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Abstract. Traffic congestion is one of the leading causes of lost productivity
and decreased standard of living in urban settings. In previous wiilisped at
AAMAS, we have proposed a novel reservation-based mechanisimcfeasing
throughput and decreasing delays at intersections [3]. In moretreagk, we
have provided a detailed protocol by which two different classes afitage-
tersection managers and driver agents) can use this system [4].|\&ehbat

the domain created by this mechanism and protocol presents manywoppes

for multiagent learning on the parts of both classes of agents. In this,pape
identify several of these opportunities and offer a first-cut apprt@aelach.

1 Introduction

Traffic congestion is one of the leading causes of lost priddtycand decreased stan-
dard of living in urban settings. According to a recent stady85 U.S. cities [18],
annual time spent waiting in traffic has increased from 1&$per capita to 46 hours
per capita since 1982. In the same period, the annual finaoagbof traffic congestion
has swollen from $14 billion to more than $63 billion (in 2003 dollars). Each year,
Americans burn approximately 5.6 billion gallons of fuelilehidling in heavy traffic.
Recent advances in artificial intelligence suggest thatrearhous vehicle navigation
will be possible in the near future. Individual cars can nereluipped with features of
autonomy such as cruise control, GPS-based route planbihd 6], and autonomous
steering [10, 12]. It is inevitable that before long manyha# tars on the road will have
such capabilities, thus opening up the possibility of aatbaus interactions among
multiple vehicles.

Multiagent Systems (MAS) is the subfield of Al that aims toypde both principles
for construction of complex systems involving multiple aggeand mechanisms for co-
ordination of independent agents’ behaviors [17]. In eadiork published at AAMAS,
we have proposed a MAS-based approach to alleviating tiaffigestion, specifically
at intersections [4].

Current methods for enabling traffic to flow through intet&ats include building
overpasses and installing traffic lights. However, the faris very expensive and for-
bids turning, while the latter can be quite inefficient, afteequiring cars to remain
stopped even when no cars are present on the intersectitig roa



At this time, it is possible to create a small-scale systemtiich all cars are piloted
by a central computer. Consider, for example, the task dfrobhimg ten vehicles on an
open factory floor. However, scaling such a system to hamdietarsection in which a
city’s worth of cars might turn up would involve prohibitiyeexpensive and inefficient
communication and control infrastructure. Our goal is taximeze the efficiency of
moving cars through intersections with minimal centralizafrastructure. We assume
that intersections can be outfitted with a simple wirelesaroanication system and a
protocol (which we introduced in a previous paper[2]) fonrounicating with oncom-
ing traffic and giving permission for cars to pass. In theaystve developed, vehicles
must traverse intersections according to a set of paramaggeed upon by the vehicle
and the intersection manager (as they do today by obeyingnmddyreen lights), but
otherwise are free to decide for themselves how to drivehEac is an autonomous
agent, and in particular need not surrender control to anyrakézed decision maker.

We have demonstrated that our novel reservation systematicity outperforms
systems used in common practice, including traffic lightsstop signs. We began with
a model in which cars could only go straight and move at costelocity through the
intersection [3]. In our latest results, we have extended¥fstem to allow for turns and
acceleration in the intersection [4].

In all of this prior work, the behaviors of both the driver ageand the intersec-
tion control agent were all identical and fixed throughowt simulation. However, a
main feature of our research has been the definition of arnt-@g@epedent protocol for
car-intersection interaction. In particular, we expeetttim general, intersections will
have different traffic control algorithms (perhaps depegdin the topology of the in-
tersection and/or expected traffic flows), and that indeet eahicle manufacturer will
create proprietary vehicle control algorithms. As longhes/tadhere to our pre-defined
protocol, there is no reason to prevent such diversity.

Once we open the possibility of varying behaviors on the pfttie agents, the in-
tersection scenario becomes, in a sense, a multiagent gdméting for the possibility
of strategic behavior on the part of the agents, and ultipateltiagent learning-based
approaches.

