
To appear in Proceedings of the RoboCup International Symposium 2011 (RoboCup 2011),
Istanbul, Turkey, July 2011.

A low cost ground truth detection system for

RoboCup using the Kinect

Piyush Khandelwal and Peter Stone

Department of Computer Science, The University of Texas at Austin
{piyushk,pstone}@cs.utexas.edu

Abstract. Ground truth detection systems can be a crucial step in eval-
uating and improving algorithms for self-localization on mobile robots.
Selecting a ground truth system depends on its cost, as well as on the
detail and accuracy of the information it provides. In this paper, we
present a low cost, portable and real-time solution constructed using the
Microsoft Kinect RGB-D Sensor. We use this system to find the location
of robots and the orange ball in the Standard Platform League (SPL)
environment in the RoboCup competition. This system is fairly easy to
calibrate, and does not require any special identifiers on the robots. We
also provide a detailed experimental analysis to measure the accuracy of
the data provided by this system. Although presented for the SPL, this
system can be adapted for use with any indoor structured environment
where ground truth information is required.

Keywords: ground truth, robocup, kinect

1 Introduction

An important prerequisite for most autonomous robot tasks is the ability to self-
localize. In order to evaluate self-localization algorithms, the robot’s estimate of
its location must be compared to the ground truth: its true location. As a result,
ground truth data is frequently collected for mobile robots, typically by em-
ploying sensors external to the robot. Apart from self-localization, ground truth
information can also be used for behavior analysis, by providing the locations of
other agents in the environment.

Using a ground truth system requires consideration of a number of factors.
These include cost effectiveness, the amount of information that needs to be
collected, the accuracy of this information, as well as the ease of use of such
a system. These factors typically trade-off against one another. For instance a
system constrained by cost may require sacrificing on the amount and accuracy
of information. In this paper we present a ground truth system created using the
Microsoft Kinect sensor. We apply this system to the domain of robot soccer,
namely the Standard Platform League (SPL) from RoboCup. This work was
driven with the following constraints in mind.

1. Low cost - For obvious reasons, a low cost solution is desirable.



2. Portability and ease of calibration - Different space restrictions in dif-
ferent venues dictates that the system should allow for flexible sensor place-
ment. Coupled with a fast calibration time, this allows recording full games
between multiple teams at foreign venues.

3. No special markers on robots - This is a necessary requirement to record
competition games in the SPL, as custom markers are not allowed on the
robots.

The Kinect sensor is widely available at a cost of approximately USD 150,
and only 2 such sensors are required to span the field completely. This paper
describes an open source software infrastructure1 which will allow RoboCup
teams to quickly and easily set up a ground truth system. In this paper, we will
also present a detailed experimental analysis of the accuracy of the information
that this system provides.

The remainder of the paper is organized as follows. In Section 2, we present
a comparison of this system with other related work, and follow with a brief
background of the various components of this system in Section 3. We explain
our methodology in Section 4 along with an empirical analysis of performance
in Section 5. We conclude with an emphasis on directions for future work with
a discussion in Section 6.

2 Related Work

Ground truth systems have been used in conjunction with mobile robots both
within RoboCup and in other settings. In this section we compare our system
primarily with those that have been used within RoboCup. This comparison
should also enable the reader to choose the ground truth system best suited to
their problem domain.

Our system is similar to the SSL-Vision system [15] in many ways. SSL-
Vision is a shared vision system that is used by all teams participating in the
RoboCup Small Size League, and is used to estimate the ground truth position
of the robots. This system uses 2 RGB cameras to span the entire field, and
uses unique identifiers on top of the robots to determine robot locations and
orientations. This approach was extended in [13] for the RoboCup Mid Size
League. In [11], SSL-Vision was directly used to obtain ground truth positions
for the Aldebaran Nao, the robotic platform for the SPL. This was achieved
by attaching identifiers on top of the robots’ bodies by means of a hardware
extension.

An approach requiring the addition of custom hardware to the robot defeats
one of the goals of the SPL — to keep a common platform across all teams.
Such enhancements are not allowed in competition games, thus limiting such
approaches for collecting ground truth information to test environments. Our

1 Instructions for the download and use of this infrastructure are available at
http://www.cs.utexas.edu/~AustinVilla/?p=research/kinect



system overcomes the requirement of special markers by utilizing the depth in-
formation available from the Kinect. Although we lose orientation information
embedded in these markers, we view the gain in the ability to record ground
truth information for full games to be advantageous. Additionally, our system is
straightforward to implement since it does not require multiple teams to recre-
ate custom extensions to their robots. Note that if orientation information is
required, our system can be extended to use special markers as well during test-
ing.

A different approach was used by [9] towards collecting highly accurate
ground truth information for a single robot in the SPL. In this approach a
motion capture system was used for detecting robot pose by placing a set of 8
identification LEDs on the robot itself. This approach successfully captured a
fair amount of information about the robot’s pose, including the tilt and roll
of the robot body, and the position of the head with respect to the body. The
data collected by this approach was made available to the public, which allows
teams to run their own localization algorithms on this data-set and test it against
the ground truth information. However, to properly evaluate algorithms on the
robot, it is necessary to actively collect new ground truth information based on
the current behavior and self-localization of the robot. Due to the high cost of
a motion capture system, it is impractical for many RoboCup teams to imple-
ment such an approach. Additionally, this approach is even more invasive than
SSL-Vision in terms of placing additional markers on the robot. In comparison,
we believe that our solution has a greater appeal due to its low cost, portability,
and ease of use.

3 Background

The Kinect sensor was introduced by Microsoft for the X-Box 360 gaming system.
It is is a low cost RGB-D camera, which combines information from a standard
CMOS camera with an infrared based depth sensor. It has a horizontal field of
view (FOV) of 57 degrees, and a vertical FOV of approximately 43 degrees. The
supported depth range from the official specification is 1.2 - 3.5 meters, but in
our experiments it has been found to be around 0.7 - 7 meters. The Kinect has
already seen some applications to robotics [14], and will be used as a sensor by
multiple RoboCup@Home teams for RoboCup 2011 [8] [3]. In our experiments,
we have also noted a few drawbacks of this sensor. First, the accuracy of the
distance reading is proportional to the distance itself, as the sensitivity of the
sensor drops off for larger distances (see Fig. 1b). Secondly, a minimum range of
0.7 meters and an inability to work in direct sunlight makes this sensor unsuitable
for some robotics applications.

The software infrastructure of this system builds upon the ROS middle-ware
package [10]. We chose to use ROS for two main reasons. First, ROS currently
provides 2 drivers for the Kinect, and our system can use either. Second, an
implementation of the Point Cloud Library (PCL) [1] is available through ROS.
PCL is a relatively new library which provides implementations of a number of



(a) imagekinect (b) pointcloudkinect

Fig. 1: The image and corresponding pointcloud provided by the Kinect driver in ROS. The colored
axes in Fig. 1b give the orientation and location of the coordinate axes for refkinect

algorithms handling point clouds, some of which have been used in this work.
An understanding of ROS may prove beneficial for someone using this system,
but it is not entirely necessary.

The Kinect driver from ROS provides information from the Kinect in a num-
ber of easily readable formats, and we import this information in 2 formats.
The first one is the image that is directly available from the RGB sensor on the
Kinect (imagekinect in Fig. 1a). The second one is a composite XYZ-RGB point
cloud which is created by merging the information from the RGB and depth
sensors (pointcloudkinect in Fig. 1b). This point cloud is created by projecting
RGB pixels from the camera into 3D space based on the corresponding sensor
reading from the depth sensor. The point cloud is provided in a reference frame
local to the Kinect (refkinect in Fig. 1b). ROS also provides sufficient tools for
image rectification and geometry to transform a pixel in the RGB image to its
corresponding 3D location in the point cloud and vice versa.

4 Methodology

To utilize the information provided by the Kinect, the first necessary step is to
obtain the position and orientation of the Kinect sensor with respect to the global
coordinate frame of the field (reffield). This global coordinate frame originates
at the center of the field, with the +x direction towards the yellow goal (see Fig.
3b). Once this information is available, a transformation can be performed on
pointcloudkinect to obtain it in the correct reference frame (pointcloudfield). The
calibration procedure to obtain this transformation is explained in Sec. 4.1.2 To
effectively use the color information available in the point cloud, this system also
provides a color classification tool, which is briefly explained in Sec. 4.2. Finally,
in Sec. 4.3 we explain our methodology for detecting robots and the orange ball.

2 A video demonstrating calibration, color classification and object detection is avail-
able at http://www.cs.utexas.edu/~AustinVilla/?p=research/kinect



(a) Landmarks (b) pointcloudfield

Fig. 2: Obtaining the transformation. Fig. 2a shows the 22 landmarks used for obtaining the trans-
formation, which include all intersections, penalty crosses and goal post bases. Fig. 2b shows the
transformed point cloud, along with reffield axes and a wire-frame representation of the field

4.1 Transforming the point cloud

The transformation from refkinect to reffield involves only rotating and trans-
lating the coordinate axes, and is therefore a rigid body transformation. If 2 sets
of corresponding points are available in both reference frames, a least squares
fitting approach can be used to obtain this transformation even in the presence
of noise. A survey of such techniques is provided in [6], and we use the approach
given by [2], which uses singular value decomposition (SVD) to calculate this
transformation. An implementation of this approach is provided in PCL.

To obtain these corresponding set of points, we make use of some landmarks

on the field. There are a total of 22 such landmarks, all on the ground plane.
The position of these landmarks is already known in reffield, and we provide
an interface to the user to provide the corresponding points in refkinect. For a
given landmark, the user clicks a pixel in the image, and the system projects
this pixel outwards in 3D space to obtain a ray. We gather points in the point
cloud which are close to this ray (within 5cm), and average over these points to
obtain the position of the landmark in refkinect. If a landmark is not visible by
the sensor, then we do not obtain a correspondence.

Directly using this method to obtain landmarks has a drawback. Not all pixels
in imagekinect have a corresponding point in pointcloudkinect. This discrepancy
occurs because of slight differences in the field of view of the depth sensor and
the rgb camera, as well as the failure of the depth sensor to obtain a reading for
some pixels. For this reason it may not be possible to collect information about
a landmark even when it is present in the image. To counter this problem, we
first ask the user to enter any 5 arbitrary points on the ground plane of the field
which are visibly present in the point cloud visualization. With these points,
we perform least squares plane fitting [5] to obtain an accurate estimate of the
ground plane of the field in refkinect. We then obtain the pixels corresponding
to each landmark in the image and project them as a ray. The intersection of
the ray with the ground plane estimate gives the position of the the landmark



in refkinect, and we do not require the landmarks to be at their appropriate
positions in the point cloud.

We weigh each correspondence by the inverse of the squared Euclidean dis-
tance of the point from the camera sensor (squared L2 norm in refkinect). The
advantage of this weighing is that landmarks which are further away are smaller
in the image, and incur a greater error in our estimate of their position in
refkinect. We then apply the procedure described in [2] to obtain the trans-
formation [R,T], where R and T are the rotation and translation components
respectively. We can then construct the transformed point cloud pointcloudfield
as:

pointfield = Rpointkinect +T

∀ pointkinect in pointcloudkinect. The transformed point cloud is shown in Fig.
2b.

This calibration procedure of obtaining the transformation takes approxi-
mately 5 minutes, and needs to be done only once the Kinect has been placed
in the desired location. The ability to calculate this transformation into a global
coordinate frame also allows for flexible sensor placement, as long as the requisite
portion of the field is visible.

4.2 Color Classification

To utilize the color information also available in pointcloudfield, It is necessary
to classify the raw RGB values into known colors of interest. To this end, we use
an approach similar to that of many RoboCup teams for performing color based
segmentation [12]. Raw RGB values are translated into a color of interest using
a 256 * 256 * 256 color look-up table.

To obtain this look-up table, the user picks a pixel in the image corresponding
to a color of interest c. Let us say that the RGB value for this pixel is valuergb.
Based on a sensitivity parameter adjusted by the user, a neighborhood of raw
RGB values around valuergb in the color look-up table are then classified as
c. After multiple iterations of entering representative pixels for each color of
interest, the color table can be used to easily classify either pixels in imagekinect
or 3D points in pointcloudfield.

It should be noted that this method typically needs to be performed only once
for a given environment and lighting condition, and does not need to be redone
with a change in position of the Kinect. Additionally, since the CMOS camera
in the Kinect is fairly consistent in terms of colors, this calibration requires a
small number of iterations to complete, and takes only a few minutes.

4.3 Object Detection

The point cloud returned by the Kinect driver was found to be robust to large
amounts of noise, i.e. no point in pointcloudfield was too far away from its
true location. This property allows simple heuristics to be used for the object



(a) Robot search region (b) Detection + pointcloudrobot

Fig. 3: The robot search region in split up between the 2 Kinect sensors, and each system is run
independently. