action and returns the state of the environment
after the action is performed. Transitions may be non-deterministic, makingattition function
a probability distribution function. A learner senses the current séatamd typically knowsA and
what state variables compriSehowever, it is generally not giveRor T.

A policy, 1: S— A, fully defines how a learner interacts with the environment by mapping
perceived environmental states to actions. The success of an ageterisicied by how well it
maximizes the total reward it receives in the long run while acting under solicg po An optimal
policy, 1", is a policy which does maximize the expectation of this value. Any reasonaitérig
algorithm attempts to modifyt over time so that the agent’s performance approaches thdtiof
the limit.

There are many possible approaches to learning such a policy (depscéellack box in Fig-
ure 4), including:

e Temporal differenc€TD) methods, such a®-learning (Sutton, 1988; Watkins, 1989) and
Sarsa(Rummery and Niranjan, 1994; Singh and Sutton, 1996), learn by backirmxperi-
enced rewards through time. An estimagation-value functionQ : Sx A+— R is learned,
whereQ(s,a) is the expected return found when executing actiémom states, and greedily
following the current policy thereafter. The current best policy is gateel fromQ by sim-
ply selecting the action that has the highest value for the current Exgdéoration when the
agent chooses an action to learn more about the environment, must begilaldthexploita-
tion, when the agent selects what it believes to be the best action. One simplactpphat
balances the two is-greedy action selection: the agent selects an random action with chance
€, and the current best action is selected with probabilityel(whereg is in [0,1]).

e Policy searchmethods, such as policy iteration (dynamic programming), policy gradient
(Williams, 1992; Baxter and Bartlett, 2001), and direct policy search (ibJordan, 2000),
are in some sense simpler than TD methods because they directly modify a paidynoe
to increase the expected long-term reward by using search or other @timitechniques.

e Dynamic programmingBellman, 1957) approaches assume that a full model of the environ-
ment is known (i.e.S A, T, andR are provided to the agent and are correct). No interaction
with the environment is necessary, but the agent must iteratively computexapations for
the true value or action-value function, improving them over time.

e Model-basedor Model-learningmethods (Moore and Atkeson, 1993; Kearns and Singh,
1998) attempt to estimate the true model of the environment {i.endR) by interacting

2. If the agent only receivesbservationand does not know the true state, the agent may treat approximate iteateie s
as the observation (cf., Stone et al., 2005), or it may learn using thi@lRaObservable Markov Decision Process
(POMDP) (cf., Kaelbling et al., 1998) problem formulation, which is &y the scope of this survey.

3. Although possible in principle, we are aware of no TL methods currewitiyess MDPs with continuous actions.

1642

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Environment

Figure 4: An agent interacts with an environment by sequentially selectiagtanm in an observed
state, with the objective of maximizing an environmental reward signal.

with the environment over timelnstance based method®rmoneit and Sen, 2002) save
observed interactions with the environment and leverage the instanc#ydicepredict the
model. Bayesian RI{Dearden et al., 1999) approaches use a mathematical model to explic-
itly represent uncertainty in the components of the model, updating expestatientime.

The learned model is then typically used to help the agent decide how torffi@&plore or

plan trajectories so that it can accrue higher rewards. While very ssfttén small tasks, few
such methods handle continuous state spaces (cf., Jong and Storje apdQfey generally
have trouble scaling to tasks with many state variables due to the “curse ofgiimality.”

e Relational reinforcement learninRRL) (Dzeroski et al., 2001) uses a different learning
algorithm as well as a different state representation. RRL may be apimfirthe state
of an MDP can be described in a relational or first-order languageh Swethods work by
reasoning over individual objects (e.g., a single block in a Blocksworld sl thus may be
robust to changes in numbers of objects in a task.

e Batchlearning methods (e.glLeast Squares Policy IteratiofLagoudakis and Parr, 2003)
and Fitted-Q Iteration (Ernst et al., 2005) are offline and do not attempaio ks the agent
interacts with the environment. Batch methods are designed to be more sangpdmigflis
they can store a number of interactions with the environment and use the déifdentimes
for learning. Additionally, such methods allow a clear separation of theilgamechanism
from the exploration mechanism (which much decide whether to attempt to gatimerdata
about the environment or exploit the current best policy).

In tasks with small, discrete state spad®@sandTt can be fully represented in a table. As the
state space grows, using a table becomes impractical, or impossible if the atadsspontinuous.
In such cases, RL learning methods figection approximatorssuch as artificial neural networks,
which rely on concise, parameterized functions and use supervisethiganethods to set these
parameters. Function approximation is used in large or continuous tasksetiogmneralize experi-
ence. Parameters and biases in the approximator are used to abstretethpace so that observed

1643

TAYLOR AND STONE

data can influence a region of state space, rather than just a single sthtgrasubstantially in-
crease the speed of learning.

Some work in RL (Dean and Givan, 1997; Li et al., 2006; MahadevahMaggioni, 2007)
has experimented with more systematic approaches to state abstractionsl{atssteuctural ab-
straction). Temporal abstractions have also been successfully useddasea the speed of learning.
These macro-actions oaptions(Sutton et al., 1999) may allow the agent to leverage the sequence
of actions to learn its task with less data. Lastly, hierarchical methods, sWdAAQ (Dietterich,
2000), allow learners exploit a task that is decomposed into differentasids. The decomposition
typically enables an agent to learn each subtask relatively quickly anatimeinine them, resulting
in an overall learning speed improvement (compared to methods that de@@tde such a sub-task
hierarchy).

3.2 Transfer Approaches

Having provided a brief overview of the RL notation used in this surveypewe enumerate possible
approaches for transfer between RL tasks. This section lists attributestbbds used in the TL
literature for each of the five dimensions discussed in Section 2.2, and sizesntre surveyed
works in Table 1. The first two groups of methods apply to tasks whichth@same state variables
and actions. (Section 4 discusses the TL methods in the first block, atidr6galiscusses the
multi-task methods in the second block.) Groups three and four consider asethat transfer
between tasks with different state variables and actions. (Section 6 skscogethods that use a
representation that does not change when the underlying MDP chanmlgjéss Section 7 presents
methods that must explicitly account for such changes.) The last groupetifods (discussed
in Section 8) learns a mapping between tasks like those used by methods inrthegimup of
methods. Table 2 concisely enumerates the possible values for the attrésues| as providing a
key to Table 1.

In this section themountain cartask (Moore, 1991; Singh and Sutton, 1996), a standard RL
benchmark, will serve as a running example. In mountain car, an urdesrpd car moves along
a curve and attempts to reach a goal state at the top of the right “mountaildntisg between
three actions on every timesteffForward , Neutral , Backward }, whereForward accelerates the
car in the positive x direction anBackward accelerates the car in the negative x direction. The
agent’s state is described by two state variables: the horizontal posifiand velocity,x. The
agent receives a reward ofl on each time step. If the agent reaches the goal state the episode ends
and the agent is reset to the start state (often the bottom of the hill, with Zextyg

3.2.1 ALLOWED TASK DIFFERENCES

TL methods can transfer between MDPs that have different transitiartiéuns (denoted by t in
Table 1), state spaces (s), start statgs ¢oal states (9, state variables (v), reward functions (r),
and/or action sets (a). For two of the methods, the agent’s representatfanworld (theagent-
space describing physical sensors and actuators) remains the same, whiladlstare variables

and actions (theroblem-spacedescribing the task’s state variables and macro-actions) can change
(pin Table 1, discussed further in Section 6). There is also a brancbréfthat focuses on transfer
between tasks which are composed of some number of objects that mag diewgen the source

and the target task, such as when learning with RRL (# in Table 1). Wiematizing the allowed

task differences, we will concentrate on the most salient features. $tanite, when the source task

1644

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

and target task are allowed to have different state variables and adtierstate space of the two
tasks is different because the states are described differently, atrdribiéion function and reward
function must also change, but we only indicate “a” and “v."

These differences in the example mountain car task could be exhibited as:

t: using a more powerful car motor or changing the surface friction ofithe h

s: changing the range of the state variables

s: changing where the car starts each episode

s¢: changing the goal state of the car

v: describing the agent’s state only by its velocity

r: rather than a reward of1 on every step, the reward could be a function of the distance
from the goal state

a: disabling theNeutral action

p: the agent could describe the state by using extra state variables ssheivalocity on the
previous timestep, but the agent only directly measures its current pogitiovetocity

#: the agent may need to control two cars simultaneously on the hill

3.2.2 DURCETASK SELECTION

The simplest method for selecting a source task for a given target taskssuma that only a single
source task has been learned and that a human has picked it, assurihg ggent should use it for
transfer (h in Table 1). Some TL algorithms allow the agent to learn multiple sdasks and then
use them all for transfer (all). More sophisticated algorithms build a librégeen tasks and use
only the most relevant for transfer (lib). Some methods are able to automatiwadlify a single
source task so that the knowledge it gains from the modified task will likely tre nmeful in the
target task (mod). However, none of the existing TL algorithms for RL cemantee that the source
tasks will be useful; a current open question is how to robustly avoid attegptimansfer from an
irrelevant task.

3.2.3 TRANSFERREDKNOWLEDGE

The type of knowledge transferred can be primarily characterized bydsificity. Low-level
knowledge, such aés, a, r, §) instances (I in Table 1), an action-value function (Q), a policy
(1, a full task model (model), or prior distributions (pri), could all be diretdyeraged by the TL
algorithm to initialize a learner in the target task. Higher level knowledgd) asavhat action to
use in some situations (A: a subset of the full set of actions), partial pplcieptions 1i,), rules

or advice (rule), important features for learning (fea), proto-valunetions (pvf: a type of learned
feature), shaping rewards (R), or subtask definitions (sub) mayenditéctly used by the algorithm
to fully define an initial policy, but such information may help guide the agennduearning in
the target task.

1645

TAYLOR AND STONE

3.2.4 TASK MAPPINGS

The majority of TL algorithms in this survey assume that no explicit task mappimgsexessary
because the source and target task have the same state variables arsd Actoldition to having
the same labels, the state variables and actions need to have the same semairigsnieaoth
tasks. For instance, consider again the mountain car domain. Supposeetisaturce task had
the actionsA = {Forward, Neutral, Backward }+. If the target task had the actioAs= {Right,
Neutral, Left ~ }, a TL method would need some kind of mapping because the actions hadmtiffer
labels. Furthermore, suppose that the target task had the same actiens@stle A = {Forward,
Neutral, Backward }) but the car was facing the opposite direction, so Heavard accelerated
the car in the negative x direction aBdckward accelerated the car in the positive x direction. If
the source and target task actions have different semantic meaningsythafso need to be some
kind of inter-task mapping to enable transfer.

Methods that do not use a task mapping are marked as “N/A’ in Table 1. TLoaethhich aim
to transfer between tasks with different state variables or actions typieflpmn a task mapping to
define how the tasks are related (as defined in Section 3.4). Methodséaappings and assume
that they are human-supplied mappings are marked as “sup” in Table v &lderithms leverage
experience gained in the source task and target task (exp) or a higtdéscription of the MDPs
in order to learn task mappings.

Methods using description-level knowledge differ primarily in what asgionp they make
about what will be provided. One method assumes a qualitative unddrgjamidthe transition
function (T), which would correspond to knowledge like “taking the acti@utdal tends to have a
positive influence on the velocity in the positive x direction.” Two methodsrassknowledge of
one mapping (M: the “action mapping”) to learn a second mapping (the “state variable mapping”
in Section 3.4). Three methods assume that the state variables are “droagettier to describe
objects (sy). An example of the state variable grouping can be demonstrated in a mountain ca
task with multiple cars: if the agent knew which position state variables refféoréhe same car
as certain velocity state variables, it would know something about the gpopistate variables.
These different assumptions are discussed in detail in Section 8.

3.2.5 ALLOWED LEARNERS

The type of knowledge transferred directly affects the type of learradrishapplicable (as dis-
cussed in Section 3.1). For instance, a TL method that transfers an sal@function would
likely require that the target task agent use a temporal difference metteogblmit the transferred
knowledge. The majority of methods in the literature use a standard form obtahtifference
learning (TD in Table 1), such as Sarsa. Other methods include Bayearambg (B), hierarchical
approaches (H), model-based learning (MB), direct policy sear8h éPd relational reinforcement
learning (RRL). Some TL methods focus on batch learning (Batch), rétheron-line learning.
Two methods usease based reasonif{@BR) (Aamodt and Plaza, 1994) to help match previously
learned instances with new instances, and one uses linear programmjnip afculate a value
function from a given model (as part of a dynamic programming routine).

3.3 Multi-Task Learning

Closely related to TL algorithms, and discussed in Section 5maté-task learningMTL) algo-
rithms. The primary distinction between MTL and TL is that multi-task learning metlasgdume

1646

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Allowed | Source Task |Transferred Allowed TL
Citation Task Task | Mappings |Knowledge Learners| Metrics
DifferencesSelection
Same state variables and actions: Section 4
Selfridge et al. (1985) t h N/A Q TD t’
Asada et al. (1994) S h N/A Q TD tt
Singh (1992) r all N/A Q TD ap, tr
Atkeson and Santamaria (1997) r all N/A model MB ap, j, tr
Asadi and Huber (2007) r h N/A T H tt
Andre and Russell (2002) rs h N/A T H tr
Ravindran and Barto (2003b) s, t h N/A T TD tr
Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt
Sherstov and Stone (2005) St, t mod N/A A TD tr
Madden and Howley (2004) s, t all N/A rule TD tt, tr
Lazaric (2008) s, t lib N/A | Batch j, tr
Multi-Task learning: Section 5
Mehta et al. (2008) r lib N/A Tp H tr
Perkins and Precup (1999) t all N/A T TD tt
Foster and Dayan (2004) St all N/A sub TD, H j, tr
Fernandez and Veloso (2006) s, St lib N/A T TD tr
Tanaka and Yamamura (2003 t all N/A Q TD j, tr
Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, S all N/A pri B j, tr
Walsh et al. (2006) rs all N/A fea any tt
Lazaric (2008) r all N/A fea Batch ap, tr
Different state variables and actions — no explicit task mappings: Section 6
Konidaris and Barto (2006) p h N/A R TD j, tr
Konidaris and Barto (2007) p h N/A Tp TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr
Guestrin et al. (2003) # h N/A Q LP i
Croonenborghs et al. (2007) # h N/A Tp RRL ap, j, tr
Ramon et al. (2007) # h N/A Q RRL |ap, j, tff, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr
Different state variables and actions — inter-task mappings used: S&ction
Taylor et al. (2007a) a,v h sup Q TD i’
Taylor et al. (2007b) a,v h sup m PS i’
Taylor et al. (2008b) a, v h sup | MB ap, tr
E:;g 2: Z:: gggg; a,rnv h sup rule TD j, tr
Torrey et al. (2007) a,rnv h sup T TD j, tr
Taylor and Stone (2007b) a,nv h sup rule any/TD | j, ttf tr
Learning inter-task mappings: Section 8
Kuhlmann and Stone (2007) a,v h T Q TD j, tr
Liu and Stone (2006) a, v h T N/A all N/A
Soni and Singh (2006) a,Vv h Ma, svg, exp N/A all ap, j, tr
Talvitie and Singh (2007) a,v h Ma, svg, exp N/A all j
Taylor et al. (2007b) a,v h SV, exp N/A all i’
Taylor et al. (2008c) a,v h exp N/A all j, tr

Table 1: This table lists all the TL methods discussed in this survey and clagsifié in terms of
the five transfer dimensions (the key for abbreviations is in Table 2). Titries, marked
with a «, are repeated due to multiple contributions. Metrics that account for sdoask
learning time, rather than ignoring it, are marked with a .

1647

TAYLOR AND STONE

Allowed Task Differences Transferred Knowledge
a action set may differ A an action set
p problem-space may differ fea taskfeatures
(agent-space must be identical) I experience instances
r reward function may differ model task model
S the start state may change T policies
si goal state may move T partial policies (e.g., options)
t transition function may differ pri distribution priors
v state variables may differ pvf proto-value function
number of objects in state may differ Q action-value function
R shaping reward
rule rules or advice
sub subtask definitions
Source Task Selection
all all previously seen tasks are used Allowed Learners
h one source task is used (human selected) B Bayesian learner
lib tasks are organized into a library Batch batch learner
and one or more may be used CBR case based reasoning
mod a human provides a source task that H hierarchical value-function learner
the agent automatically modifies LP linear programming
MB model based learner
Task Mappings PS policy search learner
exp agentlearns the mappings from experience| RRL relational reinforcement learning
Ma the method must be provided with an TD temporal difference learner
action mapping (learns state variable mapping)
N/A no mapping is used TL Metrics
sup ahuman supplies the task mappings ap asymptotic performance increased
Svy method is provided groupings of state variables j jumpstart demonstrated
T higher-level knowledge is provided tr total reward increased
about transfer functions to learn mapping tt task learning time reduced

Table 2: This key provides a reference to the abbreviations in Table 1.

all problems experienced by the agent are drawn from the same distributida,TL methods may

allow for arbitrary source and target tasks. For example, a MTL taskidmuto learn a series of
mountain car tasks, each of which had a transition function that was dramreffixed distribution

of functions that specified a range of surface frictions. Becausdsoafisumption, MTL methods
generally do not need task mappings (dimension Il in Section 2.2). MTLrigthgas may be used
to transfer knowledge between learners, similar to TL algorithms, or thegttampt to learn how
to act on the entire class of problems.

When discussing supervised multitask learning (cf., Caruana, 1993),1&a from multiple
tasks can be considered simultaneously. In an RL setting, rather thantwmygeyn multiple prob-
lems simultaneously (i.e., acting in multiple MDPs), agents tackle a sequence afwhgi are
more closely related than in TL settings. It is possible that RL agents could healtiple tasks
simultaneously in a multiagent setting (Stone and Veloso, 2000), but this hgetrieen explored
in the literature. For the purposes of this survey, we will assume, as in o#msfer settings, that
tasks are learned in a sequential order.

1648

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Sutton et al. (2007) motivate this approach to transfer by suggesting tlagla Erge task
may be most appropriately tackled as a sequential series of subtasksldather can track which
subtask it is currently in, it may be able to transfer knowledge between fieeatif subtasks, which
are all presumably related because they are part of the same overa8taska setting may provide
a well-grounded way of selecting a distribution of tasks to train over, eithteeinontext of transfer
or for multi-task learning. Note also that the additional assumptions in an Mftingenay be
leveraged to allow a more rigorous theoretical analysis than in TL (cf., &abnd Szepeswi,
1999).

3.4 Inter-Task Mappings

Transfer methods that assume the source and target tasks use the sawmiatales and actions, as
is the case in MTL, typically do not need an explicit mapping between task.der ¢o enable TL
methods to transfer between tasks that do have such differencesetiieragst know how the tasks
are related. This section provides a brief overvievuntdr-task mappingéTaylor et al., 2007a), one
formulation of task mappings. Task mappings like these are used by tramsfieods discussed in
Section 7.

To transfer effectively, when an agent is presented with a target taslh#s a set of actions
(A), it must know how those actions are related to the action set in the soukd@tad~or the sake
of exposition we focus on actions, but an analogous argument holdsafter variables.) If the TL
method knows that the two action sets are identical, no action mapping is mycddsaever, if
this is not the case, the agent needs to be told, or learn, how the two tasketaded. For instance,
if the agent learns to act in a source task with the actionsard andBackward , but the target task
uses the actiorRight andLeft , the correspondence between these action sets may not be obvious.
Even if the action labels were the same, if the actions had different semantitnggahe default
correspondence may be incorrect. Furthermore, if the cardinalifyasfd A’ are not equal, there
are actions without exact equivalences.

One option is to define aaction mappingXa) such that actions in the two tasks are mapped so
that their effects are “similar,” where similarity depends on the transferewmdrd functions in the
two MDPs?# Figure 5 depicts an action mapping as well asade-variable mappin@Xx) between
two tasks. A second option is to definpartial mapping(Taylor et al., 2007b), such that any novel
actions in the target task are ignored. Consider adding an action in a mocataamget taskull
hand brake , which did not have an analog in the source task. The partial mapping ouayd
Forward to Forward , andBackward to Backward , but not mappull hand brake to any source
task action. Because inter-task mappings are not functions, they arallypissumed to be easily
invertible (i.e., mapping source task actions into target task actions, ratimetatigget task actions
to source task actions).

Itis possible that mappings between states, rather than between statkegagabld be used for
transfer, although no work has currently explored this formulatiémother possible extension is
to link the mappings rather than making them independent. For instance, themefping could
depend on the state that the agent is in, or the state variable mapping coefdidepthe action

4. An inter-task mapping often maps multiple entities in the target task to singiiiegin the source task because the
target task is more complex than the source, but the mappings may fte-oraey, one-to-one, or many-to-many.

5. However, there are many possibilities for using this approach fosfeatearning, such as through bisimulation (see
Section 9).

1649

TAYLOR AND STONE

Source Task Target Ta
T Xa [—

N
A
x]
N

Figure 5: x, andy, are independent mappings that describe similarities between two MDP% Thes
mappings describe how actions in the target task are similar to actions in tloe sask
and how state variables in the target task are similar to state variables in tbe sk,
respectively.

selected. Though these extensions may be necessary based on theslefrzarticular MDPs,
current methods have functioned well in a variety of tasks without sulchrerements.

For a given pair of tasks, there could be many ways to formulate inter-taggings. Much of
the current TL work assumes that a human has provided a (correctimgapgthe learner. Work
that attempts to learn a mapping that can be effectively used for transfscisded in Section 8.

3.5 Related Paradigms

In this survey, we consider transfer learning algorithms that use one @ soarce tasks to better
learn in a different, but related, target task. There is a wide range of netlesigned to improve
the learning speed of RL methods. This section discusses four alternsgeslaf techniques for
speeding up learning and differentiates them from transfer. While somagdrithms may rea-
sonably fit into one or more of the following categories, we believe that erating the types of
methodsot surveyed in this article will help clarify our subject of interest.

3.5.1 LUIFELONG LEARNING

Thrun (1996) suggested the notion of lifelong learning where an agenerpgerience a sequence
of tasks. Others (cf., Sutton et al., 2007) later extended this idea to the tRhgseuggesting
than an agent interacting with the world for an extended period of time willssac#y have to
perform in a sequence of tasks. Alternately, the agent may discoverea sé¢ spatially, rather
than temporally, separated sub-tasks. Transfer would be a key conpafrany such system, but
the lifelong learning framework is more demanding than that of transfeit, Fassfer algorithms
may reasonably focus on transfer between a single pair of related taghkey; than attempting to
account for any future task that an agent could encounter. Setandfer algorithms are typically

1650

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

told when a new task has begun, whereas in lifelong learning, agents nmagdmnably expected
to automatically identify new sub-tasks within the global MDP (i.e., the real world)

3.5.2 IMITATION LEARNING

The primary motivations for imitation methods are to allow agents to learn by watemother
agent with similar abilities (Price and Boutilier, 2003; Syed and Schapier,)20@& human (Abbeel
and Ng, 2005; Kolter et al., 2008) perform a task. Such algorithms atteripato a policy by
observing an outside actor, potentially improving upon the inferred poliayoihtrast, our definition
of transfer learning focuses on agents successfully reusing interoaledge on novel problems.

3.5.3 HUMAN ADVICE

There is a growing body of work integrating human advice into RL learri@sinstance, a human
may provide action suggestions to the agent (cf., Maclin and Shavlik, 1986lin et al., 2005)
or guide the agent through on-line feedback (cf., Knox and Stone8)200everaging humans’
background and task-specific knowledge can significantly improvetgidearning ability, but it
relies on a human being tightly integrated into the learning loop, providing &s#dib an on-line
manner. This survey instead concentrates on transfer methods in whiahea s not continuously
available and agents must learn autonomously.

3.5.4 SHAPING

Reward shapingColombetti and Dorigo, 1993; Mataric, 1994) in an RL context typicallgreto
allowing agent to train on an artificial reward signal rather tRarfFor instance, in the mountain
car task, the agent could be given a higher reward as it gets closer ¢p#hatate, rather then
receiving—1 at every state except the goal. However, if the human can compute sealal,
s/he would probably already know the goal location, knowledge that thetagpically does not
have. Additionally, the constructed reward function must be a potentiatibm If it is not, the
optimal policy for the new MDP could be different from that of the origindg(et al., 1999). A
second definition of shaping follows Skinner’s research (Skinné&31®here the reward function
is modified over time in order to direct the behavior of the learner. This metmaell as the
approach of using a static artificial reward, are ways of injecting humawledge into the task
definition to improve learning efficacy.

Erez and Smart (2008) have argued for a third definition of shapingyesiugervised, iterative,
process to assist learning. This includes modifying the dynamics of thevwaskrae, modifying the
internal learning parameters over time, increasing the actions available tgethe and extending
the agent’s policy time horizon (e.g., as done in value iteration). All of theseaudsttely on a
human to intelligently assist the agent in its learning task and may leverageetriikefmethods
to successfully reuse knowledge between slightly different tasks. \tisenssing transfer, we will
emphasize how knowledge is successfully reused rather than how a tmayamodify tasks to
achieve the desired agent behavior improve agent learning perfoemanc

3.5.5 REPRESENTATIONTRANSFER

Transfer learning problems are typically framed as leveraging knowledgeed on a source task
to improve learning on a related, but different, target task. Taylor anteS@007a) examine the

1651

TAYLOR AND STONE

Allowed | Source Task |Transferreillowed TL
Citation Task Task | Mappings|Knowledgel earnersMetrics
DifferencesSelection
Same state variables and actions: Section 4
Selfridge et al. (1985) t h N/A Q TD tt’
Asada et al. (1994) S h N/A Q TD tt
Singh (1992) r all N/A Q TD ap, tr
Atkeson and Santamaria (1997) r all N/A model MB | ap,j, tr
Asadi and Huber (2007) r h N/A T H tt
Andre and Russell (2002) rs h N/A T H tr
Ravindran and Barto (2003b) s, t h N/A T TD tr
Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt
Sherstov and Stone (2005) St, t mod N/A A TD tr
Madden and Howley (2004) s, t all N/A rule TD tt, tr
Lazaric (2008) s, t lib N/A I Batch | j,tr

Table 3: This table reproduces the first group of methods from Table 1.

complimentary task of transferring knowledge between agents with diff@resrnal representa-
tions (i.e., the function approximator or learning algorithm) of g@metask. Allowing for such
shifts in representation gives additional flexibility to an agent designest epgerience may be
transferred rather than discarded if a new representation is desiredord important benefit is
that changing representations partway through learning can allow agesthieve better perfor-
mance in less time. Selecting a representation is often key for solving a prétflethemutilated
checkerboard problerivicCarthy 1964 where humans’ internal representations of a problasi dr
tically changes the problem’s solvability) and different representationsmadke transfer more or
less difficult. However, representation selection is a difficult problem irirReneral and discus-
sions of representation selection (or its applications to transfer effiaagyeyond the scope of this
article.

4. Transfer Methodsfor Fixed State Variables and Actions

To begin our survey of TL methods, we examine the first group of methodshile T, reproduced
in Table 3. These technigues may be used for transfer when the sodrtarget tasks use the same
state variables and when agents in both tasks have the same set of aeoRig(se 6).

In one of the earliest TL works for RL, Selfridge et al. (1985) demautstt that it was faster
to learn to balance a pole on a cart by changing the task’s transition fun€tiaver time. The
learner was first trained on a long and light pole. Once it successfullgddao balance the pole
the task was made harder: the pole was shortened and made heaviertal tim&spent training
on a sequence of tasks and reusing the learned function approximatéaster than training on the
hardest task directf.

Similarly, the idea ofearning from easy missior{#sada et al., 1994) also relies on a human
constructing a set of tasks for the learner. In this work, the task (fample, a maze) is made
incrementally harder not by changing the dynamics of the task, but by mdwvinggent’s initial

6. As discussed in Section 3.5.3, we classify this work as transferrridilie as a “human advice” method; while the
human may assist the agent in task selection, s/he does not provideodiigte feedback while the agent learns.

1652

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Environment

Figure 6: Methods in Section 4 are able to transfer between tasks thatliff@vent state spaces,
different transition functions, and different reward functions, ulydf the source and
target tasks have the same actions and state variables. Dashed circlatitttecMDP
components which may differ between the source task and target task.

state Snitial , further and further from the goal state. The agent incrementally lé@mgo navigate

to the exit faster than if it had tried to learn how to navigate the full maze dire€tijs method

relies on having a known goal state from which a human can construcies sé source tasks of
increasing difficulty.

Selfridge et al. (1985) and Asada et al. (1994) provide useful mstfaydmproving learning,
which follow from Skinner’s animal training work. While they require a hurt@be in the loop, and
to understand the task well enough to provide the appropriate guidaneeléather, these methods
are relatively easy ways to leverage human knowledge. Additionally, thgybmaombined with
many of the transfer methods that follow.

Rather than change a task over time, one could consider breaking dowsh etiaa series
of smaller tasks. This approach can be considered a type of transfeatia #ingle large target
task can be treated as a series of simpler source tasks. Singh (1982 tesshnique he labels
compositional learningo discover how to separate temporally sequential subtasks in a monolithic
task. Each subtask has distinct beginning and termination conditions, ahdselatask will be
significantly easier to learn in isolation than in the context of the full task. Omlydtvard function,
R, is allowed to change between the different subtasks and none of threMiifé components
may vary, but the total reward can be increased. If subtasks in a prabkerecognizable by state
features, such subtasks may be automatically identified via vision algorithmm(Bond, 2002).
Again, breaking a task into smaller subtasks can improve both the total rewdrie asymptotic
performance. This particular method is only directly applicable to tasks in vaatares clearly
define subtasks due to limitations in the vision algorithm used. For instance,Dnnadgation
task each room may be a subtask and the steep value function gradiee¢bétpassable walls is
easily identifiable. However, if the value function gradient is not distintwben different subtasks,
or the subtask regions of state space are not polygonal, the algorithm wlyi &l to automatically
identify subtasks.

In Atkeson and Santamaria (1997), transfer between tasks in which anheward function
can differ are again considered. Their method successfully trarsferslly weighted regression

1653

TAYLOR AND STONE

model of the transition function, which is learned in a source task, by dirapplying it to a target

task. Because their model enables planning over the transition functiatoasadot account for the
reward function, they show significant improvement to the jumpstart andrevtard, as well as the
asymptotic performance.

The next three methods transfer partial policies, or options, betweenadifftasks. First, Asadi
and Huber (2007) have the agent identify states that “locally form a signifiy stronger ‘attractor’
for state space trajectories” as subgoals in the source task (i.e., a gdoetveeen rooms that is
visited relatively often compared to other parts of the state space). Thetage learns options to
reach these subgoals via a learned action-value function, termdddtston-leveimodel. A second
action-value function, thevaluation-levemodel, includes all actions and the full state space. The
agent selects actions by only considering the decision-level model ésitdiscrepancies between
the two models to automatically increase the complexity of the decision-level msdeeaed.
The model is represented asHierarchical Bounded Parameter SMDIonstructed so that the
performance of an optimal policy in the simplified model will be within some fixedndoof the
performance of the optimal policy on the initial model. Experiments show thasferaing both
the learned options and the decision-level representation allow the tasgetgant to learn faster
on a task with a different reward function. In the roughly 20,000 tarcgit $tates, only 81 distinct
states are needed in the decision-level model, as most states do not neetistinguished when
selecting from learned options.

Second, Andre and Russell (2002) transfer learned subroutingedietasks, which are similar
to options. The authors assume that the source and target tasks hawchital structure, such as
in the taxi domain(Dietterich, 2000). On-line analysis can uncover similarities between tws task
if there are only small differences in the state space (e.g., the state vaudablex change) and
then directly copy over the subroutine, which functions as a partial pdlieyeby increasing the
total reward in the target task. This method highlights the connection betusgerabstraction and
transfer; if similarities can be found between parts of the state space in thadk® it is likely that
good local controllers or local policies can be directly transferred.

Third, Ravindran and Barto (2003b) leamativized optionsn a small, human selected source
task. When learning in the target task, the agent is provided these opiidres set of possible
transformations it could apply to them so that they were relevant in the tagletFor instance, if
the source task were a small grid navigation task, the target task could fge gial composed of
rooms with similar shape to the source task and the transformations could ti@ratad reflection
operators. The agent uses experience in the target and Bayesianepar estimation to select
which transformations to use so that the target task’s total reward is ggttebearning time in the
source task is ignored, but is assumed to be small compared to the tardetitagkg time.

Next, Ferguson and Mahadevan (2006) take a unique approachstetrariormation about the
source task’s structur@roto-value functiongPVFs) (Mahadevan and Maggioni, 2007) specify an
ortho-normal set of basis functions, without regaréRtevhich can be used to learn an action-value
function. After PVFs are learned in a small source task, they can bddreetsto another discrete
MDP that has a different goal or small changes to the state space. Teet@sk can be learned
faster and achieve higher total reward with the transferred PVFs thaoutitidditionally, the
PVF can be scaled to larger tasks. For example, the target maze coultvies¢he width and
height of the source maz®, S, andT are all scaled by the same factor. In all cases only the target
task time is counted.

1654

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

The goal of learning PVFs is potentially very useful for RL in genera @h in particular.
It makes intuitive sense that high-level information about how to best ieaandomain, such as
appropriate features to reason over, may transfer well across Task® are few examples of meta-
learners where TL algorithms learn high level knowledge to assist thd sglearning, rather than
lower-level knowledge about how to act. However, we believe that tiseaenple room for such
methods, including methods to learn other domain-specific learning parapsiehsas learning
rates, function approximator representations, an so on.

Instead of biasing the target task agent’s learning representation Ilsfetnamg a set of basis
functions, Sherstov and Stone (2005) consider how to bias an agémarisyerring an appropriate
action set. If tasks have large action sets, all actions could be consigdkezdlearning each task,
but learning would be much faster if only a subset of the actions neededstehiated. If a reduced
action set is selected such that using it could produce near-optimalibehearning would be much
faster with very little loss in final performance. The standard MDP formalismodified so that the
agent reasons abootitcomesndclassesInformally, rather than reasoning over the probability of
reaching a given state after an action, the learner reasons over thesaeffect, or outcome. States
are grouped together in classes such that the probability of a givemoeifcom a given action will
be the same for any state in a class. The authors then use their formalisnmtbthewalue lost by
using their abstraction of the MDP. If the source and target are very siithi@source task can be
learned with the full action set, the optimal action set can be found from thecl@®-values, and
learning the target with this smaller action set can speed up learning in thettesigeThe authors
also introduceandom task perturbatio(RTP) which creates seriesof source tasks from a single
source task, thereby producing an action set which will perform wellrpetatasks that are less
similar to the source task. Transfer with and without RTP is experimentally cempa learning
without transfer. While direct action transfer can perform worse thamiag without transfer, RTP
was able to handle misleading source task experience so that perforwasoaproved relative to
no transfer in all target tasks and performance using the transfattieti@approaches that of the
optimal target task action set. Performance was judged by the total ree@andhalated in the target
task. Leffler et al. (2007) extends the work of Sherstov and Stongplyiag the outcome/class
framework to learn aingletask significantly faster, and provides empirical evidence of correstnes
in both simulated and physical domains.

The idea of RTP is not only unique in this survey, but it is also potentially awseful idea for
transfer in general. While a number of TL methods are able to learn fromad seurce tasks, no
others attempt to automatically generate these source tasks. If the goalgerans perform as well
as possible in a novel target task, it makes sense that the agent wouldrinton many source
tasks, even if they are artificial. How to best generate such sourcesaghat they are most likely
to be useful for an arbitrary target task in the same domain is an importarafaspan research.

Similar to previously discussed work (Selfridge et al., 1985; Asada et394)]1Progressive
RL (Madden and Howley, 2004) is a method for transferring between agssign of tasks of in-
creasing difficulty, but is limited to discrete MDPs. After learning a sourde the agent performs
introspectiorwhere a symbolic learner extracts rules for acting based on learnetu€s\feom all
previously learned tasks. The RL algorithm and introspection use diffstate features. Thus the
two learning mechanisms learn in different state spaces, where the stateddar the symbolic
learner are higher-level and contain information otherwise hidden fremagent. When the agent
acts in a novel task, the first time it reaches a novel state it initialize the Qsvaftieat state so that
the action suggested by the learned rule is preferred. Progressiaidils agents to learn infor-

1655

TAYLOR AND STONE

mation in a set of tasks and then abstract the knowledge to a higher-lpveseatation, allowing
the agent to achieve higher total reward and reach the goal state fastherfe faster. Time spent
in the source task(s) is not counted.

Finally, Lazaric (2008) demonstrates that source tastancescan be usefully transferred be-
tween tasks. After learning one or more source tasks, some experigyathésed in the target task,
which may have a different state space or transition function. Saved ¢estdthat is, observed
(s,a,r,s) tuples) are compared to instances from the target task. Instances fosoufce tasks
that are most similar, as judged by their distance and alignment with targettaslace transferred.
A batch learning algorithm then uses both source instances and targatasta achieve a higher
reward and a jumpstarRegion transfetakes the idea one step further by looking at similarity with
the target task per-sample, rather than per task. Thus, if source w@skglifferent regions of the
state space which are more similar to the target, only those most similar regiobs transferred.
In these experiments, time spent training in the target task is not counteditoivarTL algorithm.

Region transfer is the only method surveyed which explicitly reasons ahskitsimilarity in
different partsof the state space, and then selects source task(s) to transfer froom#ing where
target tasks have regions of the state space that are similar to one or mare &sks, and other
areas which are similar to other source tasks (or are similar to no soursg t@&g}on transfer may
provide significant performance improvements. As such, this method mogidnique approach to
measuring, and exploiting, task similarity on-line. It is likely that this approaidhinviorm future
transfer methods, and is one possible way of accomplishing step # 1 in S2cti@men a target
task, select an appropriate source task from which to transfer, ifHosis.e

Taken together, these TL methods show that it is possible to efficiently éramsiny different
types of information between tasks with a variety of differences. It is watbmphasizing that
many TL methods may be combined with other speedup methods, such as seapialy, or with
other transfer methods. For instance, when transferring between nséige ttasis functions could
be learned (Ferguson and Mahadevan, 2006) in the source tasgkofaastions to transfer could
be selected after training on a set of additional generated source &wkstov and Stone, 2005),
and then parts of different source tasks could be leveraged to leamgea task (Lazaric, 2008). A
second example would be to start with a simple source task and change tinoedry modifying
the transition function (Selfridge et al., 1985) and start state (Asada @i984), while learning
options (Ravindran and Barto, 2003b), until a difficult target task isiegrBy examining how the
source and target task differ and what base learning method is usegraRtitioners may select
one or more TL method to apply to their domain of interest. However, in the eabsdrnheoretical
guarantees of transfer efficacy, any TL method has the potential torivéuhaas discussed further
in Section 9.2.

5. Multi-Task Learning Methods

This section discusses scenarios where the source tasks and tdrpaathe same state variables
and actions. However, these methods (see Table 4, reproduced dtdenT) are explicitly MTL,
and all methods in this section are designed to use multiple source tasks (see Hig Some
methods leverage all experienced source tasks when learning a mgetltégsk and others are able
to choose a subset of previously experienced tasks. Which appoaubst appropriate depends
on the assumptions about the task distribution: if tasks are expected to be singlagh that all
past experience is useful, there is no need to select a subset. On thieawttigif the distribution of

1656

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Allowed | Source Task |TransferredAllowed| TL
Citation Task Task | Mappings |[KnowledgeLearnergMetrics
DifferencesSelection
Multi-Task learning: Section 5
Mehta et al. (2008) r lib N/A M H tr
Perkins and Precup (1999) t all N/A T, TD tt
Foster and Dayan (2004) St all N/A sub TD,H | |, tr
Fernandez and Veloso (2006) s, st lib N/A T TD tr
Tanaka and Yamamura (2008) t all N/A Q TD j, tr
Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, S all N/A pri B J, tr
Walsh et al. (2006) rs all N/A fea any tt
Lazaric (2008) r all N/A fea Batch | ap, tr

Table 4: This table reproduces the group of MTL methods from Table 1.

Environment Environment

Yo
”V””;

a

al |3

Environment

[
e
e
]
A

gent

Environment

gent

Figure 7: Multi-task learning methods assume tasks are chosen from alfstatlution, use one
or more source tasks to help learn the current task, and assume thatatikbdave the
same actions and state variables. Dashed circles indicate the MDP compehitts
may differ between tasks.

tasks is multi-modal, it is likely that transferring from all tasks is sub-optimal.eNafrthe methods
account for time spent learning in the source task(s) as the primaryroasaffective learning on
the next task chosen at random from an unknown (but fixed) distribofidMDPs.

Variable-reward hierarchical reinforcement learnilfiglehta et al., 2008) assumes that the learner
will train on a sequence of tasks which are identical except for diffaeemard weights The re-
ward weights define how much reward is assigned via a linear combinatrewafd featuresThe
authors provide the reward features to the agent for a given setksf tagr instance, in a real-time
strategy domain different tasks could change the reward featurésastice benefit from collecting
units of gold or from damaging the enemy. However, it is unclear how mameadws of interest
have reward features, which are provided to the agent at the statlotask. Using a hierarchical
RL method, subtask policies are learned. When a novel target task israaced, the agent sets the
initial policy to that of the most similar source task, as determined by the dougredth previ-

1657

TAYLOR AND STONE

ously observed reward weight vectors. The agent then usegeedy action selection method at
each level of the task hierarchy to decide whether to use the best kndatask policy or explore.
Some sub-tasks, such as navigation, will never need to be relearrdiffdognt tasks because they
are unaffected by the reward weights, but any suboptimal sub-taskgsohdl be improved. As the
agent experiences more tasks, the total reward in each new targetdeesisies, relative to learning
the task without transfer.

A different problem formulation is posed by Perkins and Precup (198f@re the transition
function, T, may change after reaching the goal. Upon reaching the goal, the agetirized to
the start state and is not told if, or how, the transition function has chabgéed,knows thafT is
drawn randomly from some fixed distribution. The agent is provided afdwtrad-coded options
which assist in learning on this set of tasks. Over time, the agent learnscarate action-value
function over these options. Thus, a single action-value function is ldaower a set of tasks,
allowing the agent to more quickly reach the goal on tasks with novel tranéiiaions.

Instead of transferring options, Foster and Dayan (2004) aim to identhytasks in a source
task and use this information in a target task, a motivation similar to that of Sifgg2)1 Tasks
are allowed to differ in the placement of the goal state. As optimal value fursctioe learned
in source tasks, aexpectation-maximizatioalgorithm (Dempster et al., 1977) identifies different
“fragmentations,” or sub-tasks, across all learned tasks. Oncetbahe fragmentations are used to
augment the state of the agent. Each sub-problem can be learned ideletherwhen encountering
a new task, much of the learning is already complete because the majority pfahlbms are
unchanged. The fragmentations work with both a flat learner (i.e., TDaamaplicitly hierarchical
learner to improve the jumpstart and total reward.