In this paper, we identify several possible directions fdeading our current model
that will require such multiagent learning. For each dimttwe discuss the strategic
issues and propose a first approach towards multiagentigarn

The remainder of this paper is organized as follows. In $a@j we present a list
of properties we believe a multiagent intersection contnrethanism should have. In
Section 3 we describe the reservation-based system thativeedneated (in simula-
tion) which we believe has these properties. In Sectionscb@awe present several
opportunities for using machine learning in the intersetthanager and driver agents,
respectively. In Section 7, we mention other work that hanlaone in this area. We
conclude in Section 8.

2 Desired Properties

In the process of developing our system we outlined sevetgiegsties we believed
should hold in order for the system to be realistic and pecatti



1. The agents should only communicate information whicteessary for the system
to function properly.

2. The agents should only have access to information thabeamliably obtained
with current technology.

3. Communication failure (dropped messages) should nddteithe system’s safety
properties.

4. The vehicles should be treated as individual agents, antkentralized controller
should have any more control over them than necessary.

5. The system should incorporate a simple communicatictopobthat allows agents
to know only a minimal amount about each other. As long as tagebey and
understand the protocol, no extra information exchangetmranteraction should
be required.

6. Every vehicle should eventually make it through the seetion (i.e. no deadlocks
or starvation).

Many of these properties also ensure that the system wilhienable to machine
learning techniques. Specifically, the simple, reliabletgeol ensures that agents are
more or less self-contained — the intersection managet éxténsively involved in
the driver agent’s decision making process (and vice veFsajhermore, the require-
ment that every vehicle makes it through the intersectioama¢hat a machine learning
algorithm in its early stages will not bring the system to i &a a result of risky explo-
ration.

3 The Reservation System

In our previous work, we proposed a novel reservation-basglti-agent approach to
alleviating traffic, specifically at intersections. Thisssm consisted of two types of
agentsintersection manageranddriver agents Each system consists of an intersec-
tion manager for each intersection and a driver agent fdr eelicle. Intersection man-
agers are responsible for directing the vehicles througlmttersection, while the driver
agents are responsible for controlling the vehicles to Wwilhey are assigned. To im-
prove the throughput and efficiency of the system, the dragants “call ahead” to
the intersection manager and request space-time in theséctéon. The intersection
manager then determines whether or not these requests caatbBepending on the
decision the intersection manager makes, the driver agfber eecords the parameters
of the request (theeservation and attempts to meet them, or it makes another request
at a later time. We have described our implementation of wedmgent in previous
papers [4, 2]. Note that our implementations of the resematystem and the driver
agent are just two possibilities. As long as the agents adioahe protocol, the system
will still work. In practice, each agent could run a diffeteigorithm or use a different
heuristic to improve performance.

To determine whether or not a request can be met, the reggrwadnager simulates
the journey of the vehicle across the intersection, whidivides into a grid ofr x n
tiles. The parameter is called thegranularity of the reservation manager. At each time
step of the simulation, it determines which tiles the vehimtcupies. If throughout this
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simulation, no required tile is occupied by another veh(ftlem a previous reservation),
the manager reserves the tiles for this vehicle.

BT

Fig. 1: A screenshot of our simulator in action.

In order to evaluate the performance of the reservatioresystve created a cus-
tom simulator. A screenshot of the simulator in action carséen in Figure 1. We
tested the reservation system against two oiftersection control policies the over-
pass and the traffic light. An intersection control policyaisnethod the intersection
managers use to determine when specific vehicles are allowtbé intersection. Us-
ing the simulator, we showed that using the reservatioredbaslicy, vehicles crossing
an intersection experience much lowdglay (increase in travel time from the opti-
mal) versus the traffic light. Furthermore, we showed thatréiservation-based policy
also drastically increases the throughput of the inteisecEor any realistic intersec-
tion control policy, there exists an amount of traffic abov@ak vehicles arrive at the
intersection more frequently than they can go through thersection. At this point,
the average delay experienced by vehicles travelling tiivaie intersection grows
without bound. Compared to the traffic light, this amount maffftc is much higher
for the reservation system. Videos of our most recent dpweémts can be found at
http://ww. cs. ut exas. edu/ user s/ kdr esner/ paper s/ 2005aanas/ .

4 Communication Protocol

In our latest work, we added the protocol by which the agesmbsscommunicate the bare
minimum of information necessary to function appropriat&he protocol consists of



several message types for each kind of agent, as well as sdesegoverning when
the messages should be sent and what sorts of guaranteespargothem. A detailed
specification of the protocol including full syntax and sewies is available in our
technical report [2]. We believe that this protocol will pdhcilitate the application of
machine learning techniques to the intersection domaire e give a brief overview
of the types of messages available to the agents using thtisqod.

