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Abstract

An ad hoc team setting is one in which teammates must
work together to obtain a common goal, but without any prior
agreement regarding how to work together. In this paper we
present arole-based approachfor ad hoc teamwork, in which
each teammate is inferred to be following a specialized role
that accomplishes a specific task or exhibits a particular be-
havior. In such cases, the role an ad hoc agent should select
depends both on its own capabilities and on the roles cur-
rently selected by the other team members. We formally de-
fine methods for evaluating the influence of the ad hoc agent’s
role selection on the team’s utility, leading to an efficientcal-
culation of the role that yields maximal team utility. In sim-
ple teamwork settings, we demonstrate that the optimal role
assignment can be easily determined. However, in complex
environments, where it is not trivial to determine the opti-
mal role assignment, we examine empirically the best suited
method for role assignment. Finally, we show that the meth-
ods we describe have a predictive nature. As such, once an
appropriate assignment method is determined for a domain,
it can be used successfully in new tasks that the team has not
encountered before and for which only limited prior experi-
ence is available.

1 Introduction
Ad hoc teamwork is a relatively new research area (Bowling
and McCracken 2005; Jones et al. 2006)—and the subject of
a AAAI challenge paper (Stone et al. 2010)—that examines
how an agent ought to act when placed on a team with other
agents such that there was no prior opportunity to coordinate
behaviors. In some team domains, such as search and rescue
missions and many team sports, the team behavior can be
broken down intoroles. In such domains, an ad hoc team-
work agent’s main task is to decide which role to assume,
such that the team’s performance is maximized.

The decision of which role an ad hoc team member should
assume is situation-specific: it depends on the task the team
is to perform, on the environment in which it will operate,
and on the capabilities of the team members. One trivial ap-
proach to the problem is for an ad hoc team member to as-
sume the role at which it is mostindividuallycapable. How-
ever, the choice of optimal role—one that results in highest
teamutility—rarely depends only on the ad hoc team mem-
ber, but also relies on the behavior of the other team mem-
bers. We therefore examine the contribution of an ad hoc
team member to the team by the measure ofmarginal utility,
which is the increase (or decrease) in a team’s utility when
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an ad hoc agent is added to the team and assumes a particu-
lar role. Anoptimal mappingof an ad hoc team member to
a role is, therefore, one that maximizes the marginal utility,
hence maximizing the contribution of the ad hoc agent to the
team’s utility. In this paper we describe several methods for
modeling the marginal utility of a role selection as a function
of the number of teammates performing the various roles.

As an example that we will return to throughout the paper,
consider the well-studied problem of multi-robot foragingin
which a team of robots is required to travel inside a given
area, detecting targets and returning them to a predefined
station (Mataric 1994). The goal of each robot is for the team
to collect as many targets as possible as quickly as possible.
Consider a special case of this problem, in which the targets
are divided into two groups: red targets to the North and blue
targets to the South, where the blue targets are worth twice
as much to the team as the red targets. In this problem, as
demonstrated in this paper, determining the optimal task the
ad hoc agent should perform (corresponding to the type of
target it should collect) is easily computable.

In more complex environments, deciding what functional
form the marginal utility estimate should take becomes more
challenging. For such cases, an empirical evaluation is re-
quired. We study a capture-the-flag style variant of Pacman
(DeNero and Klein 2010) to investigate the implication of
different possible role selections by the ad hoc agent on the
marginal utility.

We show in three different tasks within this domain that
it is possible to model the marginal utility of a role selection
using a particular functional form. We then fit the parame-
ters of this function with a limited amount of data from a new
task, and use the new fitted function as apredictive modelto
determine how the ad hoc agent should behave in the new
task in situations that it has not previously encountered.

The main contributions of this paper are i) a formalism of
role-based ad hoc teamwork scenarios, ii) a classification of
types of tasks according to the patterns they exhibit in terms
of marginal utilities for role mappings, and iii) detailed ex-
periments in a new role-based ad hoc teamwork domain.

2 Problem Definition
An ad hoc teamwork problem is one in which several agents
find themselves in a situation where they all have perfectly
aligned goals, yet they have had no previous opportunity to
coordinate their teamwork (Stone et al. 2010). This problem
arises quite often for humans, who tend to solve the prob-
lem quite naturally. However, autonomous agents — such
as robots and software agents — do not currently handle this
problem as gracefully.



Plenty of progress and success has been achieved using
pre-coordinated teams of robots and agents. On these teams,
which can be found in warehouses (Wurman, D’Andrea, and
Mountz 2007), RoboCup soccer fields (Stone and Veloso
1999), and disaster recovery areas (Sugiyama, Tsujioka, and
Murata 2008), the agents are often all programmed by the
same group and all follow a pre-specified coordination pro-
tocol or rely on the ability to communicate. However, as
agents become more prevalent in the world and are designed
by many different companies and universities, there will be-
come a need for these agents to adapt to one another and
work together on the fly without pre-coordination and with-
out relying on communication. Consider the case of a team
of disaster recovery robots that are pre-coordinated to work
together to rescue victims. If a robot becomes disabled and
the team does not have an adequate replacement on site, the
recovery process might significantly slow or halt until the
robot could be repaired or a replacement could be shipped
in. However, an ad hoc agent could step into the team and
quickly adapt its behaviors to cooperate with the current
teammates to allow the rescue process to continue.

In this work we study therole-basedad hoc teamwork
problem, which is one that requires or benefits from divid-
ing the task at hand into roles. Throughout this paper we
will refer to the agents that make up the team as eitherad
hoc agentsor teammates. The ad hoc agents are the agents
that we designed and whose behavior we can control, while
the teammates are the agents that were programmed by other
groups or at different times such that future collaboration
with our agents was unforeseeable. The teammates may not
believe they are performing a role, but nevertheless it is use-
ful for the ad hoc agent to classify their behaviors into roles.

In many ad hoc team settings the roles of an agent’s team-
mates will be readily apparent. For example, in a pickup
soccer game, each player’s intended role is usually appar-
ent from where the player is positioned at the beginning of
the game (e.g. the goalie stands near the goal). Likewise,
in a rescue scenario a teammate’s role might be obvious
based on the sensors and manipulators attached to the robot.
However, in other cases it may take more extended obser-
vations to determine the intended roles of the teammates.
Such a case might occur in the foraging domain mentioned
above. In this domain, the role of each teammate can be de-
termined with increasing certainty as observations are made
about what color targets the agent collects and returns to the
base.

We assume that different roles have different values to the
team, and each agent has some ability to perform each role.
As such, an ad hoc agent must take into account both the
needs of the team and its own abilities when determining
what role to adopt. A team receives a score when it performs
a task, therefore the goal of the ad hoc agents is to choose
roles that maximize the team score, and hence maximize the
marginal utility of adding the ad hoc agents to the team.

Formally, let a taskd be drawn from domainD, where
task d hasm rolesR(d) = {r0, ..., rm−1}. Each roleri
has an associated relative importance valuevi, whererx
is more critical to team utility thanry if vx > vy . Let
A = {a0, ..., an−1} be the set of ad hoc agents andB =
{b0, ..., bk−1} be the set of teammates such thatT = A ∪B
is the team that is to perform taskd. Each agenttj ∈ T has

a utility u(tj , ri) ≥ 0 for performing each roleri ∈ R(d),
which is a quantitative representation of the agent’s ability
to perform that role.

Let mappingP : B → R(d) be the mapping of the team-
mates inB to roles{r0, ..., rm−1} such that the teammates
associated with roleri areBP

i = {bi0 , ..., bimP
i

−1
}, where

|BP
i | = mP

i andBP
0 ⊕ BP

1 ⊕ ... ⊕ BP
m−1 = B. Re-

member that we can not command the teammates to per-
form particular roles. As such, mappingP may be given
either fully or probabilistically, or it may need to be inferred
via observation, in which case it is the ad hoc agents’ as-
sessment of which role is being performed by each team-
mate. For simplicity, we will write throughout this paper
as if the teammates are performing the roles that the ad
hoc agents believe they are performing. Now let mapping
S : A → R(d) be the mapping of the ad hoc agents inA
to roles{r0, ..., rm−1} such that the ad hoc agents perform-
ing roleri areAS

i = {ai0 , ..., aimS
i

−1
}, where|AS

i | = mS
i

andAS
0 ⊕ AS

1 ⊕ ... ⊕ AS
m−1 = A. Finally, let mapping

SP : T → R(d) be the combination of mappingsS andP .
As such, agentsT SP

i = BP
i ∪AS

i are performing roleri and
T SP
0 ⊕T SP

1 ⊕ ...⊕T SP
m−1 = T . In other words, mappingSP

is the association ofall team members to the particular roles
they are performing. Without loss of generality, the agents
in eachBP

i are numbered such thatu(bj, ri) ≥ u(bj+1, ri).
Notationally, letTW

i [k] denote thek agents that are per-
forming roleri according to mappingW with thek highest
utilities for roleri. Likewise, letposB(aj , ri) denote the 0-
indexed position inT SP

i that the ad hoc agentaj occupies.
Finally, let TW

i (num) denote the agent that is performing
role ri under mappingW with thenum highest utility on
roleri. For example, if agentsA, B, C, andD are perform-
ing roleR under mappingY with the following utilities for
roleR: A = 1,B = 2,C = 3, andD = 4, thenT T

R (0) = D
andT T

R (1) = C.
A team scoreU(W,d, T ) results when the set of agents

T perform a taskd, with eachtj ∈ T fulfilling some role
ri ∈ R(d) under mappingW . Team scoreU is a func-
tion of individual agent utilities, but its precise definition is
tied to the particular domainD and specifically taskd ∈ D.
The marginal utilityMU(S, P ) obtained by mappingS, as-
sumingP is the mapping of the teammates inB to roles,
is the score improvement obtained when each ad hoc agent
aj ∈ A chooses rolerS(aj) under mappingS. Assum-
ing that either teammatesB can perform the task or that
U(P, d,B) = 0 whenB can not complete the task, marginal
utility MU(S, P ) = U(SP, d, T )− U(P, d,B) 1.

Given that mappingP is fixed, the role-based ad hoc team
problem is to find a mappingS that maximizes marginal
utility. The problem definition and notation provided above
are valid for any number of ad hoc team agents. Hence, al-
though for the remainder of this paper we focus our attention
on the case where there is only one ad hoc agent such that
A = {a0} , our general theoretical contributions can still be
applied in teams to which multiple ad hoc agents are added.
For example, multiple ad hoc agents could coordinate and

1MU is a function ofd,B, T, P andS, however throughout
the paper we use the implicit notation



work together as a single ‘agent’ under the theoretical con-
tributions presented below.

3 Choosing a Role—Proposed Models
The ground truth way for an ad hoc agent to determine the
marginal utility from selecting a particular role, and hence
determine its optimal role, is to determineU(SP, d, T ) for
each possible role it could adopt. However, in practice, the
ad hoc agent mustpredictits marginal utility for all possible
roles and then select justonerole to adopt. Here we lay out
five possible models with which the ad hoc agent could do
this prediction based on the roles its teammates are currently
filling, where each model is appropriate for a different class
of role-based tasks.

For all of the models except the Unlimited Role Map-
ping model we assume that the ad hoc agenta0 knows the
utilities u(bj, ri), ∀bj ∈ B, ri ∈ R(d) and the mapping
P : B → R(d). Additionally, when considering the fol-
lowing five models, note that the marginal utility of agent
aj choosing to fulfill roleri under mappingS is often given
by an algorithmMU-X. In these cases,MU-X(aj , ri, P ) =
U(SP, d, T SP

i )− U(P, d,BP
i ).

Unlimited Role Mapping Model:
Recall the multi-robot foraging example from Section 1. If
the number of targets is unlimited, the size of the area is un-
bounded, and each target can be acquired by a single robot,
then the optimal role for the ad hoc agent would be one that
acquires the highest value target that it is capable of collect-
ing. In tasks such as this one, the benefit the team receives
for an agent performing a role does not depend on the roles
fulfilled by its teammates.

In such cases, the contribution to the team of an agenttj
performing roleri is simply the agent’s utilityu(tj , ri) at
role ri multiplied by the value of the rolevi. As such, the

team utility can be modeled asU(SP, d, T ) =

m−1∑

i=0

rsi ∗ vi,

wherersi =
∑

tj∈TSP
i

u(tj , ri). Note that in this model, agent

utility u(tj , ri) for performing each roleri and the impor-
tancevi of each roleri are parameters that can be tuned to
match the characteristics of a particular task. Theorem 1 de-
scribes the optimal role mapping under this model.

Theorem 1. In Unlimited Role Mapping tasks, map-
ping S, under whicha0 chooses the roleri that obtains
argmax
0≤i≤m−1

u(a0, ri) ∗ vi, maximizes marginal utility such that

∀S′ 6= S MU(S′, P ) ≤ MU(S, P ).

Limited Role Mapping Model:
Returning to the multi-robot foraging example, assume as
before that the number of targets is unlimited and the size of
the area is unbounded—but now also assume that each target
needs at least three, but no more than six, agents in order to
be successfully acquired. In tasks such as this, each roleri
has an associatedrmin

i value andrmax
i value that represent

the minimum and maximum number of agents that should
perform roleri. For all i, let 0 ≤ rmin

i ≤ rmax
i ≤ n.

If the number of agents performing roleri is less than
rmin
i , then the team gains no score from their actions. On

the other hand, if the number of agents performing roleri is
greater thanrmax

i , then only thermax
i agents with highest

utility, T SP
i [rmax

i ], will be taken into account when calcu-
lating the team score. As such, the team utility for Lim-
ited Role Mapping tasks can be modeled asU(SP, d, T ) =
m−1∑

i=0

rsi ∗ vi, where

rsi =



























∑

tj∈TSP
i

u(tj , ri) if rmin
i ≤ mSP

i ≤ rmax
i

∑

tk∈TSP
i

[rmax
i

]

u(tk, ri) if mSP
i > rmax

i

0 if mSP
i < rmin

i

The functionMU-1(aj , ri, P ) displayed in Algorithm 1
gives the marginal utility obtained from the ad hoc agentaj
choosing to perform roleri, where the current mapping of
teammates to roles is described byP . In this model, agent
utility u(tj, ri) for performing each roleri, the importance
vi of each roleri, and the minimum and maximum num-
ber of agents that should perform each roleri are all tunable
model parameters. Theorem 2 describes the optimal role
mapping for the ad hoc agent under this model.

Algorithm 1 MU-1(aj , ri, P )

1: if mP
i + 1 < rmin

i then
2: return 0
3: else
4: if mP

i + 1 = rmin
i then

5: return
∑

tj∈TSP
i

u(tj , ri) ∗ vi

6: else
7: if rmax

i < mP
i + 1 then

8: if posB(aj, ri) ≤ rmax
i then

9: return u(aj , ri) ∗ vi − u(TP
i (rmax

i ), ri) ∗ vi
10: else
11: return 0
12: else
13: return u(aj , ri) ∗ vi

Theorem 2. In Limited Role Mapping tasks, mapping
S, under which a0 chooses the roleri that obtains
argmax
0≤i≤m−1

MU-1(a0, ri, P ), maximizes marginal utility such

that∀S′ 6= S MU(S′, P ) ≤ MU(S, P ).

Incremental Value Models:
Continuing the multi-robot foraging example, consider the
case where the size of the South area containing the blue
targets is bounded. In such a bounded area, adding robots
hinders the speed with which all of the robots in the area
can acquire targets and return them to a station. Therefore
the optimal role might be one that collects a less valuable
target in the less congested North area or it might be one
that collects a valuable target in the congested South area if
the value of the target offsets the penalty felt by all agentsin
the area due to increased congestion.



In tasks such as this one, the value added by agents per-
forming a role may not be linearly correlated with the num-
ber of agents performing that role. As such, the team utility
in incremental value tasks can be modeled asU(SP, d, T ) =
m−1∑

i=0

rsi ∗ vi, wherersi =
∑

tj∈TSP
i

u(tj, ri) ∗ F (i, j).

In particular, we consider the following three functions
F — each with two parameters that can be tuned to match
the characteristics of a particular task — that describe how
the value added to the team by each subsequent agent per-
forming a role incrementally increases or decreases as more
agents perform that role. Example curves obtained using
an example set of parameters can be seen in Figure 1. As
has been convention so far in this paper, subscripti is used
to number roles and subscriptj is used to number agents,
where agents with higher utilities for performing a role are
represented by lowerjs.
Logarithmic Function F (i, j) = logj+1(xi) + ki, where
ki represents the amount added to the role scorersi for
each agent performing roleri and xi sets the pace at
which the function decays for agents performing roleri.

Exponential Function F (i, j) = b
(j/ni)
i , wherebi is the

growth factor andni is the time required for the value to
decrease by a factor ofbi — both for each agent perform-
ing roleri.

Sigmoidal Function F (i, j) = 1

1+eni∗(m
SP
i

+bi)
whereni

determines the sharpness of the curve andbi dictates the
x-offset of the sigmoid from the origin for each agent per-
forming roleri.

(a) Logarithmic (b) Exponential (c) Sigmoidal

Figure 1: Example curves for each of the three incremental value
functions. The x-axis is the number of agents performing a par-
ticular role and the y-axis is the team utility. All curves use
u(tj , ri) = 1 andvi = 1. The logarithmic curve usesxi = 1.1
andki = 0, the exponential curve usesbi = 2 andni = 0.9999,
and the sigmoidal curve usesni = −0.99 andbi = −5.

As may be noted in Figure 1, the sigmoidal function can
perform closely to the exponential function on one side of
its curve and closely to the logarithmic function on the other
side. Parameterbi can be tuned to effectively turn the sig-
moidal curve into an exponential curve or a logarithmic
curve. However, we still consider the logarithmic and expo-
nential functions because they might be better models than
the entire sigmoid function in some cases.

The functionMU-2(aj , ri, P ) displayed in Algorithm 2
gives the marginal utility obtained from the ad hoc agentaj
choosing to perform roleri, where the current mapping of
teammates to roles is described byP . In this model, agent
utility u(tj , ri) for performing each roleri, the importance
vi of each roleri, and the parameters used in functionF are
all tunable parameters. Line 7 in functionMU-2(aj , ri, P )

handles the case where the ad hoc agentaj is not the only
agent on the team performing roleri (handled by line 2)
and not the agent with the lowest utility for performing role
ri that is performingri (handled by line 5). As such, line
7 accounts for the benefit obtained by the team from agent
aj performing rolerj and then subtracts small incremental
amounts for each agent performing roleri with lower utility
thanaj . We do this because under the incremental models,
agents performing some roleri provide benefit to the team
at different levels based on their utility for performingri.
Hence, when an agent with a higher utility for performing
ri joins the team and performsri, the benefit obtained by
each of the agents performingri with lower utility decreases
slightly. Note that although in this paragraph we assumed
benefit was obtained as additional agents joined the team,
our models can also handle the case where additional agents
add penalty as they join the team.

Algorithm 2 MU-2(aj , ri, P )

1: if mP
i = 0 then

2: return vi ∗ (u(aj , ri) ∗ F (j, 1))
3: else
4: if posB(aj, ri) = mP

i then
5: return vi ∗ u(aj , ri) ∗ F (j,mP

i + 1)
6: else
7: return vi ∗ u(aj , ri) ∗ F (j, posB(aj, ri) + 1) −

mP
i −1
∑

y=bposB(aj,ri)

(u(by, ri) ∗ vi ∗F (j, posB(by, ri)+1)−

u(by, ri) ∗ vi ∗ F (j, posB(by, ri) + 2))

Theorem 3 describes the optimal role mapping for the ad
hoc agent under this model.

Theorem 3. In Incremental Value tasks, mappingS,
under which a0 chooses the roleri that obtains
argmax
0≤i≤m−1

MU-2(a0, ri, P ), maximizes marginal utility such

that∀S′ 6= S MU(S′, P ) ≤ MU(S, P ).

4 Model Evaluation
In Section 3, we examined the contribution of an ad hoc
agent to its team by providing several methods for model-
ing the marginal utility of a role selection as a function of
the number of teammates currently performing each role.
Each model is appropriate for some tasks. But given a task
in a particular environment, how should the correct model
be selected? Additionally, once a model is selected, how
should we determine reasonable parameters for the model
given limited ground truth data? In the second half of this
paper we examine both of these questions in the Pacman
Capture-the-Flag environment.

The Pacman Capture-the-Flag Environment
We empirically examine each of the five models described
above in a capture-the-flag style variant of Pacman designed
by John DeNero and Dan Klein (DeNero and Klein 2010).
The Pacman map is divided into two halves and two teams
compete by attempting to eat the food on the opponent’s side
of the map while defending the food on their home side. A



team wins by eating all but two of the food pellets on the
opponent’s side or by eating more pellets than the oppo-
nent before three thousand moves have been made. When
a player is captured in opponent territory, it restarts at the
team’s starting point.

The result of each game is the difference between the
number of pellets protected successfully by the team and the
number of pellets successfully protected by the opponent—
we refer to this result as thescore differential. Wins, losses
and ties result in positive, negative and zero score differen-
tials (respectively). More importantly, high positive score
differentials indicate that the team dominated the opponent,
while score differentials closer to zero indicate that the two
teams were well matched. We therefore input the score dif-
ferential from each game into the following sigmoid func-
tion 1/1 + e−0.13∗scoreDifferentialto obtainground truth
datafor the team’s utility when different numbers of agents
fill each role. We examined different values for the mul-
tiplicand and found that0.13 yielded the most representa-
tive score differential spreads in the three tasks that we used
to select the most appropriate model. Note that we trans-
form the score differentials using a sigmoid function because
this emphasizes differences in score differentials close to
zero. For example, score differentials of -15, -10, -5, and
0 become 0.125, 0.214, 0.343, and 0.5 after being trans-
formed by the sigmoid function. This is desirable because
we mainly care whether we win or lose — and hence we
want the difference between score differentials -15 and -10
after being transformed by the sigmoid function to be less
than the difference between score differentials -5 and 0 after
being transformed by the sigmoid function.

In each experiment we consider two roles that could be
performed:R ={offense, defense}. Offensive players al-
ways move toward the closest food on the opponent’s side,
making no effort to avoid being captured by defenders or to
capture opponents while in their own territory. On the other
hand, defensive players wander on their own side and chase
down any invaders they see. These offensive and defensive
behaviors are deliberately suboptimal, as we focus solely on
role decisions given whatever behaviors the agents execute
when performing their roles.

We consider the opponents and map to be fixed and part
of the environment for each experiment. All of the agents —
opponents, teammates, and the ad hoc agent—run either the
offensive or defensive behavior just described. Additionally,
half of the opponents perform defensive behaviors and half
perform offensive behaviors.

Choosing a Model
We use three tasks to determine which of the models best
represents the marginal utility of a role selection for the Pac-
man Capture-the-Flag environment. In particular, a task is
defined by the number of opponents and the map. The first
task “vs-2” is against two opponents on the “Basic” map
shown in Figure 2(a), the second task “vs-6” is against six
opponents on the “Basic” map, and the third task “vs-2-
SmallDefense” is against two opponents on the “SmallDe-
fense” map shown in Figure 2(b). The “Basic” map is sub-
stantially different from the “SmallDefense” map in that the
defensive agents for the team on the left side of the map have
about 33% less territory to defend, and hence intuitively

should derive less benefit from adding additional defensive
agents after some point.

(a) “Basic” Map

(b) “SmallDefense” Map

Figure 2: Maps used to determine the most representative model.

In order to decide which of the models is most represen-
tative of the marginal utility of a role selection in the Pac-
man Capture-the-Flag environment, we first gather full sets
of ground truth datafor the three tasks presented above. In
particular, in each task we gather scores over one thousand
games for teams of zero to six offensive agents and zero
to six defensive agents (i.e., for forty-nine teams) and then
calculate the ground truth performance over the one thou-
sand runs for the forty-nine teams. As mentioned above,
we calculate the ground truth data for each team by putting
the score differential from each of the one thousand games
though the sigmoidal function given above and then averag-
ing the results. The ground truth data from the “vs-2” en-
vironment is shown in Table 1. Note that 0.09 is the worst
possible ground truth performance, and corresponds to ob-
taining 0 pellets and losing all 18 pellets to the opponent.

We then use the ground truth data to determine theground
truth decisionof whether an ad hoc agent should perform
an offensive role or a defensive role on any team composed
of zero to five offensive agents and zero to five defensive
agents in each of the three tasks. For example, to deter-
mine the ground truth decision of whether it is better for
the ad hoc agent to perform an offensive or defensive role
when added to a team with three offensive agents and two
defensive agents, we look at whether the ground truth data
is higher for a team with three offensive agents and three de-
fensive agents or for a team with four offensive agents and
two defensive agents. If the former (latter) is true, then the
ground truth decision is that it is best for the ad hoc agent
to perform a defensive (offensive) behavior if added to this
team. We determine whether a ground truth decision is sta-
tistically significant by running a two-tailed Student’s t-Test
assuming two-sample unequal variance on the score differ-
entials obtained if an offensive agent is added to the current
team and the score differentials obtained if a defensive agent



is added to the current team.

0d 1d 2d 3d 4d 5d 6d
0o 0.09 (+o) 0.09 (+o) 0.09 (+o) 0.13 (+o) 0.23 (+o) 0.31 (+o) 0.36
1o 0.29 (+d) 0.49 (X) 0.64 (+o) 0.74 (+o) 0.79 (+o) 0.81 (+o) 0.82
2o 0.42 (+d) 0.63 (+d) 0.75 (+d) 0.81 (+d) 0.83 (X) 0.85 (X) 0.86
3o 0.54 (+d) 0.71 (+d) 0.80 (+d) 0.83 (+d) 0.85 (X) 0.85 (X) 0.86
4o 0.56 (+d) 0.74 (+d) 0.81 (+d) 0.84 (+d) 0.85 (+d) 0.87 (X) 0.87
5o 0.61 (+d) 0.75 (+d) 0.83 (+d) 0.84 (+d) 0.86 (X) 0.87 (+d) 0.88
6o 0.64 0.79 0.83 0.86 0.87 0.88 0.88

Table 1: Ground truth data and decisions from the “vs-2” environ-
ment, rounded to two decimal points. The rows represent the 0...6
agents performing an offensive role, while the ‘0d...6d’ columns
represent the 0...6 agents performing a defensive role. A ‘+o’ (‘+d’)
decision means that the ad hoc agent should adopt an offensive
(defensive) role if added to a team with teammates performing the
roles indicated by the row and column. An ‘X’ decision means that
the decision of which role to perform was not statistically signifi-
cant atp = 0.05.

With the ground truth decisions for the ad hoc agent in
each of the three tasks, we can determine which of the five
models best captures the actual marginal utility of role se-
lection in each of the three tasks. First, we input the ground
truth data and the model function into Matlab’s lsqcurvefit
algorithm (which uses the trust region reflexive least squares
curve fitting algorithm) and obtainfitted parametersfor the
model function. The fitted parameters vary in type and num-
ber for each of the five models, but often include the role
importance valuevi, the agent’s utilityu(aj , ri) at perform-
ing rolevi, and parameters of the model function — both for
each roleri ∈ R(d). We use the fitted parameters to calcu-
latefitted resultsfor teams of zero to six offensive agents and
zero to six defensive agents (i.e., forty-nine teams). Last,
we translate these fitted results intofitted decisionsusing the
same methodology used to translate the ground truth score
differentials into ground truth decisions.

Now that we have ground truth decisions for each of the
three tasks and fitted decisions for all five models in the three
tasks, we compare the number of times the ground truth de-
cision (for example, ‘+o’) is statistically significant butdoes
not match the fitted decision for a particular team arrange-
ment (for example, ‘+d’)—in other words, the number of
times the model made anincorrect decision.

Model vs-2 vs-6 vs-2-Small
Defense

Unlimited Role Mapping 19 8 14
Limited Role Mapping 13 11 11
Logarithmic Incremental Value 3 2 1
Exponential Incremental Value 1 1 1
Sigmoidal Incremental Value 1 0 0

Table 2: The number of statistically significant incorrect decisions
made by each model in the three tasks.

As is apparent from Table 2 the sigmoidal model makes
the fewest incorrect decisions in all three tasks. Addition-
ally, as can be seen in Table 3, the sigmoidal model also
obtains the least model error. Although model error is not as
strong of an indicator as the number of incorrect decisions
— since the actual decision is what matters, not the amount
by which the ground truth data differs from the fitted results
— it is still encouraging to see that the sigmoidal model has
the least error.

Model vs-2 vs-6 vs-2-Small
Defense

Unlimited Role Mapping 1.7650 0.2371 1.6692
Limited Role Mapping 1.5695 0.2645 1.4422
Logarithmic Incremental Value 0.1602 0.1335 0.1061
Exponential Incremental Value 0.1239 0.1284 0.0833
Sigmoidal Incremental Value 0.1161 0.1051 0.0768

Table 3: The error of each model in the three tasks. The error is
calculated to be the value of the squared 2-norm of the difference
between the fitted results and the ground truth data.

From the results presented in this section, we conclude
that in the Pacman Capture-the-Flag domain, at least on the
maps and opponents we studied, the sigmoidal incremen-
tal model most accurately models team utility. However, to
conclude this we generated a full set of ground truth data for
each of the three tasks, amounting to 49,000 games per task
and used this data to fit the parameters of the model. Next
we consider how to use the sigmoidal model for predictive
modeling when substantially less ground truth data is avail-
able.

Predictive Modeling

Once a model type has been selected for a domain, the ad
hoc agent can use this model to predict the marginal utility
of role selection on new tasks in this domain for which we
have limited ground truth data. Essentially we want to be
able to determine how the ad hoc agent should behave in a
new task—including never seen before situations—without
the expense of gathering substantial amounts of ground truth
data for every scenario. We do this by choosing fitted param-
eters — also referred to as ‘fitting the model’ — for the new
task based on the data that is available. Below we evaluate
the accuracy of the chosen model in our Pacman domain on
multiple new tasks in which only a limited amount of ran-
domly selected data is available for fitting the models. We
also consider how much ground truth data is enough for the
ad hoc agent to make acceptable role selection decisions on
a new task. Note that we use the sigmoidal model in this
section because the experiments in the previous section in-
dicate that it is the most appropriate model for this domain.
However, as we will discuss later in this paper, we find that
the model parameters need to be tuned for each new task
encountered.

We use two new tasks in this section. The first task “vs-2-
alley” is against two opponents on the “AlleyDefense” map
shown in Figure 3(a) and the second task “33%Defense” is
against two opponents on the “33%Defense” map shown in
3(b). Both the “AlleyDefense” and “33%Defense” maps in-
clude a smaller defensive area than offensive area for the
team that the ad hoc agent is added to, but the alley in “Alley-
Defense” calls for the ad hoc agent to behave very differently
than in the “33%Defense” map where the opponent’s food
pellets are relatively easy for the ad hoc agent’s team to cap-
ture. Specifically, in the “33%Defense” map it is desirable—
up to a certain threshold—to add an offensive agent as long
as there is at least one defensive agent, whereas in the “Al-
leyDefense” map it is desirable to have substantially more
defensive agents than offensive agents as long as there is at
least one offensive agent.



(a) “AlleyDefense” Map

(b) “33%Defense” Map

Figure 3: The maps used for the tasks in this section.

Consider the case in which the ad hoc team agent is given,
either through experience or observation, randomly selected
data points that represent some sparse experience in the do-
main, where a data point consists of the number of agents
fulfilling each role and the average ground truth data calcu-
lated over just twenty-five games. In this experiment, we
evaluate the predictive model’s fit from one to forty-nine
randomly selected data points, measuring accuracy by the
number of incorrect decisions made by each model. Note
that if only one data point is used to fit the model, then
score differentials from only 25 games are required. Like-
wise, if ten data points are used, 250 (10*25) games are re-
quired. Even if all forty-nine data points are used, only 1,225
(49*25) games are required. To put these game numbers
in perspective, we can easily run 250 games on our high-
throughput computing cluster in under 5 minutes when the
cluster is not saturated.

Figure 4 shows the accuracy of the sigmoidal model on
the “vs-2-alley” and “33%Defense” tasks when given vary-
ing amounts of randomly selected data points calculated
from twenty-five games. As the figure shows, the accuracy
of the model improves steadily in both tasks as additional
data points are used to fit the model.

Figure 4: Accuracy of the sigmoidal predictive model (averaged
over 1000 trials) using various amounts of randomly selected data
points from twenty-five games in two different tasks.

Finally, we consider how much ground truth data is ac-
tually necessary for the ad hoc agent to make acceptable
role selection decisions. The results given so far in this sec-

tion were obtained from predictive models using parame-
ters that were fit using average ground truth data gathered
over twenty-five games. We determined that twenty-five
games were enough to make adequate role selection deci-
sions by considering the accuracy of the “vs-2-alley” predic-
tive model when using parameters that were fit on ground
truth data for 25 and 49 random data points gathered over
one to one hundred games. As can be seen in Table 4,
twenty-five games does indeed seem to be an appropriate
trade-off between the time required to collect ground truth
data and the value of minimizing incorrect decisions by the
model.

Number of
Games

Incorrect Predictions
when using 25 Points

Incorrect Predictions
when using 49 Points

1 12.8 11
5 9.6 9
10 7.1 7
15 5.1 6
20 7 7
25 4.6 4
30 2.5 2
35 1.3 1
40 3.2 2
45 3.2 3
50 3.3 3
100 2.4 2

Table 4: The average number of incorrect predictions obtained on
the “vs-2-alley” task using the sigmoidal predictive model.