Probabilistic policy reus€Fernandez and Veloso, 2006) also considers a distribution of tasks in
which only the goal state differs, but is one of the most robust MTL methowsrims of appropriate
source task selection. Although the method allows a single goal state to diffeedn the tasks,
it requires thatS, A, andT remain constant. If a newly learned policy is significantly different
from existing policies, it is added to a policy library. When the agent is platadhovel task, on
every timestep, it can choose to: exploit a learned source task polidgjtekge current best policy
for the target task, or randomly explore. If the agent has multiple learokcigs in its library,
it probabilistically selects between policies so that over time more useful polidielse selected
more often. While this method allows for probabilistic mixing of the policies, it may desiple
to treat the past policies as options which can be executed until some termicatidition is met,
similar to a number of previously discussed methods. By comparing the rdbatinadits of mixing
past policies and treating them as options, it may be possible to better undestan each of the
two approaches is most useful.

The idea of constructing an explicit policy library is likely to be useful in fetdiL research,
particularly for agents that train on a number of source tasks that hayedaglitative differences
(and thus very different learned behaviors). Although other methisdssaparately record infor-
mation from multiple source tasks (cf., Mehta et al., 2008; Lazaric, 2008haRdez and Veloso
explicitly reason about the library. In addition to reasoning over the amufunformation stored,
as a function of number and type of source tasks, it will be useful torgtadel how many target
task samples are needed to select the most useful source task(s).

Unlike probabilistic policy reuse, which selectively transfers informatiomfra single source
task, Tanaka and Yamamura (2003) gather statistics aoptevious tasks and use this amalga-
mated knowledge to learn novel tasks faster. Specifically, the learnps kesck of the average

1658

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

and the deviation of the action value for eaha) pair observed in all tasks. When the agent
encounters a new task, it initializes the action-value function so that ésexy pair is set to the
current average for that pair, which provides a benefit relative iofarmed initialization. As the
agent learns the target task with Q-learning and prioritized sweéping agent uses the standard
deviation of states’ Q-values to set priorities on TD backups. If the nufevalue is far from the
average for thats, a) pair, its value should be adjusted more quickly, since it is likely incorrect (an
thus should be corrected before affecting other Q-values). Additiqmalbther term accounting for
the variance within individual trials is added to the priority; Q-values thatdhte often within a
particular trial are likely wrong. Experiments show that this method, whehetbip sets of discrete
tasks with different transition functions, can provide significant improverneejumpstart and total
reward.

The next two methods consider how priors can be effectively learnedBayesian MTL agent.
First, Sunmola and Wyatt (2006) introduce two methods that use instancesdurce tasks to set
priors in a Bayesian learner. Both methods constrain the probabilities ofrtiet task’s transition
function by using previous instances as a type of prior. The first metbesl the working prior to
generate possible models which are then tested against data in the targé@h@slecond method
uses a probability perturbation method in conjunction with observed data tovmprodels gen-
erated by the prior. Initial experiments show that the jumpstart and totatdesaa be improved if
the agent has an accurate estimation of the prior distributions of the classvinch the target is
drawn. Second, Wilson et al. (2007) consider learning in a hieraldB#égaesian RL setting. Setting
the prior for Bayesian models is often difficult, but in this work the prior mayrhesferred from
previously learned tasks, significantly increasing the learning rate. Addijo the algorithm can
handle “classes” of MDPs, which have similar model parameters, andelegmize when a novel
class of MDP is introduced. The novel class may then be added to thechigieard a distinct prior
may be learned, rather than forcing the MDP to fit into an existing class. Tha¢ida of the goal
state and the parameterized reward function may differ between the tasksirig on subsequent
tasks shows a clear performance improvement in total reward, and sonwvénnt in jumpstart.

While Bayesian methods have been shown to be successful when triangsbetween classi-
fication tasks (Roy and Kaelbling, 2007), and in non-transfer RL (@=aet al., 1999), only the
two methods above use it in RL transfer. The learner’'s bias is important in ahirm@alearning
settings. However, Bayesian learning makes such bias explicit. Being adé¢ tive bias through
transfer from similar tasks may prove to be a very useful heuristic—we tiai additional transfer
methods will be developed to initialize Bayesian learners from past tasks.

Walsh et al. (2006) observe that “deciding what knowledge to tram&fereen environments
can be construed as determining the correct state abstraction schensefaf source [tasks] and
then applying this compaction to a target [task].” Their suggested frankesobres a set of MDPs,
builds abstractions from the solutions, extracts relevant features, anégplies the feature-based
abstraction function to a novel target task. A simple experiment using tagkgifferent state
spaces and reward functions shows that the time to learn a target taskeasdztby using MTL.
Building upon their five defined types of state abstractions (as defineddahdli 2006), they give
theoretical results showing that when the number of source tasks is talgtveé to the differences

7. Prioritized sweeping (Moore and Atkeson, 1993) is an RL method that®adjustments to the value function based
on their “urgency,” which can lead to faster convergence than whdating the value function in the order of visited
states.

1659

TAYLOR AND STONE

Allowed | Source| Task |TransferredAllowed TL
Citation Task Task | Mappings |Knowledge Learners Metrics
DifferencesSelection

Different state variables and actions — no explicit task pirags: Section 6

Konidaris and Barto (2006 p h N/A R TD j, tr
Konidaris and Barto (2007 p h N/A T TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr
Guestrin et al. (2003) # h N/A Q LP j
Croonenborghs et al. (2007) # h N/A T RRL ap, j, tr
Ramon et al. (2007) # h N/A Q RRL |ap, j, tff, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr

Table 5: This table reproduces the third group of methods from Table 1.

between the different tasks), four of the five types of abstractiongw@aeanteed to produce the
optimal policy in a target task using Q-learning.

Similar to Walsh et al. (2006), Lazaric (2008) also discovers featuresmsfer. Rather than
learning tasks sequentially, as in all the papers above, one could colesideng different tasks
in parallel and using the shared information to learn the tasks better tharhifnesre learned in
isolation. Specifically, Lazaric (2008) learns a set of tasks with diftereward functions using
the batch metho#itted Q-iteration(Ernst et al., 2005). By leveraging a multi-task feature learning
algorithm (Argyrious et al., 2007), the problem can be formulated as agptithization problem
to find the best features and learning parameters across observad diteasks. Experiments
demonstrate that this method can improve the total reward and can help theaggrore irrel-
evant features (i.e., features which do not provide useful informatiBajthermore, since it may
be possible to learn a superior representation, asymptotic performanckeniaproved as well,
relative to learning tasks in isolation.

The work in this section, as summarized in the second section of Table 1,ix@gsumes
that all MDPs an agent experiences are drawn from the same distribDifterent tasks in a single
distribution could, in principal, have different state variables and actiamd future work should
investigate when allowing such flexibility would be beneficial.

6. Transferring Task-Invariant Knowledge Between Taskswith Differing State
Variables and Actions

This section, unlike the previous two, discusses methods that allow theedaskcand target task to
have different state variables and actions (see Figure 8 and the methiadtderb). These methods
formulate the problem so that no explicit mapping between the tasks is neledéehd the agent
reasons over abstractions of the MDP that are invariant when the aotistete variables change.

For example, Konidaris and Barto (2006) have separated the stantdgbBlem intoagent-
spaceand problem-spaceepresentations. The agent-space is determined by the agent’s capabil-
ities, which remain fixed (e.g., physical sensors and actuators), althaahhasspace may be
non-Markoviarf The problem-space, on the other hand, may change between sourtargetd

8. A standard assumption is that a task is Markovian, meaning that thatplipbdistribution over next states is in-
dependent of the agent’s state and action history. Thus, saving a higtalgl not assist the agent when selecting
actions, and it can consider each state in isolation.

1660

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Environment

Figure 8: Methods in Section 6 are able to transfer between tasks withediffstate spaces. Al-
thoughT, R, A, and the state variables may also technically change, the agent’s internal
representation is formulated so that they remain fixed between sourcergattéesks.
MDP components with a dashed circle may change between the source dasltget
task.

problems and is assumed to be Markovian. The authors’ method learngiagsteward on-line in
agent-space while learning a source task. If a later target task has a sawiéad structure and ac-
tion set, the learned shaping reward will help the agent achieve a jumpsdarigher total reward.
For example, suppose that one of the agent’s sensors measures theedistaveen it and a partic-
ular important state (such as a beacon located near the goal state). erheray learn a shaping
reward that assigns reward when the state variable describing its distethesbeacon is reduced,
even in the absence of an environmental reward. The authors assuitiethare no novel actions
(i.e., actions which are not in the source task’s problem-space) buteamgtate variables can be
handled if they can be mapped from the novel problem-space into the fangiéat-apace. Addi-
tionally, the authors acknowledge that the transfer must be betweemd-linkedtasks, where “the
reward function in each environment consistently allocates rewards taretypes of interactions
across environments.” Determining whether or not a sequence of tagkshigecriterion is left for
future work.

In later work (Konidaris and Barto, 2007), the authors assume knowleflgpre-specified
salient events,” which make learning options tractable. While it may be pogsildarn options
without requiring such events to be specified, the paper focuses otohase such options rather
than option learning. Specifically, when the agent achieves one of thbgeas, such as unlock-
ing a door or moving through a doorway, it may learn an option to achievevlrd again in the
future. As expected, problem-space options speed up learning a sisigl®tare interesting, when
the agent trains on a series of tasks, options in both agent-space d&hehpispace significantly
increase the jumpstart and total reward in the target task (time spent letiraiagurce task is dis-
counted). The authors suggest that agent-space options will likely bepodedble than problem-
space options in cases where the source and target tasks are less simidsee-problem-space
options will only be portable when source and target tasks are very similar.

In our opinion, agent- and problem-space are ideas that should berferplored as they will
likely yield additional benefits. Particularly in the case of physical agenits rituitive that agent
sensors and actuators will be static, allowing information to be easily rediss#l:specific items,

1661

TAYLOR AND STONE

such as features and actions, may change, but should be faster tdf lderragent has already
learned something about its unchanging agent-space.

If transfer is applied to game trees, changes in actions and state varialyldseness prob-
lematic. Banerjee and Stone (2007) are able to transfer between ganssubing on this more
abstract formulation. For instance, in experiments the learner identifiedticejot of dork, a state
where the player could win on the subsequent turn regardless of wiatthropponent took next.
After training in the source task, analyzing the source task data for sattrés, and then setting
the value for a given feature based on the source task data, suateseaitthe game tree were used
in a variety of target tasks. This analysis focuses on the effects of aadiothe game tree and thus
the actions and state variables describing the source and target gaméeranithout requiring
an inter-task mapping. Source task time is discounted, but jumpstart, totatireama asymptotic
performance are all improved via transfer. Although the experiments iregherpse only temporal
difference learning, it is likely that this technique would work well with othgrety of learners.

Guestrin et al. (2003) examine a similar problem in the context of planning &t thiey term
arelational MDP. Rather than learning a standard value function, an agent-centeredfwatiion
for eachclassof agents is calculated in a source task, forcing all agents of a gives tgfas to
all have the same value function. However, these class value functientefined so that they are
independent of the number of agents in a task, allowing them to be directlyimgetarget task
which has additional (or fewer) agents. No further learning is done itatiget task, but the trans-
ferred value functions perform better than a handcoded strategidptbtay the authors, despite
having additional friendly and adversarial agents. However, the eutfute that the technique will
not perform well in heterogeneous environments or domains with “strodganstant interactions
between many objects.”

Relational Reinforcement Learning may also be used for effectivefnaf®ather than reason-
ing about states as input from an agent’s sensors, an RRL learnealtypiasons about a state
in propositional form by constructing first-order rules. The learnarazsily abstract over specific
object identities as well as the number of objects in the world; transfer betiasks with different
number of objects is simplified. For instance, Croonenborghs et al. Y20§{l1earn a source task
policy with RRL. The learned policy is used to create examples of state-acis) which are then
used to build a relational decision tree. This tree predicts, for a given stiaieh action would be
executed by the policy. Lastly, the trees are mined to prodelegional options These options are
directly used in the target task with the assumption that the tasks are similarheth@tigno trans-
lation of the relational options is hecessary. The authors consider thiseop source/target tasks
where relational options learned in the source directly apply to the tardetdaly the number of
objects in the tasks may change), and learning is significantly improved in téjommstart, total
reward, and asymptotic performance.

Other work using RRL for transfer (Ramon et al., 2007) introduces thie @lgorithm, a rela-
tional decision tree algorithm.dR incrementally builds a decision tree in which internal nodes use
first-order logic to analyze the current state and where the tree’s leamésin action-values. The
algorithm uses four tree-restructuring operators to effectively uagaile memory and increase
sample efficacy. Both target task time and total time are reduced by first trainia simple source
task and then on a related target task. Jumpstart, total reward, and asyrpptiormance also
appear to improve via transfer.

RRL is a particularly attractive formulation in the context of transfer learnindRRL, agents
can typically act in tasks with additional objects without reformulating their, aljhcadditional

1662

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

training may be needed to achieve optimal (or even acceptable) perferemts. When it is
possible to frame a domain of interest as an RRL task, transfer betwesmiiftsklifferent numbers
of objects or agents will likely be relatively straightforward.

With motivation similar to that of RRL, some learning problems can be framed sadesits
choose between high-level actions that function regardless of the marintigjects being reasoned
about. Sharma et al. (2007) combines case-based reasoning with RLGAgeeBased Reinforce-
ment Learner(CARL), a multi-level architecture includes three modules: a planner, taitam,
and a learner. The tactical layer uses the learner to choose betwedmaghactions which are in-
dependent of the number of objects in the task. The cases are indexaidtinyevel state variables
(again independent of the number of objects in the task), the actions d@attad Q-values of the
actions, and the cumulative contribution of that case on previous timestepitarBy between the
current situation and past cases is determined by Euclidean distaneeisBehe state variables and
actions are defined so that the number of objects in the task can changeutbe and target tasks
can have different numbers of objects (in the example domain, the autbewdifterent numbers
of player and opponent troops in the source and target tasks). Timelspening the source task
is not counted, but the target task performance is measured in terms otgqutgsymptotic gain
(a metric related to the improvement in average reward over learningp\aardll gain(a metric
based on the total reward accrued).

In summary, methods surveyed in this section all allow transfer between wattkdifferent
state variables and actions, as well as transfer functions, state spadesward functions. By
framing the task in an agent-centric space, limiting the domain to game trees, grauigiarning
method that reasons about variable numbers of objects, knowledge t@msferred between tasks
with relative ease because problem representations do not chang¢hiedearner’s perspective.
In general, not all tasks may be formulated so that they conform to thengisms made by TL
methods presented in this section.

7. Explicit Mappingsto Transfer between Different Actionsand State
Representations

This section of the survey focuses on a set of methods which are mdtadlthan those previously
discussed as they allow the state variables and available actions to diffednetaurce and target
tasks (see Table 6 and Figure 9). All methods in this section use inter-tagkmgapenabling
transfer between pairs of tasks that could not be addressed by mattibdprevious section. Note
that because of changes in state variables and act1%,andT, all technically change as well
(they are functions defined over actions and state variables). Hovesvwee elaborate below, some
of the methods allow for significant changes in reward functions betweetaghks, while most do
not.

In Taylor et al. (2007a), the authors assume that a mapping betweerutice smd target tasks
is provided to the learner. The learner first trains in a source task usiatye-function-learning
method. Before learning begins in the target task, every action-valueafdr state in the target
task is initialized via learned source task values. This work experimentallyrigrates that value-
function transfer can cause significant speedup by transferringebatiasks that have different state
variables and actions. Additionally, different methods for performing #daesfunction transfer
are examined, different function approximators are successfully, @s®t multi-step transfer is
demonstrated (i.e., transfer from task A to task B to task C). This TL method drates that when

1663

TAYLOR AND STONE

Allowed | Source Task |Transferrehllowed TL
Citation Task Task | Mappings|KnowledgelearnersMetrics
DifferencesSelection
Different state variables and actions — inter-task mappusgd: Section 7
Taylor et al. (2007a) a, v h sup Q TD tt’
Taylor et al. (2007b) a,v h sup Tt PS tt"
Taylor et al. (2008b) a,v h sup I MB ap, tr
o oy | wv | n | we | we | T |
Torrey et al. (2007) a,nv h sup T TD J, tr
Taylor and Stone (2007h) a,r, Vv h sup rule any/TD| j, ttT, tr

Table 6: This table reproduces the fourth group of methods from Table 1.

Environment

Figure 9: Methods in Section 7 focus on transferring between tasks witralit state features,
action sets, and possible reward functions (which, in turn, causes tieespi@ce and
transition function to differ as well). As in previous figures, MDP compasevith a
dashed circle may change between the source task and target task.

faced with a difficult task, it may be faster overall to first train on an artifedarce task or tasks
and then transfer the knowledge to the target task, rather than trainings dargfet task directly.
The authors provide no theoretical guarantees about their methoeltiethess, but hypothesize
conditions under which their TL method will and will not perform well, andyide examples of
when their method fails to reduce the training time via transfer.

In subsequent work, Taylor et al. (2007b) transfer entire policitésden tasks with different
state variables and actions, rather than action-value functions. A seticep is first learned via
a genetic algorithm in the source task and then transformed via inter-taskmgappdditionally,
partial inter-task mappings are introduced, which may be easier for a htonatuit in many
domains. Specifically, those actions and state variables in the target whiehley similar”
actions and state variables in the source task are mapped, while novebsialbdes and actions in
the target task are left unmapped. Policies are transformed using oreinfahtask mappings and
then used to seed the learning algorithm in the target task. As in the previolistiis TL method
can successfully reduce both the target task time and the total time.

1664

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Later, Taylor et al. (2008b) again consider pairs of tasks where ti@adiffer, the state vari-
ables differ, and inter-task mappings are available to the learner. In this e authors allow
transfer between model-learning methods by transferring instancesh wgh&milar in spirit to
Lazaric (2008). Fitted Ruax (Jong and Stone, 2007), an instance-based model-learning method
capable of learning in continuous state spaces, is used as the base Rld,naetticsource task
instances are transferred into the target task to better approximate thetdsige model. Exper-
iments in a simple continuous domain show that transfer can improve the jumpstarteteard,
and asymptotic performance in the target task.

Another way to transfer is via learnedlviceor preferences. Torrey et al. (2005) automatically
extract such advice from a source task by identifying actions whichgher Q-values than other
available action$.Such advice is mapped via human-provided inter-task mappings to the talget ta
as preferences given to the target task learner. In this work, Qssahedearned via support vector
regression, and thdPreference Knowledge Based Kernel Regresg®KR) (Maclin et al., 2005)
adds the advice as soft constraints in the target, setting relative predgerfar different actions in
different states. The advice is successfully leveraged by the targeletamer and decreases the
target task learning time, even when the source task has different stiatieles and actions. Ad-
ditionally, the reward structure of the tasks may differ substantially: theier@x@nts use a source
task whose reward is an unbounded score based on episode lendghtheltiarget task’s reward is
binary, depending on if the agents reached a goal state or not. Sosikdénta is discounted and
the target task learning is improved slightly in terms of total reward and asymptafigrmance.

Later work (Torrey et al., 2006) improves upon this method by usidgctive logic program-
ming (ILP) to identify skills that are useful to the agent in a source task. A trace of the agent in the
source task is examined and both positive and negative examples aezktiositive and neg-
ative examples are identified by observing which action was executedeshkimg outcome, the
Q-value of the action, and the relative Q-value of other available actiddlés &e extracted using
the ILP engine Aleph (Srinivasan, 2001) by using thes€ore (the harmonic mean of precision and
recall). These skills are then mapped by a human into the target task, whgiienghrove learning
via KBKR. Source task time is not counted towards the target task time, jumpestatie improved,
and the total reward is improved. The source and target tasks agamli#ems of state variables,
actions, and reward structure. The authors also show how humait@doadvice may be easily
incorporated in addition to advice generated in the source task. Finallyithera experimentally
demonstrate that giving bad advice to the learner is only temporarily harmdulhet the learner
can “unlearn” bad advice over time, which may be important for minimizing the itrgfaegative
transfer.

Torrey et al. (2007) further generalize their technique to trarstfategies which may require
composing several skills together, and are defined as a finite-state m@eBxg. Thestructure
learning phase of their algorithm analyzes source task data to find sequenag®otadhat distin-
guish between successful and unsuccessful games (e.g., wheth@ragoal was reached), and
composes the actions into a FSM. The second phateset learning learns when each action in
the strategy should be taken based on state features, and when the @M tshnsition to the
next state. Experience in the source task is again divided into positiveegyadive sequences for
Aleph. Once the strategies are re-mapped to the target task via a hunvadegnmapping, they are
used todemonstrate strategy to the target task learner. Rather than explore randomly, tkeé targ

9. While this survey focuses on automatically learned knowledge in astask, rather than human-provided knowl-
edge, Torrey et al. (2005) show that both kinds of knowledge cafffbetigely leveraged.

1665

TAYLOR AND STONE

task learner always executes the transferred strategies for theOrgtplsodes and thus learns to
estimate the Q-values of the actions selected by the transferred stratefggeghi& demonstration
phase, the learner chooses from the MDP’s actions, not the highdeagtgies, and can learn to
improve on the transferred strategies. Experiments demonstrate thatystratesjer significantly
improves the jumpstart and total reward in the target task when the soutdarget tasks have
different state variables and actions (source task time is again discaunted)

Similar to strategy transfer, Taylor and Stone (2007b) leales with RIPPER (Cohen, 1995)
that summarize a learned source task policy. The rules are then trandfeiant@gandcoded inter-
task mappings so that they could apply to a target task with different stasdbes and actions.
The target task learner may then bootstrap learning by incorporating ldgeas an extra action,
essentially adding an ever-present option “take the action suggestea sptince task policy,”
resulting in an improved jumpstart and total reward. By using rules as amietéary between
the two tasks, the authors argue that the source and target tasks chffiewsat learning methods,
effectively de-coupling the two learners. Similarities with Torrey et al. 30@clude a significant
improvement in initial performance and no provision to automatically handle sifféeences-®
The methods differ primarily in how advice is incorporated into the targetégand the choice of
rule learner.

Additionally, Taylor and Stone (2007b) demonstrated th&tr-domaintransfer is possible.
The two source tasks in this paper were discrete, fully observable,randi@s deterministic. The
target task, however, had a continuous state space, was partiallywatiserand had stochastic
actions. Because the source tasks required orders of magnitude legbéinogal time was roughly
equal to the target task time. Our past work has used the term “inter-doraasgidr” for transfer
between qualitatively different domains, such as between a board gairee soccer simulation.
However, this term is not well defined, or even agreed upon in the commé&woitynstance, Swarup
and Ray (2006) use the term “cross-domain transfer” to describe tise & a neural network
structure between classification tasks with different numbers of booleatsiand a single output.
However, our hope is that researchers will continue improve transférade so that they may
usefully transfer from very dissimilar tasks, similar to the way that humans masfénahigh level
ideas between very different domains.

This survey has discussed examples of of low- and high-level knowlegedgsfer. For instance,
learning general rules or advice may be seen as relatively high levaleagansferring specific Q-
values or observed instances is quite task-specific. Our intuition is thardglel knowledge may
be more useful when transferring between very dissimilar tasks. Fonagstd is unlikely that Q-
values learned for a checkers game will transfer to chess, but themiorfa fork may transfer well.
This has not been definitely shown, however, nor is there a quantitaiyéo/classify knowledge in
terms of low- or high-level. We hope that future work will confirm or disfion this hypothesis, as
well as generate guidelines as to when different types of transfen@el&dge is most appropriate.

All methods in this section use some type of inter-task mapping to allow transfee&e MDPs
with very different specifications. While these results show that tramsfeprovide a significant
benefit, they presuppose that the mappings are provided to the leaheeiollbwing section con-
siders methods that work to autonomously learn such inter-task mappings.

10. To our knowledge, there is currently no published method to autoriyascale rule constants. Such scaling would
be necessary if, for instance, source task distances were meastget but target task distances were measured in
meters.

1666

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Allowed | Source Task |TransferretAllowed TL
Citation Task Task | Mappings |Knowledgel earnergMetrics
DifferencesSelection

Learning inter-task mappings: Section 8

Kuhlmann and Stone (2007) a, v h T Q TD j, tr
Liu and Stone (2006) a, Vv h T N/A all N/A
Soni and Singh (2006) a,v h Ma, Svy, exp N/A all |ap,j,tr
Talvitie and Singh (2007) a,v h Ma, Svy, exp N/A all]
Taylor et al. (200715) a, v h S\, eXp N/A all it
Taylor et al. (2008c) a, v h exp N/A all j, tr

Table 7: This table reproduces the group of inter-task learning methoaisTable 1.

8. Learning Task M appings

The transfer algorithms considered thus far have assumed that a bded roapping between tasks
was provided, or that no mapping was needed. In this section we cotisedkss-well explored
guestion of how a mapping between tasks can be learned, such that saskdnowledge may
be exploited in a novel target task with different state variables and adiseesFigure 10 and
the final group in Table 1). Note that in this section, all but one of the methads N/A for
transfer method—uwith the exception of Kuhimann and Stone (2007), thespapeered in this
section introduce mapping-learning methods and then use existing methotiddtevilne mapping
efficacy.

One current challenge of TL research is to reduce the amount of inflemmarovided to the
learner about the relationship between the source and target tasksintizan is directing the learner
through a series of tasks, the similarities (or analogies) between the taskikelyilbe provided
by the human'’s intuition. If transfer is to succeed in an autonomous settinggvieg, the learner
must first determine how (and whether) two tasks are related, and onlynizgthe agent leverage
its past knowledge to learn in a target task. Learning task relationshipgi¢galcf agents are to
transfer without human input, either because the human is outside the |dogcause the human
is unableto provide similarities between tasks. Methods in this section differ primarily int wha
information must be provided. At one end of the spectrum, Kuhlmann and $2007) assume
that a complete description & S, andT are given, while at the other, Taylor et al. (2008c) learn
the mapping exclusively from experience gathered via environmentahatiens.

Given a complete description of a game (i.e., the full model of the MDP), Kuhiraad Stone
(2007) analyze the game to produceue graph an abstract representation of a deterministic, full
information game. A learner first trains on a series of source task gatogsgghe rule graphs and
learned value functions. When a novel target task is presented to thereiafirst constructs the
target task’s rule graph and then attempts to find a source task that hasreomphic rule graph.
The learner assumes that a transition function is provided and usesfuatitmn-based learning to
estimate values fafterstateof games. Only state variables need to be mapped between source and
target tasks, and this is exactly the mapping found by graph matching. €toistse in the target
task, initial Q-values are set by finding the value of the corresponditgistthe source task. Three
types of transfer are considered: direct, which copies afterstatesvalige without modification;
inverse, which accounts for a reversed goal or switched roles;\ardge, with copies the average

1667

TAYLOR AND STONE

Environment o) Environment

Figure 10: Section 8 presents methods to learn the relationship betweenvitiskidferent state
variables and actions. As in previous figures, MDP components with a diagiode
may change between the source task and target task.

of a set of Q-values and can be used for boards with different stmgce task time is ignored but
jumpstart and total reward can both be improved in the target task.

The previous work assumes full knowledge of a transition function. A rgeresral approach
could assume that the agent has only a qualitative understanding of te&idrafunction. For
instance gualitative dynamic Bayes network@DBNSs) (Liu and Stone, 2006), summarize the ef-
fects of actions on state variables but are not precise (for instangectiodd not be used as a
generative model for planning). If QDBNSs are provided to an agentaphgmapping technique
can automatically find a mapping between actions and state variables in two fskelatively
little computational cost. The authors show that mappings can be learnedaatosly, effectively
enabling value function transfer between tasks with different state W@siabd actions. However,
it remains an open question as to whether or not QDBNs are learnablekmpenience, rather than
being hand-coded.

The next three methods assume knowledge about how state variableedte describe objects
in a multi-player task. For instance, an agent may know that a pair of statbbes describe
“distance to teammate” and “distance from teammate to marker,” but the ageott tisichwhich
teammate the state variables describe. First, Soni and Singh (2006) sn@ggra with a series of
possible state transformations and an inter-task action mapping. Theresa@n&ansformation,
X, for every possible mapping of target task variables to source taslblegiaAfter learning the
source task, the agent’s goal is to learn the correct transformationcinteeget task statg the
agent can randomly explore the target task actions, or it may choose théeketionourcd X(S)).
This method has a similar motivation to that of Fernandez and Veloso (20@@)eke the authors
are learning to select between possible mappings rather than possibtiprgelicies. Over time
the agent uses Q-learning to select the best state variable mapping as Wwedirathe action-
values for the target task. The jumpstart, total reward, and asymptotawrpenfice are all slightly
improved when using this method, but its efficacy will be heavily dependerihe nhumber of
possible mappings between any source and target task.

Second AtEase(Talvitie and Singh, 2007) also generates a number of possible stateleariab
mappings. The action mapping is again assumed and the target task leaateeteh of the
possible mappings as an arm on a multi-armed bandit (Bellman, 1956). Thwsaptove their
algorithm learns in time proportional to the number of possible mappings rathuertile size of
the problem: “in time polynomial iT, [the algorithm] accomplishes an actual return close to the

1668

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

asymptotic return of the best expert that has mixing time at mdskhis approach focuses efficient
selection of a proposed state variable mappings and does not allow taiglketaming.