4.1 \ehicle— Intersection

There are four types of messages that can be sent from vehidlee intersection.

1. REQUEST— This is the message a vehicle sends when it does not haveraaes
tion and wishes to make one. It contains the properties of¢hécle (ID number,
performance, size, etc.) as well as some properties of ty@ped reservation (ar-
rival time, arrival velocity, type of turn, arrival lane ce}.

2. CHANGE-REQUEST— This is the message a vehicle sends when it has a reserva-

tion, but would like to switch to a different set of paramster

3. CANCEL — Thisis the message a vehicle sends when it no longer désimsrent
reservation.

4. RESERVATION-COMPLETED— This message is used when the vehicle has com-
pleted its traversal of the intersection. This message earsbd to collect statistics
for each vehicle, which can be recorded in order to analydeéraprove the perfor-
mace of the intersection manager.

4.2 Intersection— Vehicle

There are three types of messages that can be sent frometseiction to the individual
vehicles.

1. CONFIRMATION — This message is aresponse to a vehicleReEST(or CHANGE-
REQUEST) message. It can contain a counter-offer by the interseclibe reser-
vation parameters in this message are implicitly accepyetidovehicle, and must
be explicitly cancelled if the driver agent of the vehicleedmot approve. Note
that this is safe to faulty communication — the worst that bappen is that the
intersection reserves space that does not get used.

2. REJECTION — By sending this message, an intersection can inform a leeshic
that the parameters sent in the latestREST(or CHANGE-REQUEST) were not
acceptable, and that the intersection either could not @mdt want to make a
counter-offer. This message also contains a field indigatihether or not the re-
jection was because the reservation manager requires liideséo stop at the in-
tersection before entering. This lets the driver agent kttawit should not attempt
any more reservations until it reaches the intersection.

3. ACKNOWLEDGMENT — This message acknowledges the receipt obai€EL or
RESERVATION-COMPLETED message.



5 Learning Opportunities For The Intersection Manager

At this point in the paper we have described the current sthteir implementation,
describing mainly the aspects required to motivate theiagént learning opportunities
we see in the future. We now turn our attention to those oppdrés. Our goal at the
outset of this project was to improve the efficiency of ingetns. It seems natural,
then, to start with the agent controlling which vehicleséaecess to the intersection:
the intersection manager.

5.1 Delayed Response

Incorporating any nontrivial learning into the interseatimanager may require a few
conceptual changes to the intersection manager. As itstatidntersection managers
in the system respond immediately to requests made by eshi€liven this constraint,
the current reservation system performs as well as it can earit tell what is going
to happen in the future. However, if we relax this constraimd allow the reservation
manager to respond to requests at a later time, the intensesanager would have time
to get a feel for the competing requests and can make a mokénfamed decision.

This modification suggests a straightforward method foegheining whether or not
to grant reservations. When the intersection manager exaivequest, it can calculate
the last possible point at which it can respond without fagydihe sending vehicle to
slow down for lack of having a reservation. The intersectitemager holds on to the
reservation request until that time. In the meantime, istagrs other vehicles’ requests
and can then grant reservations more efficiently.

Allowing this delayed response offers an immediate impnaet over the current
system. Consider the following example in which three velicA, B, andC all send
reservation requests to the intersection manager a shuwetdfter one another. Now
suppose that vehicld’s request conflicts with botl’s andC’s (that is, they require
the same reservation tile at a specific time), but #atrequest does not conflict with
C’s. With our current system, the reservation manager wopjadae A’s request, but
reject bothB andC'. With the new system, onlyl would be rejected.

In addition to improving the efficiency of the system, addagelayed response
creates some opportunites to apply machine learning. liicpkar, as the number of
outstanding reservation requests increases, the numpessible responses scales ex-
ponentially. Since timeliness is an important constraims, intersection manager will
need to intelligently search through set of possible respsiin order to optimize the
overall performance. Learned search control knowledgedas off-line optimization
trials could play an important role in this regard.

