
Cooperating with Unknown Teammates in Robot Soccer

Samuel Barrett Peter Stone

University of Texas at Austin
{sbarrett,pstone}@cs.utexas.edu

MIPC Workshop

July 28, 2014

Samuel Barrett, Peter Stone Cooperating with Unknown Teammates in Robot Soccer 1



Introduction

Approach

Results

Conclusions

Example

Ad Hoc Teamwork

Evaluation

Domain

Disclaimer

◮ Added results from paper

◮ Different planning algorithm

◮ Still ongoing work
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Approach
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Example

Ad Hoc Teamwork

Evaluation

Domain

Ad Hoc Teamwork

◮ Only in control of a single

agent

◮ Unknown teammates

◮ Shared goals

◮ No pre-coordination

Examples in humans:

◮ Pick up soccer

◮ Accident response
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Ad Hoc Teamwork

Evaluation

Domain

Motivation

◮ Agents are becoming more common and lasting longer

◮ Both robots and software agents

◮ Pre-coordination may not be possible

◮ Agents should be robust to various teammates

◮ Need to adapt quickly!
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Ad Hoc Teamwork

Evaluation

Domain

Motivation

◮ Agents are becoming more common and lasting longer

◮ Both robots and software agents

◮ Pre-coordination may not be possible

◮ Agents should be robust to various teammates

◮ Need to adapt quickly!

Research Question:

How can an agent cooperate with unknown

teammates to play robot soccer?
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Example

Ad Hoc Teamwork

Evaluation

Domain

Ad Hoc Agent Evaluation

◮ Can the ad hoc agent

replace any teammate on

the team?

◮ Compare against other ad

hoc agents

◮ Depends on possible tasks

◮ Depends on possible

teammates
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Example

Ad Hoc Teamwork

Evaluation

Domain

Half Field Offense

◮ 4 offensive players

◮ 5 defensive players

◮ Noisy observations and

actuators

◮ Offense tries to score

◮ Defense are Helios agents

◮ Episode ends when:
◮ Score
◮ Ball leaves half field
◮ Ball captured by

defense
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Overview

◮ Build on Helios code release (agent2d )

◮ Model as Markov Decision Process (MDP)

◮ Learn to cooperate with past teammates

◮ Select policies online
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MDP Formulation

MDP = 〈S,A,P,R〉

◮ S = State

◮ A = Actions

◮ P = transition function

◮ R = reward function
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MDP Formulation

MDP = 〈S,A,P,R〉

State:
◮ Agent’s x,y position and

orientation
◮ Agent’s goal opening angle
◮ Teammate’s goal opening

angle
◮ Distance to opponent
◮ Distance from teammate to

opponent
◮ Pass opening angle
◮ Distance to teammate
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Overview

MDP Formulation

Learning

Selecting a Policy

MDP Formulation

MDP = 〈S,A,P,R〉

Actions with ball:

◮ High level

◮ Select from a many options using hand-coded evaluation

◮ 6 actions:

◮ Shoot

◮ Short dribble

◮ Long dribble

◮ Pass x3
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MDP Formulation

MDP = 〈S,A,P,R〉

Actions away from ball:

◮ 7 actions:

◮ Stay still

◮ Towards ball

◮ Towards goal

◮ Towards teammate

◮ Away from teammate

◮ Towards opponent

◮ Away from opponent
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MDP Formulation

MDP = 〈S,A,P,R〉

Transition function:

◮ Gives resulting state after taking an action

◮ Given by the 2D RoboCup simulator

◮ Not explicitly modeled

Samuel Barrett, Peter Stone Cooperating with Unknown Teammates in Robot Soccer 14



Introduction

Approach

Results

Conclusions

Overview

MDP Formulation

Learning

Selecting a Policy

MDP Formulation

MDP = 〈S,A,P,R〉

Reward function:

◮ Describes the value of a state

◮ 1,000 on win

◮ -1,000 on loss

◮ -1 per step
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Learning

Selecting a Policy

Collect Data

◮ Collect 〈s,a, r , s′〉

◮ s – original state

◮ a – action

◮ r – reward

◮ s′ – next state

◮ In parallel
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Learning

Selecting a Policy

Q-Learning

◮ Iterate through stored experiences

◮ Estimates values of state-actions

◮ Update rule:

Q(s,a) = Q(s,a) + α[r + γ max′aQ(s′,a′)−Q(s,a)]
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Q-Learning

◮ Iterate through stored experiences

◮ Estimates values of state-actions

◮ Update rule:

Q(s,a) = Q(s,a) + α[r + γ max′aQ(s′,a′)−Q(s,a)]

◮ Use Q(λ)

◮ Incorporates elligibility traces

◮ Aids in credit assignment
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Learning

Selecting a Policy

Function Approximation

◮ Generalize known values to neighbors

◮ Handles continuous space
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MDP Formulation

Learning

Selecting a Policy

Function Approximation

◮ Generalize known values to neighbors

◮ Handles continuous space

◮ CMAC Tile coding

◮ Q̂(s,a) =
∑

i wi fi

◮ Perform parameter search over parameters
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Different Teammates

◮ Learning a single policy does not work well for all

teammates

◮ Instead, learn policy for each teammate
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Overview

MDP Formulation

Learning

Selecting a Policy

Different Teammates

◮ Learning a single policy does not work well for all

teammates

◮ Instead, learn policy for each teammate

◮ Question: how do we know which policy to use for an

unknown teammate?
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How to select?