Third, these assumptions are relaxed slightly by Taylor et al. (2007 sivbw that it is possi-
ble to learn both the action and state variable mapping simultaneously by levgsagiassification
technique, although it again relies on the pre-specified state variablpiggsui.e., knowing that
“distance to teammate” refers to a teammate, but not which teammate). Action tndastable
classifiers are trained using recorded source task data. For insthesmurce task agent records
Ssource Asource Ssource tUPIES as it interacts with the environment. An action classifier is trained so
thatC(Ssourceobject Ssourceobject) = asourcefOr €ach object present in the source task. Later, the target
task agent again recordgyget, aarget, qarget tuples. Then the action classifier can again be used
for to classify tuples for every target task objeCt{Sargetobject; s{argewb ject) = asource Where such a
classification would indicate a mapping betweggiget andasource Relatively little data is needed
for accurate classification; the number of samples needed to learn in teéetesl far outweighs
the number of samples used by the mapping-leaning step. While the resultiningsgppe not
always optimal for transfer, they do serve to effectively reduce tdagk training time as well as
the total training time.

The MASTER algorithm (Taylor et al., 2008c) was designed to further relax the knaeled-
quirements of Taylor et al. (2007b): no state variable groupings angregly The key idea of
MASTER s to save experienced source task instances, build an approximate tramgitiel from a
small set of experienced target task instances, and then test possilpiegsagifline by measuring
the prediction error of the target-task models on source task data. Thizaabgs sample efficient
at the expense of high computational complexity, particularly as the numistatefvariables and
actions increase. The method uses an exhaustive search to find thaskterappings that minimize
the prediction error, but more sophisticated (e.g., heuristic) search matboldisbe incorporated.
Experiments show that the learned inter-task mappings can successfulbvanjpmpstart and total
reward. A set of experiments also shows how the algorithm can assistawitbestask selection by
selecting the source task which is best able to minimize the offline prediction dine primary
contribution ofMASTER is to demonstrate that autonomous transfer is possible, as the algorithm
can learn inter-task mappings autonomously, which may then be used by #my L methods
discussed in the previous section of this survey (Section 7).

In summary, this last section of the survey has discussed several metbled® learn inter-
task mappings with different amounts of data. Although all make some assuspiiout the
amount of knowledge provided to the learner or the similarity between samddarget tasks,
these approaches represent an important step towards achievingitoliypmous transfer.

The methods in the section have been loosely ordered in terms of increasampmy. By
learning inter-task mappings, these algorithms try to enable a TL agent tasisknowledge on a
novel task without human intervention, even if the state variables or actimrgye. However, the
question remains whether fully autonomous transfer would ever be useftdctice. Specifically,
if there are no restrictions on the type of target task that could be encedntghy would one
expect that past knowledge (a type of bias) would be useful whenitgpan encountered task, or
even on the majority of tasks that could be encountered? This questiondtydired to the ability
of TL algorithms to recognize when tasks are similar and when negativédranay occur, both of
which are discussed in more detail in the following section.

1669

TAYLOR AND STONE

9. Open Questions

Although transfer learning in RL has made significant progress in rgeams, there are stilla num-
ber of open questions to be addressed. This section presents a sadécfimstions that we find
particularly important. Section 9.1 discusses ways in which methods in theyaoulke potentially
be extended and serves to highlight some of the methods most promisinguar Wwork. Sec-
tion 9.2 then discusses the problem of negative transfer, currentlyfahe emost troubling open
qguestions. Lastly, Section 9.3 presents a set of possible researdiodsdbat the authors’ believe
will be most beneficial to the field of TL.

9.1 Potential Enhancements

One apparent gap in our taxonomy is a dearth of model-learning methotsugemodel-learning
algorithms are often more sample efficient than model-free algorithms, it is likedyrthwill have
a large impact on sample complexity when coupled with such efficient RL methddseover,
when a full model of the environment is learned in a source task, it may ¢silphe for the target
task learner to explicitly reason about how to refine or extend the modetasatinters disparities
between it and the target task.

As mentioned in Section 5, transfer is an appealing way to set priors in asBaysetting.
When in a MTL setting, it may be possible to accurately learn priors over aldison of tasks,
enabling a learner to better avoid negative transfer. One of the main tsewfefiiansfer learning
is the ability to bias learners so that they may find better solutions with less dataighhé&se bi-
ases explicit through Bayesian priors may allow more efficient (and humderstandable) transfer
methods. While there will likely be difficulties associated with scaling up cumasthods to handle
complex tasks, possibly with a complex distribution hierarchy, it seems likediayenethods are
particularly appropriate for transfer.

The idea of automatically modifying source tasks (cf., RTP Sherstov ané @05, and sug-
gested by Kuhimann and Stone 2007) has not yet been widely adoptedeveip such methods
have the potential to improving transfer efficacy in settings where the tergieiearning perfor-
mance is paramount. By developing methods that allow training on a sequieautomatically
generated variations, TL agents may be able to train autonomously and geieexe that is ex-
ploitable in a novel task. Such an approach would be particularly rel@vém multi-task learning
setting where the agent could leverage some assumptions about the distritfukie target task(s)
it will see in the future.

None of the transfer methods in this survey are able to explicitly take adwaaofamy knowl-
edge about changes in the reward function between tasks, and it masticalprly easy for humans
to identify qualitative changes in reward functions. For example, if it wasvrthat the target task
rewards were twice that of the source task, it is possible that valu¢idarmmethods may be able
to automatically modify the source task value function with this background lkealge to enhance
learning. As a second example, consider a pair of tasks where thetgtahsere moved from
one edge of the state space to the opposite edge. While the learned trangitioration could be
reused, the policy or value-function would need to be significantly alteredc¢ount for the new
reward function. It is possible that inter-task mappings could be exteidertount for changes in
R between tasks, in addition to change#\iand in state variables.

Ideas fromtheory revision(Ginsberg, 1988) (alstheory refinemeptmay help inform the au-
tomatic construction of inter-task mappings. For example, many methods initializged task

1670

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

agent to have Q-values similar to those in the source task agent. Trandifezlyisto be suc-

cessful (Taylor et al., 2007a) if the target task Q-values are closaeganto the optimal Q-values
that learning is improved, relative to not using transfer. There are #lsatisns where ayn-

tactic change to the knowledge would produce better transfer. For instantee thrget task’s
reward function were the inverse of the source task function, direwsfieaof Q-values would be
far from optimal. However, a TL algorithm that could recognize the inveetationship may be
able to use the source task knowledge more appropriately (such as initializlmghavior so that

Warget(&arget) # Tlsourced Xx (Starget))-

Given a successful application of transfer, there are potentially two clidtenefits for the
agent. First, transfer may help improve the agent’s exploration so that aveischigher-valued
states more quickly. Secondly, transfer can help bias the agent’s inteprakentation (e.g., its
function approximator) so that it may learn faster. It will be important fdurfe work to better
distinguish between these two effects; decoupling the two contributionddshltbow for a better
understanding of TL's benefits, as well as provide avenues fordumgprovements.

Of the thirty-four transfer methods discussed, only five (Tanaka anth¥zura, 2003; Sunmola
and Wyatt, 2006; Ferguson and Mahadevan, 2006; Lazaric, 2008pMét al., 2007) attempt to
discover internal learning parameters (e.g., appropriate featureswinigsate) so that future tasks
in the same domain may be learned more efficiently. It is likely that other “metaihggmethods
could be useful. For instance, it may be possible to learn to use an ajgpedpnction approxima-
tor, an advantageous learning rate, or even the most appropriate RL mattiamigh likely easier
to accomplish in a MTL setting, such meta-learning may also be possible in tragistn suffi-
ciently strong assumptions about task similarity. Multiple heuristics regardinggttavay to select
RL methods and learning parameter settings for a particular domain existplmatity such settings
are chosen in an ad hoc manner. Transfer may be able to assist whensettimgprameters, rather
than relying on human intuition.

Section 8 discussed methods that learned an inter-task mapping, with thetiootiliat such a
mapping could enable autonomous transfer. However, it is unclear if futbhamous TL is real-
istic in an RL setting, or indeed is useful. In the majority of situations, a human ggldmewhere
in the loop and full autonomy is not necessary. Instead, it could be thatinggmay be learned to
supplement human'’s intuition regarding appropriate mappings, or that a set of tbanappings
could be proposed and then one selected by a human. It would be wadelowttefine realistic sce-
narios when fully autonomous transfer will be necessary, or to instesmfgpow (limited) human
interaction will be coupled with mapping-learning methods.

Lastly, we hope that the idea of task-invariant knowledge will be exteri@ather than learning
an appropriate representation across tasks, agent-space (KoamhBsrto, 2007) and RRL tech-
niques attempt to discover knowledge about the agent or the agent'ssastiich can be directly
reused in novel tasks. The better techniques can successfully compedtirecknowledge, separat-
ing what will usefully transfer and what will not will not, the easier it will beaohieve successful
transfer without having to un-learn irrelevant biases.

9.2 Negative Transfer

The majority of TL work in the literature has concentrated on showing thatticpkar transfer
approach is plausible. None, to our knowledge, has a well-defined migthdeterminingwhenan
approach will fail according to one or more metrics. While we can say thapdssible to improve

1671

TAYLOR AND STONE

Source Tas

Figure 11: This figure depicts a pair of tasks that are likely to result intivegaansfer for TL
methods.

learning in a target task faster via transfer, we cannot currently déeiderbitrary pair of tasks are
appropriate for a given transfer method. Therefore, transfer majupe incorrect learning biases
and result in negative transfer.

Methods such aslASTER (Taylor et al., 2008c), which can measure task similarity via model
prediction error, or region transfer (Lazaric, 2008), which examihesimilarity of tasks at a local
level rather than at a per-task level, can help assist when deciding ifygre ahould transfer or
what the agent should transfer. However, neither method providethaasetical guarantees about
its effectiveness.

As an example of why it is difficult to define a metric for task similarity, considepthir of tasks
shown in Figure 11, which are extremely similar, but where direct tran$tepolicy or action-value
function will be detrimental. The source task in Figure 11 (top) is deterministicd&étrete. The
agent begins in state | and has one action availdtdet . Other states in the “hallway” have two
applicable actionsEast andWest, except for state A, which also has the actitiogh andSouth .
Once the agent executlsrth or South in state A, it will remain in state B or C (respectively) and
continue self-transitioning. No transition has a reward, except for fhéraasition in state B.

Now consider the target task in Figure 11 (bottom), which is the same as tlwe $ask, except
that the self-transition from’Gs the only rewarded transition in the MD®*(l’,East) in the target
task (the optimal action-value function, evaluated at the stpts the same a®*(l, East) in the
source task. Indeed, the optimal policy in the target task differs at orilygéesstate, A and the
optimal action-value functions differ only at state’s B/, and C.

One potential method for avoiding negative transfer is to leverage the aldaisimulation
(Milner, 1982). Ferns et al. (2006) point out that:

1672

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

In the context of MDPs, bisimulation can roughly be described as the tagges/a-
lence relation on the state space of an MDP that relates two states precisslyffawh
every action, they achieve the same immediate reward and have the samalipyoba
of transitioning to classes of equivalent states. This means that bisimilar Istade®
essentially the same long-term behavior.

However, bisimulation may be too strict because states are either equivaterif and may be slow
to compute in practice. The work of Ferns et al. (2005, 2006) relaxesléaeof bisimulation to
that of a (pseudo)metric that can be computed much faster, and gives aigimileasure, rather
than a boolean. It is possible, although not yet shown, that bisimulatiognxpyations can be used
to discover regions of state space that can be transferred from d® tasother, or to determine
how similar two tasks arm toto. In addition to this, or perhaps because of it, there are currently no
methods for automaticallgonstructinga source task given a target task.

Homomorphism¢Ravindran and Barto, 2002) are a different abstraction that canedgfins-
formations between MDPs based on transition and reward dynamics, similairitrtinter-task
mappings, and have been used successfully for transfer (Soniragtt 3006). However, discover-
ing homomorphisms is NP-hard (Ravindran and Barto, 2003a) and hombisimigpare generally
supplied to a learner by an oracle. While these two theoretical framewoskberable to help avoid
negative transfer, or determine when two tasks are “transfer compasigleificant work needs to
be done to determine if such approaches are feasible in practice, palyiduthe agent is fully
autonomous (i.e., is not provided domain knowledge by a human) and isowded a full model
of the MDP.

9.3 New Directions

As suggested above, TL in RL domains is one area of machine learning Weeempirical work
has outpaced the theoretical. While there has been some work on the tfi¢i@yster between
classification tasks (cf., Baxter, 2000; Ben-David and Borbely, 23&h analyses do not directly
apply to RL settings. To our knowledge, there is only a single work analyttiagtheoretical
properties of transfer in RL (Phillips, 2006), where the authors use &mdfovich and full models
of two MDPs to calculate how well an optimal policy in one task will perform in eosel task.
Unfortunately, this calculation of policy performance may require more ctattipn than directly
learning in the target task. There is considerable room, and need fortheanmretical work in RL
(cf., Bowling and Veloso, 1999). For example:

1. Provides guarantees about whether a particular source task cavéigarning in a target
task (given a particular type of knowledge transfer).

2. Correlates the amount of knowledge transferred (e.g., the numbampies) with the im-
provement in the source task.

3. Defines what an optimal inter-task mapping is, and demonstrates hovetrafficacy is
impacted by the inter-task mapping used.

11. We distinguish this idea from Sherstov and Stone’s 2005 approauobir faper shows it is possible to construct
source task perturbations and then allow an agent to spend time learnisgttbétasks to attempt to improve
learning on an (unknown) source task. Instead, it may be moretigéeo tailor a source task to a specific target
task, effectively enabling an agent to reduce the total number of emai&ntal interactions needed to learn.

1673

TAYLOR AND STONE

The remainder of this section suggests other open areas.

Concept drift(Widmer and Kubat, 1996) in RL has not been directly addressed by arly w
in this survey. The idea of concept drift is related to a non-stationarir@mment: at certain
points in time, the environment may change arbitrarily. As Ramon et al. (2@2&) ‘fior transfer
learning, it is usually known when the context change takes place. Roepbdrift, this change is
usually unannounced.” Current on-line learning methods may be caplfdadling such changes
by continually learning. However, it is likely that RL methods developed ifipalty to converge
to a policy and then re-start learning when the concept changes willvachigher performance,
whether such drift is announced or unannounced.

Another question no work in this survey directly addresses is how to deterié optimal
amount of source task training to minimize the target task training time or total trainmegIf the
source task and target task were identical, the goal of reducing the tasgeraining time would
be trivial (by maximizing the source task training time) and the goal of minimizing tdaling
time would be impossible. On the other hand, if the source task and target éaslunrelated, it
would be impossible to reduce the target task training time through transfehandtal training
time would be minimized by not training in the source task at all. It is likely that a ttlon or
heuristic for determining the optimal amount of source task training time will hagersider the
structure of the two tasks, their relationship, and what transfer methoads Udis optimization
becomes even more difficult in the case of multi-step transfer, as there @ twore tasks that
can be trained for different amounts of time.

Transfer methods in this survey have used source task knowledge infararg/to better learn
in a target task. However, none explicitly account for scaling diffezsermetween the two tasks.
For instance, if a source task measured distance in meters and the tdegeetasired distance in
inches, constants would have to be updated manually rather than learned.

Another question not addressed is how to best explore in a source thsleiplicit purpose of
the agent is to speed up learning in a target task. One could imagine thastandard learning or
exploration strategy may produce better transfer results, relative teestbsttategies. For instance,
it may be better to explore maore of the source task’s state space than torlemtuaate action-value
function for only part of the state space. While no current TL algorithme taich an approach,
there has been some work on the question of learning a policy that is exfddidthout attempt
to maximize the on-line reward accrued while learning) in non-transfer xtantg8imsek and Barto,
2006).

Similarly, instead of always transferring information from the end of legrimrthe source task,
an agent that knows its information will be used in a target task may decideaarimformation to
transfer partway through training in the source task. For instance Tetyédr (2007b) showed that
transfer may be more effective when using policies trained for less time intimesstask than when
using those trained for more time. Although others have also observed sigtilavior Mihalkova
and Mooney (2008), the majority of work shows that increased perfocenan the source task is
correlated with increased target task performance. Understandingumdbwwhy this effect occurs
will help determine the most appropriate time to transfer information from onddashother.

We now present four possibilities for extending the current RL tranabek to different learning
settings in which transfer has not been successfully applied.

e First, although two of the papers (Banerjee and Stone, 2007; KuhimahStame, 2007)
in this survey have examined extensive games, none consider repeateal form games
or stochastic games (Shapley, 1953). For instance, one could colesidang how to play

1674

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

against a set of opponents so that when a new opponent is introdibedeiarner may quickly
adapt one of its previous strategies rather than completely re-learniragyegstrAnother op-
tion would be for an agent to learn how to play one game and then transfendidedge
to a different stochastic game. Due to similarities between RL and these two dayne p
ing settings, transfer methods described in this survey may be applied witivelgidittle
modification.

A second possibility for extending transfer is into the realm of partially oladde MDPs

(POMDPs). It may possible to learn a source POMDP and then use krgavigdned to
heuristically speed up planning in a target POMDP. Additionally, becausayipisally as-

sumed that POMDP planners are given a complete and accurate modek&f @ taay be

possible to analytically compare source and target tasks before learrirgginto determine
if transfer would be beneficial, and if so, how best to use the past kdgele

Third, multi-agent MDP and POMDP learners may also be able to successtpllyit trans-
fer. None of the work surveyed in this article focuses on explicit multi-atgarning (i.e.,
learning over the joint action space, or in an (adaptive) adversattaigeas in Stone and
Veloso 2000), but it is likely existing methods may be extended to the coogeratilti-
agent setting. For instance, when formulating a problem as an MMDP orldEE, the
agents must either reason over a joint action space or explicitly reasan lado@ their ac-
tions affect others. It may be possible for agents to learn over a sabaetions first, and
then gradually add actions (or joint actions) over time, similar to transferigden tasks
with different action sets. The need for such speedups is particulatilyatin distributed
POMDPs, as solving them optimally as been shown to be NEXP-Complete {8ieratal.,
2002). Transfer is one possible approach to making such problems ractabie, but to our
knowledge, no such methods have yet been proposed.

Fourth, as mentioned in Section 3.3, MTL methods in RL consider a sequiiask®that are
drawn sequentially from the same distribution. However, in superviseditegmulti-task
learning typically involves learning multiple tasksnultaneouslyThere may be contexts in
which an agent must learn multiple tasks concurrently, such as in hierar&tiior when the
agent has multiple reward functions or goals. Fully specifying such asoeand extending
MTL methods to encompass this setting, could bring additional tools to RL wsrarand
help move TL in RL closer to TL in classification.

Lastly, in order to better evaluate TL methods, it would be helpful to haveralatd set of

domains and metrics. Ideally there would be a domain-independent metriarisfdr learning, but
it is unclear that such a metric can exist (see Section 2). Furthermore,ntlisan whatoptimal
transferwould mean, but would likely depend on the scenario considered. Classifiand re-
gression have long benefited from standard metrics, such as precisioecall, and it is likely that
progress in transfer will be likewise enhanced once standard metriegi@ed upon.

Standard test sets, such as the Machine Learning Repository at thersityivof California,

Irvine (Asuncion and Newman, 2007), have also assisted the growtlpragdess of supervised
learning, but there are currently no equivalents for RL. Furthernvanée there are some standard
data sets for for transfer learning in classificattdmone exist for transfer in RL. While there is

12. Found abttp://multitask.cs.berkeley.edu

1675

TAYLOR AND STONE

some work in the RL community to standardize on a common interface and setabfrbark tasks

(Tanner et al., 2008; Whiteson et al., 2008), no such standardizatebden proposed for the
transfer learning in RL community. Even in the absence of such a framewerkuggest that it is

important for authors working in this area to:

e Clearly specify the setting: Is the source task learning time discounted? asfamptions
are made about the relationship between the source target and tar@et task

e Evaluate the algorithm with a number of metrics: No one metric captures all pobsihefits
from transfer.

e Empirically or theoretically compare the performance of novel algorithms:efibevaluate
novel algorithms, existing algorithms should be compared using standardswetrécsingle
task task:3

As discussed in Section 2.1, we do not think that TL for RL methods can io#lystrdered in
terms of efficacy, due to the many possible goals of transfer. Howegwetahdardizing on reporting
methodology, TL algorithms can be more easily compared, making it easier ¢tb &el@ppropriate
method in a given experimental setting.

Our hope is that TL questions, such as those presented in this sectione wildoessed in the
near future; our expectation is that transfer learning will become anasicrgly powerful tool for
the machine learning community.

Acknowledgments

We would like to thank Cynthia Matuszek and the anonymous reviewers ligiuheomments and
suggestions over multiple revisions. This work has taken place in the Lgafigients Research
Group (LARG) at the Artificial Intelligence Laboratory, The UniversifyTexas at Austin. LARG
research is supported in part by grants from the National Scienced&tiaon (CNS-0615104),
DARPA (FA8750-05-2-0283 and FA8650-08-C-7812), the Fdddighway Administration (DTFH61-
07-H-00030), and General Motors.

References

Agnar Aamodt and Enric Plaza. Case-based reasoning: foundassnak, methodological varia-
tions, and system approaches, 1994.

Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship legiinineinforcement learn-
ing. InICML '05: Proceedings of the 22nd International Conference on Maeh.earning
pages 1-8, 2005.

13. One of the difficulties inherent in this proposal is that small variatiom®main implementation may result in very
different learning performances. While machine learning practitioaersble to report past results verbatim when
using the same data set, many RL domains used in papers are notdeléaseder to compare with past work,
RL researchers must reimplement, tune, and test past algorithms fmao®mith their algorithm on their domain
implementation.

1676

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

David Andre and Stuart J. Russell. State abstraction for programmabferoeiment learning
agents. IrProc. of the Eighteenth National Conference on Atrtificial Intelligempages 119-125,
2002.

Andreas Argyrious, Theodoros Evgenion, and Massimiliano Pontil. Multitsisforcement learn-
ing on the distribution of MDPsMachine Learning2007.

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosbdion-based behavior
acquisition for a shooting robot by using a reinforcement learnin@rdceedings of IAPR/IEEE
Workshop on Visual Behaviors-199shges 112-118, 1994.

Mehran Asadi and Manfred Huber. Effective control knowledgedfer through learning skill and
representation hierarchies.Pmoceedings of the 20th International Joint Conference on Artificial
Intelligence pages 2054-2059, 2007.

Authur Asuncion and David J. Newman. UCI machine learning reposit@®72 URL http:
Ilwww.ics.uci.edu/ ~ mlearn/MLRepository.html

Christopher G. Atkeson and Juan C. Santamaria. A comparison of direot@del-based reinforce-
ment learning. IfProceedings of the 1997 International Conference on Robotics ananftiton
1997.

Bikramijit Banerjee and Peter Stone. General game learning using knentedsfer. InThe 20th
International Joint Conference on Atrtificial Intelligenqgeages 672—-677, January 2007.

Bikramijit Banerjee, Yaxin Liu, and G. Michael Youngblood. ICML workghon “Structural knowl-
edge transfer for machine learning”, June 2006.

Jonathan Baxter. A model of inductive bias learnidgurnal of Artificial Intelligence Research
12:149-198, 2000.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradistimnation. Journal of Arti-
ficial Intelligence Researgii5:319-350, 2001.

Richard E. BellmanDynamic ProgrammingPrinceton University Press, 1957.

Richard E. Bellman. A problem in the sequential design of experimebtskhya 16:221-229,
1956.

Shai Ben-David and Reba Schuller Borbely. A notion of task relatednelsng provable multiple-
task learning guaranteellachine Learning73:273-287, 2008.

Darrin C. Bentivegna, Christopher G. Atkeson, and Gordon Cheagtriing from observation and
practice using primitives. IMAAI 2004 Fall Symposium on Real-life Reinforcement Learning
October 2004.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstlire complexity of
decentralized control of Markov decision processktathematics of Operations Resear@y
(4):819-840, November 2002.

1677

TAYLOR AND STONE

Michael H. Bowling and Manuela M. Veloso. Bounding the suboptimality osieg subproblem.
In Proceedings of the Sixteenth International Joint Conference on Artificialligence pages
1340-1347, San Francisco, CA, USA, 1999.

James L. Carroll and Kevin Seppi. Task similarity measures for transfeinforcement learning
task libraries.Proceedings of 2005 IEEE International Joint Conference on Newedvorks 2:
803-808, 2005.

Rich Caruana. Learning many related tasks at the same time with backpiopag@Advances in
Neural Information Processing Systemgdges 657-664, 1995.

Rich Caruana. Multitask learningdachine Learning28:41-75, 1997.

Dongkyu Choi, Tolgo Konik, Negin Nejati, Chunki Park, and Pat Langl8yructural transfer of
cognitive skills. InProceedings of the Eighth International Conference on Cognitive Modeling
2007.

William W. Cohen. Fast effective rule induction. limernational Conference on Machine Learnjng
pages 115-123, 1995.

Marco Colombetti and Marco Dorigo. Robot shaping: developing situagedta through learning.
Technical Report TR-92-040, International Computer Science InstBetdeley, CA, 1993.

Robert H. Crites and Andrew G. Barto. Improving elevator performasagg reinforcement learn-
ing. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editéidyances in Neural Informa-
tion Processing Systems@ages 1017-1023, Cambridge, MA, 1996. MIT Press.

Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghearring relational options for
inductive transfer in relational reinforcement learning.Pimceedings of the Seventeenth Con-
ference on Inductive Logic Programmiriz007.

DARPA. Transfer learning proposer information pamphlet, BAA #0522@5.

Thomas Dean and Robert Givan. Model minimization in Markov decisiongsses. lfProceedings
of the Thirteenth National Conference on Artificial Intelligenpages 106-111, 1997.

Richard Dearden, Nir Friedman, and David Andre. Model based Bayegploration. IfProceed-
ings of the 1999 Conference on Uncertainty in Artificial Intelligenmages 150-159, 1999.

AArthur Dempster, Nan Laird, and Donald Rubin. Maximum-likelihood fronoimplete data via
the EM algorithm.J. Royal Statistical Soc. Set. B (methodologica®:1-38, 1977.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAX@e/éunction decom-
position. Journal of Artificial Intelligence Researchh3:227-303, 2000.

Chris Drummond. Accelerating reinforcement learning by composing sotutidautomatically
identified subtaskslournal of Artificial Intelligence Researcth6:59-104, 2002.

Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational rearfent learning.Machine
Learning 43(1/2):5-52, April 2001.

1678

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Tom Erez and William D. Smart. What does shaping mean for computationédne@ment learn-
ing? InProceedings of the Seventh IEEE International Conference on Dewelapand Learn-
ing, pages 215-219, 2008.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batchrenoidecement learning.
Journal of Machine Learning Researd1503-556, 2005.

Kimberly Ferguson and Sridhar Mahadevan. Proto-transfer learniltarkov decision processes
using spectral methods. IRroceedings of the ICML-06 Workshop on Structural Knowledge
Transfer for Machine Learninglune 2006.

Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policyfimnavith a policy language
bias. In Sebastian Thrun, Lawrence Saul, and Bernhard!Smbf, editors,Advances in Neural
Information Processing Systems. MIT Press, Cambridge, MA, 2004.

Fernando Fernandez and Manuela Veloso. Probabilistic policy reuseeinfarcement learning
agent. InProceedings of the 5th International Conference on Autonomous Agiedifglultiagent
Systems2006.

Norm Ferns, Pablo Castro, Prakash Panangaden, and Doina PMetlpds for computing state
similarity in Markov decision processes. Rioceedings of the 22nd Conference on Uncertainty
in Artificial intelligence pages 174-181, 2006.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metricsafaoidecision processes with
infinite state spaces. IAroceedings of the 2005 Conference on Uncertainty in Artificial Intelli-
gence pages 201-208, 2005.

David Foster and Peter Dayan. Structure in the space of value functidashine Learning 49
(1/2):325-346, 2004.

Allen Ginsberg. Theory revision via prior operationalization Pimceedings of the 1988 National
Conference on Atrtificial Intelligen¢cpages 590-595, 1988.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodiasnef@hkzing plans to new
environments in relational MDPs. Iimternational Joint Conference on Atrtificial Intelligence
(I3CAI-03), Acapulco, Mexico, August 2003.

Okhtay llghami, Hector Munoz-Avila, Dana S. Nau, and David W. Aha.rhizey approximate pre-
conditions for methods in hierarchical plansl@ML '05: Proceedings of the 22nd International
Conference on Machine learningages 337—344, 2005.

Nicholas K. Jong and Peter Stone. Model-based exploration in contiraiatesspaces. Ifihe
Seventh Symposium on Abstraction, Reformulation, and Approximatity2007.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinéonent learning: a
survey.Journal of Artificial Intelligence Research:237-285, May 1996.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. ritlgnand acting in
partially observable stochastic domairstificial Intelligence 101(1-2):99-134, 1998.

1679

TAYLOR AND STONE

Zsolt Kalmar and Csaba Szepésu An evaluation criterion for macro learning and some results.
Technical Report TR-99-01, Mindmaker Ltd., 1999.

Michael Kearns and Satinder Singh. Near-optimal reinforcement leamipolynomial time. In
Proc. 15th International Conf. on Machine Learningages 260-268. Morgan Kaufmann, San
Francisco, CA, 1998.

W. Bradley Knox and Peter Stone. TAMER: training an agent manually \akuative reinforce-
ment. InIEEE 7th International Conference on Development and Learnugust 2008.

J. Zico Kolter, Pieter Abbeel, and Andrew Ng. Hierarchical apprertiipdearning with application
to quadruped locomotion. In J.C. Platt, D. Koller, Y. Singer, and S. Rowditrs,Advances in
Neural Information Processing Systems glges 769-776. MIT Press, Cambridge, MA, 2008.

George Konidaris and Andrew Barto. Autonomous shaping: knowle@dgsfer in reinforcement
learning. InProceedings of the 23rd International Conference on Machine Legrpiages 489—
496, 2006.

George Konidaris and Andrew G. Barto. Building portable options: skifidf@r in reinforcement
learning. InProceedings of the 20th International Joint Conference on Artificiallligence
pages 895-900, 2007.

Gregory Kuhimann and Peter Stone. Graph-based domain mapping fefietregarning in general
games. IrProceedings of The Eighteenth European Conference on Machinaibhgaeptember
2007.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteralmurnal of Machine Learn-
ing Research4:1107-1149, 2003.

John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in soaratiatomy of a general
learning mechanismMachine Learning1(1):11-46, 1986.

Alessandro LazaricKnowledge Transfer in Reinforcement LearninghD thesis, Politecnico di
Milano, 2008.

Bethany R. Leffler, Michael L. Littman, and Timothy Edmunds. Efficientf@icement learning
with relocatable action models. Proceedings of the 22nd AAAI Conference on Artificial Intel-
ligence pages 572-577, 2007.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified fhebstate abstraction
for MDPs. InProceedings of the Ninth International Symposium on Artificial Intelligearod
Mathematicspages 531-539, 2006.

Yaxin Liu and Peter Stone. Value-function-based transfer for reiefoent learning using structure
mapping. IlProceedings of the Twenty-First National Conference on Atrtificial Intefiag pages
415-20, July 2006.

Richard Maclin and Jude W. Shavlik. Creating advice-taking reinforcémeamnners. Machine
Learning 22(1-3):251-281, 1996.

1680

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Richard Maclin, Jude Shavlik, Lisa Torrey, Trevor Walker, and EdwWafild. Giving advice about
preferred actions to reinforcement learners via knowledge-basedlkegression. Ifroceed-
ings of the 20th National Conference on Artificial Intelligen2@05.

Michael G. Madden and Tom Howley. Transfer of experience betwegriorcement learning
environments with progressive difficultirtificial Intelligence Review21(3-4):375-398, 2004.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: Adcign framework for learn-
ing representation and control in Markov decision procesdesrnal of Machine Learning Re-
search 8:2169-2231, 2007.

Maja J. Mataric. Reward functions for accelerated learningntiernational Conference on Machine
Learning pages 181-189, 1994.

John McCarthy. A tough nut for proof procedures. Technical Repail Al Memo 16, Computer
Science Department, Stanford University, 1964.

Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern.sfBraim variable-reward
hierarchical reinforcement learninlylachine Learning73(3):289-312, 2008.

Lilyana Mihalkova and Raymond J. Mooney. Transfer learning by mappitly minimal target
data. InProceedings of the AAAI-08 Workshop on Transfer Learning for @@xfasks July
2008.

Robin Milner. A Calculus of Communicating Systen&pringer-Verlag New York, Inc., Secaucus,
NJ, USA, 1982.

Andrew Moore. Variable resolution dynamic programming: efficiently leaymiction maps in mul-
tivariate real-valued state-spacesMachine Learning: Proceedings of the Eighth International
ConferenceJune 1991.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweepirigfarcement learning with
less data and less real timdachine Learning13:103-130, October 1993.

Andrew Y. Ng and Michael Jordan. PEGASUS: a policy search methodafge MDPs and
POMDPs. InProceedings of the 16th Conference on Uncertainty in Artificial Intellige2080.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invarianckeureward transformations:
theory and application to reward shaping. Rroceedings of the 16th International Conference
on Machine Learning1999.

Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schutia, Be, Eric Berger,
and Eric Liang. Inverted autonomous helicopter flight via reinforcememhieg. Ininterna-
tional Symposium on Experimental Roboti2804.

Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement leaMiaghine Learning49(2-3):
161-178, 2002.

Theodore J. Perkins and Doina Precup. Using options for knowleaigsfér in reinforcement learn-
ing. Technical Report UM-CS-1999-034, The University of Mabsaetts at Amherst, 1999.

1681

TAYLOR AND STONE

Caitlin Phillips. Knowledge transfer in Markov decision processes. Tieahreport, McGill Uni-
versity, School of Computer Science, 2006. UlRtp://www.cs.mcgill.ca/ ~ cphil/CDMP/
summary.pdf .

Bob Price and Craig Boutilier. Accelerating reinforcement learning thmougplicit imitation.
Journal of Artificial Intelligence Researcth9:569-629, 2003.

Martin L. PutermanMarkov Decision Processes: Discrete Stochastic Dynamic Program i
Wiley & Sons, Inc., 1994.

Jan Ramon, Kurt Driessens, and Tom Croonenborghs. Transfairigan reinforcement learning
problems through partial policy recycling. Rroceedings of The Eighteenth European Confer-
ence on Machine Learnin@eptember 2007.

Balaraman Ravindran and Andrew G. Barto. Model minimization in hierarthétaforcement
learning. InProceedings of the Fifth Symposium on Abstraction, Reformulation aneAipma-
tion, 2002.

Balaraman Ravindran and Andrew G. Barto. An algebraic approachsteaation in reinforcement
learning. InProceedings of the Twelfth Yale Workshop on Adaptive and Learning'®&yptmes
109-114, 2003a.

Balaraman Ravindran and Andrew G. Barto. Relativized options: chgpdsaright transformation.
In Proceedings of the Twentieth International Conference on MachinenireafICML 2003)
pages 608-615, Menlo Park, CA, August 2003b. AAAI Press.

Daniel M. Roy and Leslie P. Kaelbling. Efficient Bayesian task-leveldf@anlearning. IrProceed-
ings of the Twentieth International Joint Conference on Atrtificial Intelligettyderabad, India
2007.

Gavin Rummery and Mahesan Niranjan. On-line Q-learning using connesttsyistems. Technical
Report CUED/F-INFENG-RT 116, Engineering Department, Cambridgeddsity, 1994.

Manish Saggar, Thomas D’'Silva, Nate Kohl, and Peter Stone. Autonomausrig of stable
quadruped locomotion. In Gerhard Lakemeyer, Elizabeth Sklar, Dom8woi@mnti, and Tomoichi
Takahashi, editordlRoboCup-2006: Robot Soccer World Cupvdlume 4434 ol_ecture Notes
in Artificial Intelligence pages 98-109. Springer Verlag, Berlin, 2007.

Oliver G. Selfridge, Richard S. Sutton, and Andrew G. Barto. Trainimgj tacking in robotics.
In Proceedings of the Ninth International Joint Conference on Artificial Intefiicg pages 670—
672, 1985.

Lloyd S. Shapley. Stochastic gam&soceedings of the National Academy of Sciences of the United
States of Ameriga39(10):1095-1100, October 1953.

Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, CharleH}, labd Ashwin Ram.
Transfer learning in real-time strategy games using hybrid CBR/RErdeeedings of the Twen-
tieth International Joint Conference on Artificial Intelligen@907.

1682

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Alexander A. Sherstov and Peter Stone. Improving action selection in dNd&@knowledge trans-
fer. InPProceedings of the Twentieth National Conference on Artificial Intelligehdg 2005.

Danny Silver, Goekhan Bakir, Kristin Bennett, Rich Caruana, Massimiliardil? Stuart Russell,
and Prasad Tadepalli. NIPS workshop on “Inductive transfer: a@sylater”, December 2005.

Ozdir Simsek and Andrew G. Barto. An intrinsic reward mechanism forieffteexploration. In
Proceedings of the Twenty-Third International Conference on Madteaening 2006.

Satinder Singh and Richard S. Sutton. Reinforcement learning with reglatimibility traces.
Machine Learning22:123-158, 1996.

Satinder P. Singh. Transfer of learning by composing solutions of elefrsamfaential tasksMa-
chine Learning8:323-339, 1992.

Burrhus F. SkinnerScience and Human Behavid®olliler-Macmillian, 1953.

Vishal Soni and Satinder Singh. Using homomorphisms to transfer optioossamontinuous rein-
forcement learning domains. Rroceedings of the Twenty First National Conference on Artificial
Intelligence July 2006.

Ashwin Srinivasan. The aleph manual, 2001.

Peter Stone and Manuela Veloso. Multiagent systems: a survey from amadedrning perspective.
Autonomous Robqt8(3):345-383, July 2000.

Peter Stone, Richard S. Sutton, and Gregory Kuhimann. Reinforcenagntrig for RoboCup-
soccer keepawayddaptive Behavigrl3(3):165-188, 2005.

Funlade T. Sunmola and Jeremy L. Wyatt. Model transfer for Markois@tgctasks via parameter
matching. InProceedings of the 25th Workshop of the UK Planning and Schedulingjabpe
Interest Group (PlanSIG 2006pecember 2006.

Richard S. Sutton. Learning to predict by the methods of temporal diffeseMachine Learning
3:9-44, 1988.

Richard S. Sutton and Andrew G. Bartatroduction to Reinforcement LearninglIT Press, 1998.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MidRemi-MDPs: A frame-
work for temporal abstraction in reinforcement learnirfytificial Intelligence 112(1-2):181—
211, 1999.

Richard S. Sutton, Anna Koop, and David Silver. On the role of trackintatiosary environments.
In Proceedings of the 24th International Conference on Machine Leay2id@y.

Samarth Swarup and Sylvian R. Ray. Cross-domain knowledge trarssfigy structured represen-
tations. InProceedings of the Twenty First National Conference on Artificial InteliogeJuly
2006.

Umar Syed and Robert Schapier. A multiplicative weights algorithm for ayiceship learning. In
Advances in Neural Information Processing System£Q7.

1683

TAYLOR AND STONE

Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning’roceedings of the
Twentieth International Joint Conference on Artificial Intelligen2e07.

Fumihide Tanaka and Masayuki Yamamura. Multitask reinforcement leaamirnibe distribution
of MDPs. Transactions of the Institute of Electrical Engineers of Japan1Z3(5):1004-1011,
2003.

Brian Tanner, Adam White, and Richard S. Sutton. RL Glue and cod86s8. Attp://mloss.
org/software/view/151/

Matthew E. Taylor and Peter Stone. Representation transfer for reem@nt learning. IMAAI
2007 Fall Symposium on Computational Approaches to Representatemg€lduring Learning
and DevelopmeniNovember 2007a.

Matthew E. Taylor and Peter Stone. Cross-domain transfer for regrfuent learning. IfProceed-
ings of the Twenty-Fourth International Conference on Machine Legrdiane 2007b.

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via-tatg mappings for tem-
poral difference learninglournal of Machine Learning Researd(1):2125-2167, 2007a.

Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via irglemtappings in pol-
icy search reinforcement learning. Tine Sixth International Joint Conference on Autonomous
Agents and Multiagent Systeniday 2007b.

Matthew E. Taylor, Alan Fern, Kurt Driessens, Peter Stone, RichardiMaand Jude Shavlik.
AAAI workshop on “Transfer learning for complex tasks”, July 2008a

Matthew E. Taylor, Nicholas Jong, and Peter Stone. Transferring mesdor model-based rein-
forcement learning. IfProceedings of the Adaptive Learning Agents and Multi-Agent Systems
(ALAMAS+ALAG) workshop at AAMAS-(day 2008b.

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. Transferringrings for model-based
reinforcement learning. IRroceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKpages 488-505,
September 2008c.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon programyeximaster-level play.
Neural Computation6(2):215-219, 1994.

Edward L. Thorndike and Robert S. Woodworth. The influence of ivgmuent in one mental
function upon the efficiency of other functionBsychological Revievd:247—261, 1901.

Sebastian Thrun. Is learning theh thing any easier than learning the first?Aldvances in Neural
Information Processing Systemwelume 8, pages 640-646, 1996.

Sebastian Thrun and Lorien Pratt, editok®arning to learn Kluwer Academic Publishers, Nor-
well, MA, USA, 1998.

Lisa Torrey, Trevor Walker, Jude W. Shavlik, and Richard Maclin. gsidvice to transfer knowl-
edge acquired in one reinforcement learning task to anothePrdoeedings of the Sixteenth
European Conference on Machine Learnipgges 412—-424, 2005.

1684

TRANSFERLEARNING FORREINFORCEMENTLEARNING DOMAINS: A SURVEY

Lisa Torrey, Jude W. Shavlik, Trevor Walker, and Richard Maclin. Skiljjuisition via transfer
learning and advice taking. IRroceedings of the Sixteenth European Conference on Machine
Learning pages 425-436, 2006.

Lisa Torrey, Jude W. Shavlik, Trevor Walker, and Richard Maclin. fRatal macros for transfer
in reinforcement learning. I®Proceedings of the Seventeenth Conference on Inductive Logic
Programming 2007.

Thomas J. Walsh, Lihong Li, and Michael L. Littman. Transferring statérattions between
MDPs. InProceedings of the ICML-06 Workshop on Structural KnowledgesFearior Machine
Learning June 2006.

Christopher J. C. H. Watkind.earning from Delayed Reward®hD thesis, King’s College, Cam-
bridge, UK, 1989.

Shimon Whiteson, Adam White, Brian Tanner, Richard S. Sutton Sutton, [Poawup, Peter Stone,
Michael Littman, Nikos Vlassis, and Martin Riedmiller. ICML workshop on “Th@08 RL-
competition”, July 2008.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of codcidpand hidden contexts.
Machine Learning23(1):69-101, 1996.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectioriaforce-
ment learning Machine Learning8:229-256, 1992.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-tasforeement learning: a
hierarchical Bayesian approach. IIBML '07: Proceedings of the 24th international conference
on Machine learningpages 1015-1022, 2007.

Wei Zhang and Thomas G. Dietterich. A reinforcement learning apprmajci-shop scheduling.
In Proceedings of the International Joint Conference on Artificial Intellgged995.

1685