Furthermore, projected incoming traffic can also play anartgnt role. Once a
reservation is accepted, it can’t be cancelled. Howeverptirameters of reservations
made in the near future are going to be related to the parasradtihe reservations made
now. For example, in heavy traffic, it may be best to rejectsemeation request even
when it doesn’t conflict with many other requests in the same frame — granting
that reservation may cause the system to perform much mamtypet a slightly later
time. In this sense, a learned model of incoming traffic asatfan of time of day, day
of week, and/or recent history could improve performancedyying as an input to the
forward simulations of the impact of any given decision.



5.2 Vehicles With Priorities

In our current simulation, all vehicles are treated as dguportant with regards to
the performance metric. However in practice, the inteisacthould be able to give
preferential treatment to a subset of vehicles, such asgamey vehicles. For example,
a normal commuter would have a low priority, a police car widuhve a high priority,
and an ambulance or fire truck en route to a fire would have yigfreehpriority.

The first-cut solution to this problem is straightforwardhemever the reservation
manager receives a request that conflicts with a requeshvithiiccurrently holding, it
rejects the lower priority request. This does enforce thestraint that higher priority
vehicles are given preference, but is not optimal by anydref the imagination. Con-
sider again three vehicles: a daily communter, a policearat,an ambulance racing a
heart-attack victim to the hospital. If the commuter is iorfr of the ambulance and it is
forced to yield to the police car, it will hold up the ambularas well. If the intersection
manager instead just allowed the commuter through, the Eambeimay have been able
to pass unhindered. The actual relationship between thestoha particular vehicle’s
reservation, that vehicle’s priority, the charactersti€ other approaching vehicles, and
how much it is worth to the intersection to accept the res@mas very complicated.
However, a reinforcement learning algorithm may be ablesfature this relationship.
When vehicles complete a trip across the intersection, teesaction manager could be
given a reward signal inversely proportional to the delay\hhicle experienced. The
manager could eventually learn to grant reservations basdtie vehicles’ priorities
and the current traffic patterns so as to maximize the systewe'rall future reward.

5.3 The Intersection as a Market

Another consideration is that vehicles might have to paysi the intersection. With
states in the U.S. such as Oregon and California alreadyidemitgy taxing motorists
by the mile, this is not far-fetched. Along with reservati@mguests, vehicles would
transmit a bid. The reservation manager’s goal would be bectahe most revenue.
A first-cut solution would be analagous to the example withicle priorities: when a
reservation comes in, reject any currently pending resienathat conflict with it and
have a lower bid. This is obviously not optimal — consider aayofn vehicles such
that for all0 < 7 < n, vehicle: andi 4 1 conflict. As long as the bid for vehiclet 1 is
greater than that of vehiclgthe reservation manager will wind up only letting through
vehiclen. Instead, it might have been able to allow through vehitles . . .. This is
approximatelys vehicles and would generate a lot more revenue.

In this context, the intersection can be framed as a continakearing combina-
torial auction. The decision for any given grid cell must wcehenever the first car
that needs it is about to enter the intersection. There iadetff between letting a car
through and retaining flexibility for later that the intecien manager must maintain.
That is, letting an individual car through is good for theelrsiection manager. However,
not letting that car through may lead to more positive benlfiter on. Since even a
single combinatorial auction can be computationally gostisolve, continually clear-
ing, interacting combinatorial auctions are likely to baactable. However, based on
off-line simulation, the intersection manager could leaxpected marginal values for
granting a request to a given driver and therefore more tafédg balance the above
tradeoff.



6 Learning Opportunities for the Driver Agent

While there are many opportunities for the intersection rgean&o improve, they are
mostly of the form of a single agent learning how to interaithunultiple fixed agents
(the drivers). The truenultiagentlearning opportunities lie in the vehicles.

6.1 Bidding in the Market System

In Section 5, we showed how a market could play an importdatinothe intersection
management problem. In the example we gave, it wasn't clearthe agents should
determine what bid to place with their reservation requestsagent could start with
a low bid and then continue raising it until one gets accepbed this process takes
time and it could wind up severely delayed just because inivaslling to commit to
the higher bid up front. This is a very challenging problem e-sblve it effectively
would require a more detailed response from the intersectianager: the amount of
the bid that caused the request to be rejected, the averdgenoiunt for this particular
intersection at this time of day, and so forth. Even with thje of information, though,
it is unclear how to proceed. Learning the relationship leetwtime of day, day of
week, recent traffic reports, and a reasonable price foraavation is a task well-suited
to a neural network or other supervised learning algoritihnoff-line simulation, many
vehicles could be run through the intersection, and whergetga reservation, it could
use the cost it eventually had to pay as a target value, wesgigrhaps by how quickly
it got the reservation.