Determining the Fitted Parameters
In the previous section we presented the idea that once an ad
hoc agent has chosen a model for a particular domain, it can
use this chosen model to predict the marginal utility of role
selection on new tasks in the same domain by using limited
ground truth data to determine new fitted parameters for the
model — or in other words, fit the model. Remember that
fitted parameters can be obtained by inputting the ground
truth data and the sigmoidal model function into Matlab’s
lsqcurvefit algorithm, as this will fit the sigmoidal model to
the limited ground truth data using a least squares curve fit-
ting algorithm. Then these fitted parameters can be used to
calculate fitted results and fitted decisions (as described in
the “Choosing a Model” section), which represent the deci-
sions chosen by the model given each possible set of team-
mates.

However, how important is it to use (limited) ground truth
data to determine appropriate fitted parameters for the cho-
sen model function in a new task? We found experimentally
that if parameters fit on one task are used on another task,
the results can be quite poor. For example, although fitted
parameters for the “vs-6” task perform well on that task (the
sigmoidal models yield 0 incorrect decisions), attemptingto
use these same fitted parameters on the “33%Defense” task
yields an abysmal 15 incorrect decisions and only 16 cor-
rect decisions. Not surprisingly, we found that the similarity
of the tasks and the similarity of their ground truth fitted
decisions played a sizable role in how well the model did
without finding new fitted parameters. Therefore, if we can
determine close similarity of a task to one for which we al-
ready have a well-fitted model, then it may be preferable to
use the fitted model as is — especially if we only have ex-



tremely limited ground truth data in the new task. However,
in most cases we found that it is important and worthwhile
to find new fitted parameters when a new task is encountered
and there is opportunity to obtainanyground truth data.

5 Related Work
This paper contributes towards answering the ad hoc team-
work challenge, which calls for teammates to work together
without any prior coordination (Stone et al. 2010). Most
prior research on multi-agent teamwork requires explicit co-
ordination protocols, languages, and/or shared assumptions
(e.g. (Grosz and Kraus 1996; Tambe 1997)). Some multi-
robot teams are even designed to work specifically with their
teammates in pre-defined ways, such as via “locker-room
agreements” (Stone and Veloso 1999). Other multi-robot
teams, although non-communicating, are designed assuming
that all team members are reactive and homogenous (Ler-
man et al. 2001).

Bowling and McCracken (2005) examined the concept of
“pick-up” teams in simulated robot soccer. Similarly to us,
they propose coordination techniques for a single agent that
wants to join a previously unknown team of existing agents.
However, they take a different approach to the problem in
that they provide the single agent with a play book from
which it selects the play most similar to the current behaviors
of its teammates. The agent then selects a role to perform in
the presumed current play.

Joneset al. (2006) perform an empirical study of dynami-
cally formed teams of heterogeneous robots in a multi-robot
treasure hunt domain. They assume that all of the robots
know they are working as a team and that all of the robots
can communicate with one another, whereas in our work we
do not assume that the teammates realize they are working
on a team with the ad hoc agent.

There has been previous research on multi-agent team-
work in both the Capture-the-Flag domain and the forag-
ing domain (e.g. Sadilek and Kautz (2010), Lermanet
al. (2006)). However, most of this work focuses on coordi-
nation between all teammates instead of coordination of one
or more ad hoc agents with existing teammates, and hence
does not truly address the ad hoc teamwork problem.

6 Conclusions and Future Work
This paper presented a formalization of role-based ad hoc
teamwork settings and introduced several methods for mod-
eling the marginal utility of an ad hoc agent’s role selection
as a function of the number of teammates currently perform-
ing each role. We assume in this work that the roles of the
teammates are known and that we know how well some team
configurations (i.e., the number of teammates fulfilling each
role) do in a particular task. However, we do not know how
much an agent could help the team if added to each role. As
such, we showed that it is possible to use a particular func-
tional form to model the marginal utility of a role selection
in a variety of tasks. Additionally, only a limited amount of
data is needed on a new task in order to be able to fit the
function such that it can be used as a predictive model to de-
termine how an ad hoc agent should behave in situations of
a new task that it has not previously encountered.

This research is among the first to study role-based ad
hoc teams. As such, there are many potential directions

for future work. We provide both theoretical and empiri-
cal contributions in this paper, and although our empirical
results consider the minimal team size in which our contri-
butions apply, the theoretical formulation is fully general to
larger teams and applicable in domains with additional roles.
We do plan on expanding our work into more interesting
and complicated environments with more than two potential
roles to fulfill and more than one ad hoc agent. Addition-
ally, we wish to consider the case in which the ad hoc agents
encounter teammates that are running unfamiliar behaviors,
forcing the ad hoc agents to model their teammates in order
to classify their behaviors into known roles and successfully
collaborate. Finally, another possible direction is to assume
that teammates may be modifying their behavior in response
to the actions of the ad hoc agents, making teamwork more
difficult.
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