◮ Can treat as a multi-armed bandit problem

◮ Slow to learn

◮ One pull = 1 game of HFO
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Learning

Selecting a Policy

How to select?

◮ Can treat as a multi-armed bandit problem

◮ Slow to learn

◮ One pull = 1 game of HFO

◮ Compare observed teammate actions to past experiences

◮ Normally distributed

◮ Update using Bayes rule

◮ Bound loss

Samuel Barrett, Peter Stone Cooperating with Unknown Teammates in Robot Soccer 20



Introduction

Approach

Results

Conclusions

Teammates

Setup

Limited Half Field Offense
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Teammates

◮ Externally-created teammates

◮ Total of 7 teammate types
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Teammates

◮ Externally-created teammates

◮ Total of 7 teammate types

◮ 6 of top 8 teams from the 2013 competition

◮ aut

◮ axiom

◮ cyrus

◮ gliders

◮ helios

◮ yushan

◮ Plus the agent2d code release
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Setup

◮ 10,000 trials

◮ Randomly selected teammate

◮ Teammate is unknown to agent

◮ Baselines:

◮ Randomly select a policy to use

◮ Select the policy learned for that teammate
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Problem Description

◮ Limited version of the game

◮ 2 offensive players

◮ 1 teammate

◮ 2 defensive players

Samuel Barrett, Peter Stone Cooperating with Unknown Teammates in Robot Soccer 23



Introduction

Approach

Results

Conclusions

Teammates

Setup
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Results for 2v2
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Limited Half Field Offense

Full Half Field Offense

Results for 2v2

◮ Knowing your teammate’s behavior helps

◮ Bandit algorithm is slow for this setting

◮ 7 arms

◮ Only 25 pulls
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Results for 2v2

◮ Knowing your teammate’s behavior helps

◮ Bandit algorithm is slow for this setting

◮ 7 arms

◮ Only 25 pulls

◮ Bayesian approach learns quickly

◮ Outperforms bandit significantly
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Problem Description

◮ 4 offensive players

◮ 3 teammates

◮ 5 defensive players

◮ Harder task
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Setup
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Full Half Field Offense

Results for 4v5
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Setup

Limited Half Field Offense

Full Half Field Offense

Results for 4v5

◮ Less improvement by learning policy

◮ Only 1 of 9 agents in play

◮ Slower to learn than 2v2 case

◮ More noise from more agents
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Teammates

Setup

Limited Half Field Offense

Full Half Field Offense

Results for 4v5

◮ Less improvement by learning policy

◮ Only 1 of 9 agents in play

◮ Slower to learn than 2v2 case

◮ More noise from more agents

◮ Can learn which policy to use

◮ Bayesian approach outperforms bandit significantly
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Conclusions

◮ Handle a complex domain

◮ Can learn policy to cooperate with teammates
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Approach

Results

Conclusions

Conclusions

Related Work

Questions

Conclusions

◮ Handle a complex domain

◮ Can learn policy to cooperate with teammates

◮ Can figure out how to cooperate with unknown teammates

on the fly
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Related Work
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Related Work

◮ P. Stone and S. Kraus. To teach or not to teach? Decision

making under uncertainty in ad hoc teams. In AAMAS ’10,

May 2010

◮ P. Stone, G. A. Kaminka, and J. S. Rosenschein. Leading

a best-response teammate in an ad hoc team. In AMEC.

November 2010

◮ F. Wu, S. Zilberstein, and X. Chen. Online planning for ad

hoc autonomous agent teams. In IJCAI, 2011
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Related Work

◮ S. Liemhetcharat and M. Veloso. Modeling mutual

capabilities in heterogeneous teams for role assignment.

In IROS ’11, pages 3638 –3644, 2011

◮ M. Bowling and P. McCracken. Coordination and

adaptation in impromptu teams. In AAAI, pages 53–58,

2005

◮ J. Han, M. Li, and L. Guo. Soft control on collective

behavior of a group of autonomous agents by a shill agent.

Journal of Systems Science and Complexity, 19:54–62,

2006
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Conclusions

Related Work

Questions

Thank You!

◮ Can learn to cooperate

with different teammates in

the 2D RoboCup domain
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