6.2 Lane Changing

One of the features of our reservation system is the comalgtmomy of driver agents
while they are outside the intersection. Thus, when conisigdow to incorporate some
sort of lane changing behavior, ideally we'd like to avoidiing the intersection man-
ager tell the vehicles which lane they should be in. Howeagim the previous example,
having the reservation manager (or some other source)dative vehicle with relevant
information could be extremely useful. For example, if aeigection manager realizes
that one lane has a lot of cancelled reservations (e.g. fratalied vehicle in that
lane preventing other vehicles from fulfilling their resatiens), this information might
let vehicles know that they should switch to another lanéeid of trying to make it
through in the lane with the stalled car. It would then beriegéing to explore how much
and what kind of information the intersection manager isinegl to give the vehicles
such that they can best choose which lane to use. If the drgets were able to learn a
better policy for lane choice, we could examine which infation is useful for making
that decision without having to first determine preciselwhbey are using it.

6.3 Making Better Reservations

In the current implementation, driver agents must find a wayéke reservations that
they can keep. To do this, they must be able to accuratelygingtien they will reach



the intersection, accounting for delays from other velieled road hazards. In a real-
life implementation, statistics and data the intersectimmager has collected may be
useful and thus made available to the driver agent. For elearap in both the bidding
and lane-changing examples, the intersection manager eaklb to provide vehicles
with statistics on recent reservations. Once again, hovwséothiese data is not imme-
diately obvious and certainly depends on the algorithmerifieg or otherwise) used
by the other drivers. While the sensors in our simulated Vehido not do it currently,
they might be able to track the speed of the vehicle in froer ¢lre 10 seconds before
making a reservation, or determine that the vehicle in fimatpublic bus and therefore
might stop before the intersection for a long period of ti@@&en these new inputs, the
driver agent could learn to better predict when and how itaviive at the intersection.

7 Related Work

Rasche and Naumann have worked extensively on decenttaiatetions to intersec-
tion collision avoidance problems [9, 11]. Many approadioesis on improving current
technology (systems of traffic lights). For example, Rooaedallows intersections to
act autonomously, sharing the data they gather [15]. Theesattions then use this in-
formation to make both short- and long-term predictionsuatibe traffic and adjust
accordingly. This approach still assumes human-conttolhicles. Bazzan has used
an approach using both MAS and evolutionary game theorytwihimlves multiple in-
tersection managers (agents) that must focus not only @ dmals, but also on global
goals [1].

Work is also being done with regard to the control of the imdiial vehicles. Haé
and Chaib-draa have taken a MAS approach to collaborativendrby allowing ve-
hicles to formplatoons groups of varying degrees of autonomy, that then cooréinat
using a hierarchical driving agent architecture [5]. White focusing on intersections,
Moriarty and Langley have shown that reinforcement leaymian train efficient driver
agents for lane, speed, and route selection during freevispngl [8].

On real autonomous vehicles, Kolodko and Vlacic have cdeatgrimitive system
for intersection control which is very similar to the graamity-1 reservation system [7].

Actual systems in practice (not MAS) for traffic light optiattion include TRAN-
SYT [13], which is an off-line system requiring extensivaalgathering and analysis,
and SCOOT [6], which is an advancement over TRANSYT, resjpantb changes in
traffic loads on-line. However, almost all of the methodsriagtice or discussed above
still rely on traditional signalling systems.

8 Conclusion

The intersection management problem presents a chalkgyginpromising domain
for multi-agent learning research. The intersection cdmrechanism we developed is
a vast improvement over current methods, but with a few eibes poses some chal-
lenging problems. We have provided several examples ofstatilems where machine
learning could be used to improve the performance of botirsection managers and
driver agents. These examples are at this point speculatiemgoing research we are
investigating how to bring them and other learning oppdtieminto practice.
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