
In Marco Wiering and Martijn van Otterlo, editors, Reinforcement Learning: State of the Art,
Springer Verlag, 2011.

Learning and Using Models

Todd Hester and Peter Stone

Abstract As opposed to model-free RL methods, which learn directly from experi-

ence in the domain, model-based methods learn a model of the transition and reward

functions of the domain on-line and plan a policy using this model. Once the method

has learned an accurate model, it can plan an optimal policy on this model without

any further experience in the world. Therefore, when model-based methods are able

to learn a good model quickly, they frequently have improved sample efficiency over

model-free methods, which must continue taking actions in the world for values to

propagate back to previous states. Another advantage of model-based methods is

that they can use their models to plan multi-step exploration trajectories. In particu-

lar, many methods drive the agent to explore where there is uncertainty in the model,

so as to learn the model as fast as possible. In this chapter, we survey some of the

types of models used in model-based methods and ways of learning them, as well as

methods for planning on these models. In addition, we examine the typical architec-

tures for combining model learning and planning, which vary depending on whether

the designer wants the algorithm to run on-line, in batch mode, or in real-time. One

of the main performance criteria for these algorithms is sample complexity, or how

many actions the algorithm must take to learn. We examine the sample efficiency of

a few methods, which are highly dependent on having intelligent exploration mech-

anisms. We survey some approaches to solving the exploration problem, including

Bayesian methods that maintain a belief distribution over possible models to ex-

plicitly measure uncertainty in the model. We show some empirical comparisons

of various model-based and model-free methods on two example domains before

concluding with a survey of current research on scaling these methods up to larger

domains with improved sample and computational complexity.
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1 Introduction

The reinforcement learning (RL) methods described in the book thus far have been

model-free methods, where the algorithm updates its value function directly from

experience in the domain. Model-based methods (or indirect methods), however,

perform their updates from a model of the domain, rather than from experience

in the domain itself. Instead, the model is learned from experience in the domain,

and then the value function is updated by planning over the learned model. This

sequence is shown in Figure 1. This planning can take the form of simply running

a model-free method on the model, or it can be a method such as value iteration or

Monte Carlo Tree Search.

The models learned by these methods can vary widely. Models can be learned

entirely from scratch, the structure of the model can be given so that only parameters

need to be learned, or a nearly complete model can be provided. If the algorithm can

learn an accurate model quickly enough, model-based reinforcement learning can be

more sample efficient (take fewer actions to learn) than model-free methods. Once

an accurate model is learned, an optimal policy can be planned without requiring

any additional experiences in the world. For example, when an agent first discovers

a goal state, the values of its policy can be updated at once through planning over its

new model that represents that goal. Conversely, a model-free method would have

to follow a trajectory to the goal many times for the values to propagate all the way

back to the start state. This higher sample efficiency typically comes at the cost of

more computation for learning the model and planning a policy and more space to

represent the model.

Another advantage of models is that they provide an opportunity for the agent to

perform targeted exploration. The agent can plan a policy using its model to drive

the agent explore particular states; these states can be states it has not visited or is

uncertain about. A key to learning a model quickly is acquiring the right experiences

needed to learn the model (similar to active learning). Various methods for exploring

Fig. 1 Model-based RL agents use their experiences to first learn a model of the domain, and then

use this model to compute their value function.
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in this way exist, leading to fast learning of accurate models, and thus high sample

efficiency.

The main components of a model-based RL method are the model, which is de-

scribed in Section 2, and the planner which plans a policy on the model, described in

Section 3. Section 4 discusses how to combine models and planners into a complete

agent. The sample complexity of the algorithm (explained in Section 5) is one of the

main performance criteria that these methods are evaluated on. We examine algo-

rithms for factored domains in Section 6. Exploration is one of the main focuses for

improving sample complexity and is explained in Section 7. We discuss extensions

to continuous domains in Section 8, examine the performance of some algorithms

empirically in Section 9, and look at work on scaling up to larger and more realistic

problems in Section 10. Finally, we conclude the chapter in Section 11.

2 What is a model?

A model is the information an agent would need in order to simulate the outcome

of taking an action in the Markov Decision Process (MDP). If the agent takes action

a from state s, the model should predict the next state, s′, and the reward, r. If the

domain is stochastic, the model may provide a full probability distribution over next

states, or it may be a generative model that simply provides a sample from the next

state distribution. The model is updated as the agent interacts with its environment

and is then used with a planning algorithm to calculate a policy.

A common approach to model-learning is to learn a tabular maximum likelihood

model. In this case, the algorithm maintains a count, C(s,a), of the times action a

was taken from state s as well as a count,C(s,a,s′), of the number of times that each

next state s′ was reached from (s,a). The probability of outcome s′ is then:

P(s′|s,a) = T (s,a,s′) =C(s,a,s′)/C(s,a)

The algorithm also maintains the sum of rewards it has received from each transi-

tion, Rsum(s,a), and computes the expected reward for a particular state-action to

be the mean reward received from that state-action:

R(s,a) = Rsum(s,a)/C(s,a)

This tabular model learning is very straightforward and is used in some common

model-based algorithms such as R-MAX (Brafman and Tennenholtz, 2001).

Table 1 shows an example of the counts and predictions of a tabular model after

50 experiences in the domain shown in Figure 2. Based on the empirical counts of

each experienced transition, the model can make predictions about the actual transi-

tion probabilities, T (s,a,s′), and reward, R(s,a). While the model’s predictions for

action 0 from state 1 are exactly correct, the probabilities for the other state-action

pairs are only approximately correct, but will improve with more samples.
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(a) Action 0. (b) Action 1.

Fig. 2 This figure shows the transition probabilities for a simple two state MDP for both actions 0

and 1. We assume a reward of -1 for transitions leading to state 0, and a reward of +1 for transitions

leading to state 1.

State Action C(s,a) C(s,a,0) C(s,a,1) RSum(s,a) T(s,a,0) T(s,a,1) R(s,a)

0 0 12 4 8 4 0.33 0.67 0.33

0 1 14 13 1 -12 0.93 0.07 -0.86

1 0 10 6 4 -2 0.6 0.4 -0.2

1 1 14 4 10 6 0.29 0.71 0.43

Table 1 This table shows an example of the model learned after 50 experiences in the domain

shown in Figure 2.

Learning a tabular model of the domain can be viewed as learning a separate

model for every state-action in the domain, which can require the agent to take

many actions to learn a model. If we assume that the transition dynamics may be

similar across state-action pairs, we can improve upon tabular models by incorpo-

rating generalization into the model learning. Model learning can be viewed as a

supervised learning problem with (s,a) as the input and s′ and r as the outputs the

supervised learner is trying to predict. One of the benefits of incorporating gener-

alization is that the supervised learner will make predictions about the model for

unseen states based on the transitions it has been trained on.

A number of approaches from the field of adaptive dynamic programming use

neural networks to learn a model of the domain (Prokhorov and Wunsch, 1997; Ve-

nayagamoorthy et al, 2002). These approaches train the neural network to estimate

the next state values based on previous state values. The neural network model is

used within an an actor-critic framework, with the predictions of the model used as

inputs for the critic neural network that estimates the value of a given state.

Learning a model with a supervised learning technique inherently incorporates

generalization into the model learning. With this approach, the supervised learner

will make predictions about the transitions from unseen state-action pairs based

on the state-action pairs it has been trained on. In many domains, it is easier to

generalize the relative effects of transitions rather than their absolute outcomes. The

relative transition effect, sr, is the difference between the next state and the current

state:

sr = s′− s

For example, in a robotic control task, it may be easier to generalize that a given

action increases the angle of a joint, rather than trying to generalize the absolute

value of the joint angle after the action. This approach is taken in a number of algo-

rithms. Random forests are used to model the relative transition effects in (Hester
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and Stone, 2010). Jong and Stone (2007) make predictions for a given state-action

pair based on the average of the relative effects of its nearest neighbors.

One of the earliest model-based RL methods used locally weighted regression

(LWR) to learn models (Schaal and Atkeson, 1994; Atkeson et al, 1997). All ex-

periences of the agent were saved in memory, and when a given state-action was

queried, a locally weighted regression model was formed to provide a prediction

of the average next state for the queried state-action pair. Combined with a unique

exploration mechanism, this algorithm was able to learn to control a robot juggling.

3 Planning

Once the agent has learned an approximate model of the domain dynamics, the

model can be used to learn an improved policy. Typically, the agent would re-

plan a policy on the model each time it changes. Calculating a policy based on a

model is called planning. These methods can also be used for planning a policy on

a provided model, rather than planning while learning the model online. One option

for planning on the model is to use the dynamic programming methods described

in Chapter 1, such as Value Iteration or Policy Iteration. Another option is to use

Monte Carlo methods, and particularly Monte Carlo Tree Search (MCTS) methods,

described below. The main difference between the two classes of methods is that

the dynamic programming methods compute the value function for the entire state

space, while MCTS focuses its computation on the states that the agent is likely to

encounter soon.

3.1 Monte Carlo Methods

Chapter 1 describes how to use Monte Carlo methods to compute a policy while

interacting with the environment. These methods can be used in a similar way on

experiences simulated using a learned model. The methods simulate a full trajectory

of experience until the end of an episode or to a maximum search depth. Each sim-

ulated trajectory is called a roll-out. They then update the values of states along that

trajectory towards the discounted sum of rewards received after visiting that state.

These methods require only a generative model of the environment rather than a full

distribution of next states. A variety of MCTS methods exist which vary in how they

choose actions at each state in their search.

Monte Carlo Tree Search methods build a tree of visited state-action pairs out

from the current state, shown in Figure 3. This tree enables the algorithm to re-

use information at previously visited states. In vanilla MCTS, the algorithm takes

greedy actions to a specified depth in the tree, and then takes random actions from

there until the episode terminates. This tree search focuses value updates on the

states that MCTS visits between the agent’s current state and the end of the roll-out,
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Fig. 3 This figure shows a Monte Carlo Tree Search roll-out from the agent’s current state out to

a depth of 2. The MCTS methods simulate a trajectory forward from the agent’s current state. At

each state, they select some action, leading them to a next state one level deeper in the tree. After

rolling out to a terminal state or a maximum depth, the value of the actions selected are updated

towards the rewards received following it on that trajectory.

which can be more efficient than planning over the entire state space as dynamic

programming methods do. We will discuss a few variants of MCTS that vary in how

they select actions at each state to efficiently find a good policy.

Sparse sampling (Kearns et al, 1999) was a pre-cursor to the MCTS planning

methods discussed in this chapter. The authors determine the number,C, of samples

of next states required to accurately estimate the value of a given state-action, (s,a),
based on the maximum reward in the domain, Rmax, and the discount factor, γ . They
also determine the horizon h that must be searched to given the discount factor γ .
The estimate of the value of a state-action pair at depth t is based on C samples of

the next states at depth t+ 1. The value of each of these next states is based on C

samples of each of the actions at that state, and so on up to horizon h. Instead of

sampling trajectories one at a time like MCTS does, this method expands the tree

one level deeper each step until reaching the calculated horizon. The algorithm’s

running time is O((|A|C)h). As a sampling-based planning method that is proven to
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converge to accurate values, sparse sampling provides an important theoretical basis

for the MCTS methods that follow.

UCT (Kocsis and Szepesvári, 2006) is another MCTS variant that improves upon

the running time of Sparse Sampling by focusing its samples on the most promising

actions. UCT searches from the start state to the end, selecting actions based on upper

confidence bounds using the UCB1 algorithm (Auer et al, 2002). The algorithm

maintains a count, C(s,d), of visits to each state at a given depth in the search, d,

as well as a count, C(s,a,d), of the number of times action a was taken from that

state at that depth. These counts are used to calculate the upper confidence bound

to select the action. The action selected at each step is calculated with the following

equation (where Cp is an appropriate constant based on the range of rewards in the

domain):

a= argmaxaQ
d(s,a)+2Cp

√

log(C(s,d))

C(s,a,d)

By selecting actions using the upper tail of the confidence interval, the algorithm

mainly samples good actions, while still exploring when other actions have a higher

upper confidence bound. Algorithm 1 shows pseudo-code for the UCT algorithm,

which is run from the agent’s current state, s, with a depth, d, of 0. The algorithm is

provided with a learning rate, α , and the range of one-step rewards in the domain,

rrange. Line 6 of the algorithm recursively calls the UCT method, to sample an action

at the next state one level deeper in the search tree. Modified versions of UCT have

had great success in the world of Go algorithms as a planner with the model of the

game already provided (Wang and Gelly, 2007). UCT is also used as the planner

inside several model-based reinforcement learning algorithms (Silver et al, 2008;

Hester and Stone, 2010).

Algorithm 1 UCT (Inputs s, d, α , rrange)

1: if TERMINAL or d == MAXDEPTH then

2: return 0

3: end if

4: a← argmaxa′ (Q
d(s,a′)+2 · rrange ·

√

log(c(s,d))/c(s,a′,d))
5: (s′,r)← SAMPLENEXTSTATE(s,a)
6: retval← r+UCT(s′,d+1,α)
7: c(s,d)← c(s,d)+1

8: c(s,a,d)← c(s,a,d)+1

9: Qd(s,a′)← α · retval+(1−α) ·Q(s,a′,d)
10: return retval

Having separately introduced the ideas of model learning (Section 2) and plan-

ning (Section 3), we now discuss the challenges that arise when combining these

two together into a full model-based method, and how these challenges have been

addressed.
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4 Combining Models and Planning

There are a number of ways to combine model learning and planning. Typically, as

the agent interacts with the environment, its model gets updated at every time step

with the latest transition,< s,a,r,s′>. Each time the model is updated, the algorithm

re-plans on it with its planner (as shown in Figure 4). This approach is taken by many

algorithms (Brafman and Tennenholtz, 2001; Hester and Stone, 2009; Degris et al,

2006). However, due to the computational complexity of learning the model and

planning on it, it is not always feasible.

Another approach is to do model updates and planning in batch mode, only pro-

cessing them after every k actions, an approach taken in (Deisenroth and Rasmussen,

2011). However, this approach means that the agent takes long pauses between some

actions while performing batch updates, which may not be acceptable in some prob-

lems.

DYNA (Sutton, 1990, 1991) is a reactive RL architecture. In it, the agent starts

with either a real action in the world or a saved experience. Unlike value iteration,

where Bellman updates are performed on all the states by iterating over the state

space, here planning updates are performed on randomly selected state-action pairs.

The algorithm updates the action-values for the randomly selected state-action using

the Bellman equations, thus updating its policy. In this way, the real actions require

only a single action-value update, while many model-based updates can take place

in between the real actions. While the DYNA framework separates the model updates

from the real action loop, it still requires many model-based updates for the policy

to become optimal with respect to its model.

Prioritized Sweeping (Moore and Atkeson, 1993) (described in Chapter 1) im-

proves upon the DYNA idea by selecting which state-action pairs to update based on

priority, rather than selecting them randomly. It updates the state-action pairs in or-

der, based on the expected change in their value. Instead of iterating over the entire

state space, prioritized sweeping updates values propagating backwards across the

state space from where the model changed.

Using MCTS to plan instead of dynamic programming techniques such as Value

Iteration or Policy Iteration leads to a slightly different architecture. With the dy-

Fig. 4 Typically, model-based agent’s interleave model learning and planning sequentially, first

completing an update to the model, and then planning on the updated model to compute a policy.
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namic programming techniques, a value function is computed for the entire state

space after the model has changed. Once it is computed, dynamic programming

does not need to be performed again unless the model changes. With sample-based

MCTS methods that focus computation on the states the agent is likely to visit soon,

planning roll-outs must occur every step to look ahead at likely future states. These

methods are typically anytime algorithms, so each step can be limited to a given

amount of computation if desired.

DYNA-2 is an architecture that extends the DYNA idea of updating its value func-

tion using both real and simulated experiences to using sample-based planning (Sil-

ver et al, 2008). DYNA-2 maintains separate linear function approximators to repre-

sent both permanent and transient memories of the value function. The permanent

memory is updated through real experiences in the world. Between each action in

the world, the transient memory is updated by running UCT on the agent’s model

of the world. The transient memory is focused on a narrower part of the state space

(where UCT is sampling right now) and is used to augment the global value function.

Actions are selected based on the combination of the permanent and transient value

functions. This architecture combines a rough permanent global value function with

a more refined transient local value function created by UCT planning each step.

For some problems, such as controlling robots or other physical devices, it may

desirable to have a real-time architecture. In the previous architectures that we have

described, it is possible for the model update or planning steps to take a significant

amount of time. Hester et al (2011) developed a threaded architecture for real-time

model-based RL that puts the model learning, planning, and acting in three paral-

lel threads, shown in Figure 5. The threads communicate through four shared data

structures: a list of experiences to be added to the model, a copy of the model that the

planner uses, the current state for the planner to plan from, and the agent’s policy.

The model-learning thread runs in a loop, removing experiences from the list of new

experiences, updating its model with these experiences, and then copying the model

over to a version used by the planner. The planning thread runs a sample-based plan-

ning algorithm (such as UCT) on its version of the model, planning from the agent’s

current state, and updating the policy. The action thread adds the latest experience

to the update list, sets the agent’s current state for planning, and returns the best

action for that state from its policy. The action thread is able to return an action

immediately at whatever frequency is required. Depending on the action frequency

and the length of time it takes to update the model, the model learning thread can be

waiting for new experiences each time, or updating many new experiences into the

model at a time. When the model is incorporating many experiences at a time, the

algorithm’s behavior is similar to batch learning methods, however the agent will

continue taking actions while the batch updates takes place1.

1 Source code for this architecture is available at: http://www.ros.org/wiki/rl_agent
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Fig. 5 The parallel architecture for real-time model-based RL proposed by Hester et al (2011).

There are three separate parallel threads for model learning, planning, and acting. Separating model

learning and planning from the action selection enables it to occur at the desired rate regardless of

the time taken for model learning or planning.

5 Sample Complexity

A key benefit of model-based methods in comparison to model-free ones is that they

can provide better sample efficiency than model-free methods. The sample complex-

ity of an algorithm refers to the number of actions that an algorithm takes to learn an

optimal policy. The sample complexity of exploration is the number of sub-optimal

exploratory actions the agent must take. Kakade (2003) proves the lower bound for

this sample complexity is O( NA
ε(1−γ) log

1
δ
) for stochastic domains, where N is the

number of states, A is the number of actions, γ is the discount factor, and the algo-

rithm finds an ε-optimal policy (a policy whose value is within ε of optimal) with

probability 1−δ .
Model-based methods can be more sample efficient than model-free approaches

because they can update their value functions from their model rather than having

to take actions in the real world. For this to be effective, however, the method must
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have a reasonable model of the world to plan on. Therefore, the main restriction

on the sample efficiency of these methods is the number of actions it takes them to

learn an accurate model of the domain. The methods presented in this section drive

the agent to acquire the samples necessary to learn an accurate model quickly.

The Explicit Explore or Exploit (E3) algorithm (Kearns and Singh, 1998) was

the first algorithm to be proved to converge to a near-optimal policy in polynomial

time2. The authors analyze their algorithm in terms of a mixing time, T , which is the

horizon over which the value of the policy is calculated. For discounted domains,

T =
1

1− γ

The algorithmmaintains counts of visits to each state and considers states with fewer

than m visits to be unknown. When the agent reaches an unknown state, it performs

balanced wandering (taking the action it has selected the least from that state). If

it reaches a known state, it attempts to plan an exploration policy that gets to an

unknown state as quickly as possible. If the probability of reaching an unknown state

is greater than ε/(2Rmax), then this policy is followed. If that bound is not exceeded,
then the authors have proven that planning an optimal policy must result in a policy

that is within ε of optimal. Therefore, if the probability of reaching an unknown

state does not reach that bound, the algorithm plans an approximate optimal policy

and follows it. With probability no less than 1− δ , the E3 algorithm will attain a

return greater than the optimal value −ε , in a number of steps polynomial in N, T ,

Rmax,
1
ε , and

1
δ
.

R-MAX (Brafman and Tennenholtz, 2001) is a similar model-based algorithm

with proven bounds on its sample efficiency. It also learns a tabular maximum like-

lihood model and tracks known and unknown states. The key insight of the R-MAX

algorithm is ’optimism in the face of uncertainty’. The algorithm replaces unknown

transitions in its model with transitions to an absorbing state. An absorbing state is

a state where all actions leave the agent in the absorbing state and provide the agent

with the maximum reward in the domain, Rmax. Doing so encourages the agent to

explore all state-action pairsm times, allowing it to learn an accurate model and thus

an optimal policy. This algorithm is simpler than the E3 algorithm, and it employs

an implicit explore or exploit approach rather than explicitly deciding between two

policies as E3 does. With probability no less than 1−δ , the R-MAX algorithm will

attain an expected return with 2ε of optimal within a number of steps polynomial in

N, A, T , 1
ε , and

1
δ
. Pseudo-code for the R-MAX algorithm is shown in Algorithm 23.

The principles used in R-MAX are formalized in a learning framework called

Knows What It Knows (KWIK) (Li et al, 2008). For a model learning method to fit

the KWIK framework, when queried about a particular state-action pair, it must al-

ways either make an accurate prediction, or reply “I don’t know” and request a label

for that example. KWIK algorithms can be used as the model learning methods in an

2
Q-LEARNING, which was developed before E3, was not proved to converge in polynomial time

until after the development of E3 (Even-dar and Mansour, 2001).
3 Source code for R-MAX is available at: http://www.ros.org/wiki/rl_agent
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Algorithm 2 R-Max (Inputs S, A, m, Rmax)

1: // Initialize sr as absorbing state with reward Rmax

2: for all a ∈ A do

3: R(sr,a)← Rmax

4: T (sr,a,sr)← 1

5: end for

6: Initialize s to a starting state in the MDP

7: loop

8: Choose a= π(s)
9: Take action a, observe r, s′

10: // Update model

11: Increment C(s,a,s′)
12: Increment C(s,a)
13: RSUM(s,a)← RSUM(s,a)+ r

14: ifC(s,a)≥ m then

15: // Known state, update model using experience counts

16: R(s,a)← RSUM(s,a)/C(s,a)
17: for all s′ ∈C(s,a, ·) do
18: T (s,a,s′)←C(s,a,s′)/C(s,a)
19: end for

20: else

21: // Unknown state, set optimistic model transition to absorbing state

22: R(s,a)← Rmax

23: T (s,a,sr)← 1

24: end if

25: // Plan policy on updated model

26: Call VALUE-ITERATION

27: s← s′

28: end loop

RL setting, as the agent can be driven to explore the states where the model replies

“I don’t know” to improve its model quickly. The drawback of KWIK algorithms

is that they often require a large number of experiences to guarantee an accurate

prediction when not saying “I don’t know.”

6 Factored Domains

Many problems utilize a factored state representation where the state is represented

by a vector of n state features:

s=< x0, ...,xn >

For example, an agent learning to control a robot could represent the state with a

separate state feature for each joint. In many cases, the transition probabilities in

factored domains are assumed to be determined by a Dynamic Bayesian Network

(DBN). In the DBN model, each state feature of the next state may only be depen-
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(a) Taxi Domain. (b) DBN Transition Structure.

Fig. 6 6(a) shows the Taxi domain. 6(b) shows the DBN transition model for this domain. Here

the x feature in state s′ is only dependent on the x and y features in state s and the y feature is

only dependent on the previous y. The passenger’s destination is only dependent on its previous

destination, and her current location is dependent on her location the step before as well as the

taxi’s x,y location the step before.

dent on some subset of features from the previous state and action. The features that

a given state feature are dependent on are called its parents. The maximum num-

ber of parents that any of the state features has is called the maximum in-degree

of the DBN. When using a DBN transition model, it is assumed that each feature

transitions independently of the others. These separate transition probabilities can

combined together into a prediction of the entire state transition with the following

equation:

P(s′|s,a) = T (s,a,s′) =Π n
i=0P(xi|s,a)

Learning the structure of this DBN transition model is known as the structure learn-

ing problem. Once the structure of the DBN is learned, the conditional probabilities

for each edge must be learned. Typically these probabilities are stored in a condi-

tional probability table, or CPT.

Figure 6 shows an example DBN for the Taxi domain (Dietterich, 1998). Here

the agent’s state is made up of four features: its x and y location, the passenger’s

location, and the passenger’s destination. The agent’s goal is to navigate the taxi to

the passenger, pick up the passenger, navigate to her destination, and drop off the

passenger. The y location of the taxi is only dependent on its previous y location,

and not its x location or the current location or destination of the passenger. Because

of the vertical walls in the domain, the x location of the taxi is dependent on both x

and y. If this structure is known, it makes the model learning problem much easier,

as the same model for the transition of the x and y variables can be used for any

possible value of the passenger’s location and destination.

Model-based RL methods for factored domains vary in the amount of informa-

tion and assumptions given to the agent. Most assume a DBN transition model,

and that the state features do transition independently. Some methods start with no
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knowledge of the model and must first learn the structure of the DBN and then

learn the probabilities. Other methods are given the structure and must simply learn

the probabilities associated with each edge in the DBN. We discuss a few of these

variations below.

The DBN-E3 algorithm (Kearns and Koller, 1999) extends the E3 algorithm to

factored domains where the structure of the DBNmodel is known.With the structure

of the DBN already given, the algorithm must learn the probabilities associated

with each edge in the DBN. The algorithm is able to learn a near-optimal policy

in a number of actions polynomial in the number of parameters of the DBN-MDP,

which can be exponentially smaller than the number of total states.

Similar to the extension of E3 to DBN-E3, R-MAX can be extended to FACTORED-

R-MAX for factored domains where the structure of the DBN transition model is

given (Guestrin et al, 2002). This method achieves the same sample complexity

bounds as the DBN-E3 algorithm, while also maintaining the implementation and

simplicity advantages of R-MAX over E3.

Structure Learning Factored R-MAX (SLF-R-MAX) (Strehl et al, 2007) applies

an R-MAX type approach to factored domains where the structure of the DBN is

not known. It learns the structure of the DBN as well as the conditional probabil-

ities when given the maximum in-degree of the DBN. The algorithm enumerates

all possible combinations of input features as elements and then creates counters

to measure which elements are relevant. The algorithm makes predictions when a

relevant element is found for a queried state; if none is found, the state is considered

unknown. Similar to R-MAX, the algorithm gives a bonus of Rmax to unknown states

in value iteration to encourage the agent to explore them. The sample complexity of

the algorithm is highly dependent on the maximum in-degree, D, of the DBN. With

probability at least 1−δ , the SLF-R-MAX algorithm’s policy is ε-optimal except for

at most k time steps, where:

k = O

(

n3+2DADln( nA
δ
)ln( 1

δ
)ln( 1

ε(1−γ) )

ε3(1− γ)6

)

Here, n is the number of factors in the domain, D is the maximum in-degree in the

DBN, and γ is the discount factor.
Diuk et al (2009) improve upon the sample complexity of SLF-R-MAX with the

k-Meteorologists R-MAX (MET-R-MAX) algorithm by introducing a more efficient

algorithm for determining which input features are relevant for its predictions. It

achieves this improved efficiency by using the mean squared error of the predictors

based on different DBNs. This improves the sample complexity for discovering the

structure of the DBN from O(n2D) to O(nD). The overall sample complexity bound

for this algorithm is the best known bound for factored domains.

Chakraborty and Stone (2011) present a similar approach that does not require

knowledge of the in-degree of the DBN called Learn Structure and Exploit with

R-MAX (LSE-R-MAX). It takes an alternative route to solving the structure learn-

ing problem in comparison to MET-R-MAX by assuming knowledge of a planning

horizon that satisfies certain conditions, rather than knowledge of the in-degree.
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With this assumption, it solves the structure learning problem in sample complexity

bounds which are competitive with MET-R-MAX, and it performs better empirically

in two test domains.

Decision trees present another approach to the structure learning problem. They

are able to naturally learn the structure of the problem by using information gain

to determine which features are useful to split on to make predictions. In addition,

they can generalize more than strict DBN models can. Even for state features that

are parents of a given feature, the decision tree can decide that in portions of the

state space, that feature is not relevant. For example, in taxi, the location of the

passenger is only dependent on the location of the taxi when the pickup action is

being performed. In all other cases, the location of the passenger can be predicted

while ignoring the taxi’s current location.

Decision trees are used to learn models in factored domains in the SPITI algo-

rithm (Degris et al, 2006). The algorithm learns a decision tree to predict each

state feature in the domain. It plans on this model using Structured Value Itera-

tion (Boutilier et al, 2000) and uses ε-greedy exploration. The generalization in its

model gives it better sample efficiency than many methods using tabular or DBN

models in practice. However, there are no guarantees that the decision tree will fully

learn the correct transition model, and therefore no theoretical bounds have been

proven for its sample efficiency.

RL-DT is another approach using decision trees in its model that attempts to im-

prove upon SPITI by modeling the relative transitions of states and using a different

exploration policy (Hester and Stone, 2009). By predicting the relative change in

each feature, rather than its absolute value, the tree models are able to make better

predictions about the transition dynamics for unseen states. In addition, the algo-

rithm uses a more directed exploration scheme, following R-MAX type exploration

of driving the agent to states with few visits until the agent finds a state with reward

near Rmax, at which point it switches to exploiting the policy computed using its

model. This algorithm has been shown to be effective on gridworld tasks such as

Taxi, as well as on humanoid robots learning to score penalty kicks (Hester et al,

2010).

Figure 7 shows an example decision tree predicting the relative change in the

x variable of the agent in the given gridworld domain. The decision tree is able to

split on both the actions and the state of the agent, allowing it to split the state space

up into regions where the transition dynamics are the same. Each leaf of the tree

can make probabilistic predictions based on the ratio of experienced outcomes in

that leaf. The grid is colored to match the leaves on the left side of the tree, making

predictions for when the agent takes the east action. The tree is built on-line while

the agent is acting in the MDP. At the start, the tree will be empty, and will slowly

be refined over time. The tree will make predictions about broad parts of the state

space at first, such as what the EAST or WEST actions do, and eventually refine

itself to have leaves for individual states where the transition dynamics differ from

the global dynamics.
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(a) Two room gridworld domain.

(b) Decision tree model predicting the change in the x feature (∆x)
based on the current state and action.

Fig. 7 This figure shows the decision tree model learned to predict the change in the x feature (or

∆x). The two room gridworld is colored to match the corresponding leaves of the left side of the

tree where the agent has taken the east action. Each rectangle represents a split in the tree and

each rounded rectangle represents a leaf of the tree, showing the probabilities of a given value for

∆x. For example, if the action is east and x = 14 we fall into the green leaf on the left, where the

probability of ∆x being 0 is 1.

7 Exploration

A key component of the E3 and R-MAX algorithms is how and when the agent

decides to take an exploratory (sub-optimal) action rather than exploit what it knows
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in its model. One of the advantages of model-based methods is that they allow the

agent to perform directed exploration, planning out multi-step exploration policies

rather than the simple ε-greedy or softmax exploration utilized by many model-

free methods. Both the E3 and R-MAX algorithms do so by tracking the number

of visits to each state and driving the agent to explore all states with fewer than a

given number of visits. However, if the agent can measure uncertainty in its model,

it can drive exploration without depending on visit counts. The methods presented

in this section follow this approach. They mainly vary in two dimensions: 1) how

they measure uncertainty in their model and 2) exactly how they use the uncertainty

to drive exploration.

Model-based Bayesian RL methods (Chapter 3) seek to solve the exploration

problem by maintaining a posterior distribution over possible models. This approach

is promising for solving the exploration problem because it provides a principled

way to track the agent’s uncertainty in different parts of the model. In addition, with

this explicit uncertainty measure, Bayesian methods can plan to explore states that

have the potential to provide future rewards, rather than simply exploring states to

reduce uncertainty for its own sake.

Duff (2003) presents an ’optimal probe’ that solves the exploration problem op-

timally, using an augmented statespace that includes both the agent’s state in the

world and its beliefs over its models (called a belief state MDP). The agent’s model

includes both how an action will affect its state in the world, and how it will affect

the agent’s beliefs over its models (and what model it will believe is most likely).

By planning over this larger augmented state space, the agent can explore optimally.

It knows which actions will change its model beliefs in significant and potentially

useful ways, and can ignore actions that only affect parts of the model that will not

be useful. While this method is quite sample efficient, planning over this augmented

state space can be very computationally expensive. Wang et al (2005) make this

method more computationally feasible by combining it with MCTS-like planning.

This can be much more efficient than planning over the entire state space, as entire

parts of the belief space can be ignored after a few actions. BEETLE (Poupart et al,

2006) takes a different approach to making this solution more computationally fea-

sible by parametrizing the model and tying model parameters together to reduce the

size of the model learning problem. However, this method is still impractical for any

problem with more than a handful of states.

Other Bayesian methods use the model distribution to drive exploration with-

out having to plan over a state space that is augmented with model beliefs. Both

Bayesian DP (Strens, 2000) and Best of Sampled Set (BOSS) (Asmuth et al, 2009)

approach the exploration problem by sampling from the distribution over world

models and using these samples in different ways.

Bayesian DP samples a single model from the distribution, plans a policy using

it, and follows that policy for a number of steps before sampling a new model. In

between sampling new models, the agent will follow a policy consistent with the

sampled model, which may be more exploratory or exploitative depending on the

sampled model.
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BOSS on the other hand, samples k models from the model posterior distribution

whenever it collects sufficient data for some part of the model. It then merges the

models into a single optimistic model with the same state space, but an augmented

action space of kA actions. Essentially, there is an action modeled by each of the

predictions of the k models for each of the A actions. Planning over this optimistic

model allows the agent to select at each state an action from any of the k sampled

models. The agent is driven to explore areas of the state space where the model is

uncertain because due to the variance in the model distribution in that part of the

state space, at least one of the sampled models is likely to be optimistic.

Model Based Bayesian Exploration (MBBE) is a similar approach taken by Dear-

den et al (1999). They maintain a distribution over model parameters and sample

and solve k models to get a distribution over action-values. They use this distribu-

tion over action-values to calculate the value of perfect information (VPI) that is

based on the uncertainty in the action-values along with the expected difference in

reward that might be gained. They use the VPI value to give a bonus value to actions

with high information gain.

These three methods (Bayesian DP, BOSS, and MBBE) provide three different ap-

proaches to sampling from a Bayesian distribution over models to solve the explo-

ration problem. While these methods provide efficient exploration, they do require

the agent to maintain Bayesian distributions over models and sample models from

the distribution. They also require the user to create a well-defined model prior.

Kolter and Ng (2009) attempt to extend the polynomial convergence proofs of

E3 and R-MAX to Bayesian methods with an algorithm called Bayesian Exploration

Bonus (BEB). BEB follows the Bayesian optimal policy after a polynomial number

of steps, using exploration rewards similar to R-MAX to drive the agent towards

the Bayesian optimal policy. One drawback of BEB is that it requires the transition

functions to be drawn from a Dirichlet distribution.

Model Based Interval Estimation (MBIE) (Wiering and Schmidhuber, 1998;

Strehl and Littman, 2005) is a similar approach that looks at the distribution over

transition probabilities rather than action-value distributions. The algorithm main-

tains statistical confidence intervals over the transition probabilities where transi-

tions that have been sampled more often have tighter distributions around the same

mean. When selecting actions, the algorithm computes the value function according

to the transitions probabilities that are both within the calculated confidence interval

and result in the highest policy values. Effectively, MBIE solves for the maximum

over likely transition probabilities in addition to the maximum over individual ac-

tions.

SLF-R-MAX, MET-R-MAX, and LSE-R-MAX perform directed exploration on fac-

tored domains (Strehl et al, 2007; Diuk et al, 2009; Chakraborty and Stone, 2011).

They use an R-MAX type exploration bonus to explore to determine the structure of

the DBN transition model and to determine the conditional probabilities. They can

explore less than methods such as R-MAX since their DBN model should be able to

determine that some features are not relevant for the predictions of certain features.

With fewer relevant features, the space of states where the relevant features differ is

much smaller than when assuming each state can have different transition dynamics.
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Fig. 8 TEXPLORE’s Model Learning. This figure shows how the TEXPLORE algorithm (Hester

and Stone, 2010) learns a model of the domain. The agent calculates the difference between s′ and

s as the transition effect. Then it splits up the state vector and learns a random forest to predict the

change in each state feature. Each random forest is made up of stochastic decision trees, which are

updated with each new experience with probability w. The random forest’s predictions are made

by averaging each tree’s predictions, and then the predictions for each feature are combined into a

complete model of the domain.

With tabular models, it is clear that the agent must explore each state-action in or-

der to learn an accurate model for each one. This task can be accomplished through

random exploration, but it is more effective to direct exploration to the unvisited

states like R-MAX does. When dealing with models that generalize such as decision

trees or DBNs, however, we do not want the agent exploring every state. One of the

benefits of these models is that they are able to make reasonable predictions about

unseen state-action pairs. Therefore, instead of exploring every state-action pair, it

would be more efficient for the agent to use an approach similar to the Bayesian

methods such as BOSS described above.

The TEXPLORE algorithm (Hester and Stone, 2010) is a model-based method for

factored domains that attempts to accomplish this goal. It learns multiple possible

decision tree models of the domain, in the form of a random forest (Breiman, 2001).

Figure 8 shows the random forest model. Each random forest model is made up of

m possible decision tree models of the domain and trained on a subset of the agent’s

experiences. The agent plans on the average of these m models and can include an

exploration bonus based on the variance of the models’ predictions.

The TEXPLORE agent builds k hypotheses of the transition model of the domain,

similar to the multiple sampled models of BOSS or MBBE. TEXPLORE combines the
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models differently, however, creating a merged model that predicts next state dis-

tributions that are the average of the distributions predicted by each of the models.

Planning over this average distribution allows the agent to explore promising tran-

sitions when their probability is high enough (when many of the models predict the

promising outcome, or one of them predicts it with high probability). This is similar

to the approach of BOSS, but takes into account the number of sampled models that

predict the optimistic outcome. In TEXPLORE, the prediction of a given model has

probability 1
k
, while the extra actions BOSS creates are always assumed to transition

as that particular model predicts. This difference becomes clear with an example.

If TEXPLORE’s models disagree and the average model predicts there is a small

chance of a particular negative outcome occurring, the agent will avoid it based on

the chance that it may occur. The BOSS agent, however, will simply select an action

from a different model and ignore the possibility of these negative rewards. On the

other hand, if TEXPLORE’s average model predicts a possibility of a high-valued

outcome occurring, it may be worth exploring if the value of the outcome is high

enough relative to its probability. TEXPLORE has been used in a gridworld with over

300,000 states (Hester and Stone, 2010) and run in real-time on an autonomous

vehicle (Hester et al, 2011)4.

Schmidhuber (1991) tries to drive the agent to where the model has been im-

proving the most, rather than trying to estimate where the model is poorest. The

author takes a traditional model-based RL method, and adds a confidence module,

which is trained to predict the absolute value of the error of the model. This module

could be used to create intrinsic rewards encouraging the agent to explore high-error

state-action pairs, but then the agent would be attracted to noisy states in addition

to poorly-modeled ones. Instead the author adds another module that is trained to

predict the changes in the confidence module outputs. Using this module, the agent

is driven to explore the parts of the state space that most improve the model’s pre-

diction error.

Baranes and Oudeyer (2009) present an algorithm based on a similar idea called

Robust Intelligent Adaptive Curiosity (R-IAC), a method for providing intrinsic re-

ward to encourage a developing agent to explore. Their approach does not adopt the

RL framework, but is similar in many respects. In it, they split the state space into

regions and learn a model of the transition dynamics in each region. They maintain

an estimate of the prediction error for each region and use the gradient of this error

as the intrinsic reward for the agent, driving the agent to explore the areas where the

prediction errors are improving the most. Since this approach is not using the RL

framework, their algorithm selects actions only to maximize the immediate reward,

rather than the discounted sum of future rewards. Their method has no way of in-

corporating external rewards, but it could be used to provide intrinsic rewards to an

existing RL agent.

4 Source code for the TEXPLORE algorithm is available at: http://www.ros.org/wiki/

rl_agent
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8 Continuous Domains

Most of the algorithms described to this point in the chapter assume that the agent

operates in a discrete state space. However, many real-world problems such as

robotic control involve continuously valued states and actions. These approaches

can be extended to continuous problems by quantizing the state space, but very

fine discretizations result in a very large number of states, and some information

is lost in the discretization. Model-free approaches can be extended fairly easily to

continuous domains through the use of function approximation. However, there are

multiple challenges that must be addressed to extend model-based methods to con-

tinuous domains: 1) learning continuous models, 2) planning in a continuous state

space, and 3) exploring a continuous state space. Continuous methods are described

further in Chapter 8.

Learning a model of a continuous domain requires predictions about a continuous

next-state and reward from a continuous state. Unlike the discrete case, one cannot

simply learn a tabular model for some discrete set of states. Some form of func-

tion approximation must be used, as many real-valued states may never be visited.

Common approaches are to use regression or instance-based techniques to learn a

continuous model.

A more difficult problem is to plan over a continuous state space. There are an

infinite number of states for which the agent needs to know an optimal action. Again,

this can be done with some form of function approximation on the policy, or the

statespace could be discretized for planning purposes (even if used as-is for learning

the model). In addition, many of the model-free approaches for continuous state

spaces discussed in Chapter 8, such as policy gradient methods (Sutton et al, 1999)

or Q-LEARNING with function approximation, could be used for planning a policy

on the model.

Fitted value iteration (FVI) (Gordon, 1995) adapts value iteration to continuous

state spaces. It iterates, updating the values of a finite set of states sampled from

the infinite state space and then fitting a function approximator to their values. If

the function approximator fits some contraction criteria, then fitted value iteration is

proven to converge.

One of the earliest model-based RL algorithms for continuous state-spaces is the

PARTI-GAME algorithm (Moore and Atkeson, 1995). It does not work in the typical

RL framework, having deterministic dynamics and a goal region rather than a re-

ward function. The algorithm discretizes the state space for learning and planning,

adaptively increasing its resolution in interesting parts of the state space. When the

planner is unable to find a policy to the goal, cells on the border of ones that suc-

ceed and fail are split further to increase the resolution of the discretization. This

approach allows the agent to have a more accurate model of dynamics when needed

and a more general model elsewhere.

Unlike the partitioning approach of the PARTI-GAME algorithm, Ormnoneit and

Sen (2002) use an instance-based model of the domain in their kernel-based RL

algorithm. The algorithm saves all the transitions it has experienced. When making

a prediction for a queried state-action, the model makes a prediction based on an
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average of nearby transitions, weighted using the kernel function. This model is

combined with approximate dynamic programming to create a full model-based

method.

Deisenroth and Rasmussen (2011) use Gaussian Process (GP) regression to learn

a model of the domain in their algorithm called Probabilistic Inference for Learning

Control (PILCO). The GP regression model generalizes to unseen states and pro-

vides confidence bounds for its predictions. The agent plans assuming the next state

distribution matches the confidence bounds, encouraging the agent to explore when

some states from the next state distribution are highly valued. The algorithm also

uses GP regression to represent its policy and it computes the policy with policy

iteration. It runs in batch mode, alternatively taking batches of actions in the world

and then re-computing its model and policy. The algorithm learns to control a phys-

ical cart-pole device with few samples, but pauses for 10 minutes of computation

after every 2.5 seconds of action.

Jong and Stone (2007) present an algorithm called FITTED-R-MAX that extends

R-MAX to continuous domains using an instance-based model. When a state-action

is queried, the algorithm uses the nearest instances to the queried state-action. They

use the relative effects of the nearest instances to predict the relative change in state

that will occur for the queried state-action. Their algorithm can provide a distri-

bution over next states which is then used for planning with fitted value iteration.

The agent is encouraged to explore parts of the state space that do not have enough

instances with an R-MAX type exploration bonus.

Least-Squares Policy Iteration (LSPI) (Lagoudakis and Parr, 2003) is a popular

method for planning with function approximation (described further in Chapter 4). It

performs approximate policy iteration when using linear function approximation. It

calculates the policy parameters that minimize the least-squares difference from the

Bellman equation for a given set of experiences. These experiences could come from

a generative model or from saved experiences of the agent. However, LSPI is usually

used for batch learning with experiences gathered through random walks because of

the expensive computation required. Li et al (2009) extend LSPI to perform online

exploration by providing exploration bonuses similar to FITTED-R-MAX.

Nouri and Littman (2010) take a different approach with a focus on exploration

in continuous domains. They develop an algorithm called Dimension Reduction

in Exploration (DRE) that uses a method for dimensionality reduction in learning

the transition function that automatically discovers the relevant state features for

prediction. They predict each feature independently, and they use a ’knownness’

criterion from their model to drive exploration. They combine this model with fitted

value iteration to plan every few steps.

While RL typically focuses on discrete actions, there are many control prob-

lems that require a continuous control signal. Trying to find the best action in this

case can be a difficult problem. Binary Action Search (Pazis and Lagoudakis, 2009)

provides a possible solution to this problem by discretizing the action space and

breaking down the continuous action selection problem into a series of binary ac-

tion selections, each one deciding one bit of the value of the continuous action to be

taken. Alternatively, one can represent the policy with a function approximator (for
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example, in an actor-critic method) and update the function approximator appropri-

ately to output the best continuous action (Sutton et al, 1999; van Hasselt and Wier-

ing, 2007). Weinstein et al (2010) develop a different approach called HOOT, using

MCTS-type search to partition and search the continuous action space. The search

progresses through the continuous action space, selecting smaller and smaller par-

titions of the continuous space until reaching a leaf in the search tree and selecting

an action.

9 Empirical Comparisons

Having surveyed the model-based approaches along the dimensions of how they

combine planning and model learning, how they explore, and how they deal with

continuous spaces, we now present some brief representative experiments that illus-

trate their most important properties. Though model-based methods are most useful

in large domains with limited action opportunities (see Section 10), we can illustrate

their properties on simple toy domains5.

We compared R-MAX (described in Section 5) with Q-LEARNING, a typical

model-free method, on the Taxi domain. R-MAX was run with the number of visits

required for a state to be considered known,M, set to 5. Q-LEARNING was run with

a learning rate of 0.3 and ε-greedy exploration with ε = 0.1. Both methods were

run with a discount factor of 0.99. The Taxi domain (Dietterich, 1998), shown in

Figure 9(a), is a 5x5 gridworld with four landmarks that are labeled with one of the

following colors: red, green, blue or yellow. The agent’s state consists of its loca-

tion in the gridworld in x,y coordinates, the location of the passenger (at a landmark

or in the taxi), and the passenger’s destination (a landmark). The agent’s goal is to

navigate to the passenger’s location, pick the passenger up, navigate to the passen-

ger’s destination and drop the passenger off. The agent has six actions that it can

take. The first four (north, south, west, east) move the agent to the square in that

respective direction with probability 0.8 and in a perpendicular direction with prob-
ability 0.1. If the resulting direction is blocked by a wall, the agent stays where it

is. The fifth action is the pickup action, which picks up the passenger if she is at the

taxi’s location. The sixth action is the putdown action, which attempts to drop off

the passenger. Each of the actions incurs a reward of −1, except for unsuccessful
pickup or putdown actions, which produce a reward of −10. The episode is ter-

minated by a successful putdown action, which provides a reward of +20. Each

episode starts with the passenger’s location and destination selected randomly from

the four landmarks and with the agent at a random location in the gridworld.

Figure 9(b) shows a comparison of the average reward accrued by Q-LEARNING

and R-MAX on the Taxi domain, averaged over 30 trials. R-MAX receives large neg-

ative rewards early as it explores all of its ’unknown’ states. This exploration, how-

ever, leads it to find the optimal policy faster than Q-LEARNING.

5 Source code to re-create these experiments is available at: http://www.ros.org/wiki/

reinforcement_learning
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(b) Average Rewards.

Fig. 9 9(a) shows the Taxi domain. 9(b) shows the average reward per episode for Q-LEARNING

and R-MAX on the Taxi domain averaged over 30 trials.

Next, we show the performance of a fewmodel-based methods and Q-LEARNING

on the Cart-Pole Balancing task. Cart-Pole Balancing is a continuous task, shown

in Figure 10(a), where the agent must keep the pole balanced while keeping the

cart on the track. The agent has two actions, which apply a force of 10 N to the

cart in either direction. Uniform noise between −5 and 5 N is added to this force.

The state is made up of four features: the pole’s position, the pole’s velocity, the

cart’s position, and the cart’s velocity. The agent receives a reward of +1 each time

step until the episode ends. The episode ends if the pole falls, the cart goes off the

track, or 1,000 time steps have passed. The task was simulated at 50 Hz. For the

discrete methods, we discretized each of the 4 dimensions into 10 values, for a total

of 10,000 states.

For model-free methods, we compared Q-LEARNING on the discretized domain

with Q-LEARNING using tile-coding for function approximation on the continuous

representation of the task. Both methods were run with a learning rate of 0.3 and

ε-greedy exploration with ε = 0.1. Q-LEARNING with tile coding was run with 10

conjunctive tilings each with dimension split into 4 tiles. We also compared four

model-based methods: two discrete methods and two continuous methods. The dis-

crete methods were R-MAX (Brafman and Tennenholtz, 2001), which uses a tabular

model, and TEXPLORE (Hester and Stone, 2010). TEXPLORE uses decision trees to

model the relative effects of transitions and acts greedily with respect to a model

that is the average of multiple possible models. Both of these methods were run

on the discretized version of the domain. Here again, R-MAX was run with M = 5.

TEXPLORE was run with b = 0,w = 0.55, and f = 0.2. We also evaluated FITTED-

R-MAX (Jong and Stone, 2007), which is an extension of R-MAX for continuous

domains, and CONTINUOUS TEXPLORE, an extension of TEXPLORE to continuous

domains that uses regression trees to model the continuous state instead of discrete

decision trees. CONTINUOUS TEXPLORE was run with the same parameters as TEX-

PLORE and FITTED-R-MAX was run with a model breadth of 0.05 and a resolution

factor of 4.
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Fig. 10 10(a) shows the Cart-Pole Balancing task. 10(b) shows the average reward per episode for

the algorithms on Cart-Pole Balancing averaged over 30 trials.

The average rewards for the algorithms averaged over 30 trials are shown in Fig-

ure 10(b). Both versions of R-MAX take a long time exploring and do not accrue

much reward. Q-LEARNING with tile coding out-performs discrete Q-LEARNING

because it is able to generalize values across states to learn faster. Meanwhile, the

generalization and exploration of the TEXPLORE methods give them superior per-

formance, as they accrue significantly more reward per episode than the other meth-

ods after episode 6. For each method, the continuous version of the algorithm out-

performs the discrete version.

These experiments illustrate some of the trade-offs between model-based and

model-free methods and among different model-based methods. Model-based meth-

ods such as R-MAX spend a long time exploring the domain in order to guarantee

convergence to an optimal policy, allowing other methods such as Q-LEARNING

to perform better than R-MAX during this exploration period. On the other hand,

methods such as TEXPLORE that attempt to learn a model without exploring as thor-

oughly as R-MAX can learn to act reasonably well quickly, but do not provide the

same guarantees of optimality since their model may not be completely accurate. In

addition, when working in continuous domains, algorithms that work directly with

the continuous variables without requiring discretization have a distinct advantage.

10 Scaling Up

While model-based RL provides great promise in terms of sample efficiency when

compared to model-free RL, this advantage comes at the expense of more compu-

tational and space complexity for learning a model and planning. For this reason,

evaluation of these methods has often been limited to small toy domains such as

Mountain Car, Taxi, or Puddle World. In addition, even efficient algorithms may
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take too many actions to be practical on a real task. All of these issues must be

resolved for model-based RL to be scaled up to larger and more realistic problems.

With factored models and generalization, model-based RL has achieved the sam-

ple efficiency to work on larger problems. However, in these cases, it still needs to

plan over the entire state space when its model changes, requiring significant compu-

tation. One way that this problem has been addressed in the literature is to combine

these methods with sample-based planners such as UCT (Kocsis and Szepesvári,

2006). In (Walsh et al, 2010), the authors prove that their method’s bounds on sam-

ple complexity are still valid when using a sample-based planner called Forward-

Search Sparse Sampling (FSSS), which is a more conservative version of UCT. FSSS

maintains statistical upper and lower bounds for the value of each node in the tree

and only explores sub-trees that have a chance of being optimal.

In order to guarantee that they will find the optimal policy, any model-based

algorithm must visit at least every state-action in the domain. Even this number of

actions may be too large in some cases, whether it is because the domain is very

big, or because the actions are very expensive or dangerous. These bounds can be

improved in factored domains by assuming a DBN transition model. By assuming

knowledge of the DBN structure ahead of time, the DBN-E3 and FACTORED-R-MAX

algorithms (Kearns and Koller, 1999; Guestrin et al, 2002) are able to learn a near-

optimal policy in a number of actions polynomial in the number of parameters of

the DBN-MDP, which can be exponentially smaller than the number of total states.

Another approach to this problem is to attempt to learn the structure of the DBN

model using decision trees, as in the TEXPLORE algorithm (Hester and Stone, 2010).

This approach gives up guarantees of optimality as the correct DBN structure may

not be learned, but it can learn high-rewarding (if not optimal) policies in many

fewer actions. The TEXPLORE algorithm models the MDP with random forests and

explores where its models are uncertain, but does not explore every state-action in

the domain.

Another approach to improving the sample efficiency of such algorithms is to

incorporate some human knowledge into the agent. One approach for doing so is

to provide trajectories of human generated experiences that the agent can use for

building its model. For example, in (Ng et al, 2003), the authors learn a dynamics

model of a remote control helicopter from data recorded from an expert user. Then

they use a policy search RL method to learn a policy to fly the helicopter using their

learned model.

One more issue with real-world decision making tasks is that they often involve

partially-observable state, where the agent can not uniquely identify its state from its

observations. The U-TREE algorithm (McCallum, 1996) is one model-based algo-

rithm that addresses this issue. It learns a model of the domain using a tree that can

incorporate previous states and actions into the splits in the tree, in addition to the

current state and action. The historical states and actions can be used to accurately

determine the agent’s true current state. The algorithm then uses value iteration on

this model to plan a policy.

Another way to scale up to larger and more complex domains is to use relational

models (described further in Chapter 12). Here, the world is represented as a set
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of literals and the agent can learn models in the form of STRIPS-like planning op-

erators (Fikes and Nilsson, 1971). Because these planning operators are relational,

the agent can easily generalize the effects of its actions over different objects in the

world, allowing it to scale up to worlds with many more objects. Pasula et al (2004)

present a method for learning probabilistic relational models in the form of sets of

rules. These rules describe how a particular action affects the state. They start with a

set of rules based on the experiences the agent has seen so far, and perform a search

over the rule set to optimize a score promoting simple and general rules. Object-

oriented RL (Diuk et al, 2008) takes a similar approach to relational RL, defining

the world in terms of objects.

11 Conclusion

Model-based methods learn a model of the MDP on-line while interacting with the

environment, and then plan using their approximate model to calculate a policy. If

the algorithm can learn an accurate model quickly enough, model-based methods

can be more sample efficient than model-free methods. With an accurate learned

model, an optimal policy can be planned without requiring any additional experi-

ences in the world. In addition, these approaches can use their model to plan out

multi-step exploration policies, enabling them to perform more directed exploration

than model-free methods.

Table 2 shows a summary of the model-based algorithms described in this chap-

ter. R-MAX (Brafman and Tennenholtz, 2001) is one of the most commonly used

Algorithm Section Model Type Key Feature

DHP 2 Neural Network Uses NN model within actor-critic framework

LWR RL 2 Locally Weighted Regression One of the first methods to generalize model across states

DYNA 4 Tabular Bellman updates on actual actions and saved experiences

Prioritized Sweeping 4 Tabular Performs sweep of value updates backwards from changed state

DYNA-2 4 Tabular Use UCT for simulated updates to transient memory

Real-Time Architecture 4 Any Parallel architecture to allow real-time action

E3 5 Tabular Explicit decision to explore or exploit

R-MAX 5 Tabular Reward bonus given to ’unknown’ states

DBN-E3 6 Learn probabilities for provided DBN model Learns in number of actions polynomial in # of DBN parameters

FACTORED-R-MAX 6 Learn probabilities for provided DBN model Learns in number of actions polynomial in # of DBN parameters

SLF-R-MAX 6 Learn models for all possible DBN structures Explore when any model is uncertain or models disagree

MET-R-MAX 6 Learn DBN structure and probabilities efficiently Explore when any model is uncertain or models disagree

LSE-R-MAX 6 Learn DBN efficiently without in-degree Explore when any model is uncertain or models disagree

SPITI 6 Decision Trees Model generalizes across states

RL-DT 6 Decision Trees with relative effects Model generalizes across states, R-MAX-like exploration

Optimal Probe 7 Maintain distribution over models Plan over augmented belief state space

BEETLE 7 Maintain distribution over parametrized models Plan over augmented belief state space

Bayesian DP 7 Maintain distribution over models Plan using model sampled from distribution

BOSS 7 Maintain distribution over models Plan using merged model created from sampled models

MBBE 7 Maintain distribution over models Use distribution over action-values to compute VPI

BEB 7 Maintain Dirichlet distribution over models Provide reward bonus to follow Bayesian policy

MBIE 7 Maintain distribution over transition probabilities Take max over transition probabilities as well as next state

TEXPLORE 7 Random Forest model for each feature Plan approximate optimal policy on average model

Intrinsic Curiosity 7 Supervised Learning method Provide intrinsic reward based on improvement in model

R-IAC 7 Supervised Learning method Select actions based on improvement in model

PILCO 8 Gaussian Process Regression Plan using uncertainty in next state predictions

PARTI-GAME 8 Split state-space based on transition dynamics Splits state space non-uniformly

Kernel-based RL 8 Instance-based model with kernel distance Use kernel to make predictions based on similar states

FITTED-R-MAX 8 Instance-based model Predict based on applying the relative effect of similar transitions

DRE 8 Dimensionality Reduction techniques Works in high-dimensional state spaces

U-TREE 10 Tree model that uses histories Makes predictions in partially observable domains

Relational 10 Relational rule sets Learns STRIPS-like relational operators

Table 2 This table presents a summary of the algorithms presented in this chapter.
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model-based methods because of its theoretical guarantees and ease of use and im-

plementation. However, MET-R-MAX (Diuk et al, 2009) and LSE-R-MAX (Chakraborty

and Stone, 2011) are the current state of the art in terms of the bounds on sample

complexity for factored domains. There are other approaches that perform as well

or better without such theoretical guarantees, such as Gaussian Process RL (Deisen-

roth and Rasmussen, 2011; Rasmussen and Kuss, 2004) or TEXPLORE (Hester and

Stone, 2010).

A major direction of current research in model-based reinforcement learning

is on scaling methods up to domains with larger and continuous state and action

spaces. Accomplishing this goal will require making algorithms more sample ef-

ficient, relying on more computationally efficient planners, and developing better

methods for exploration.
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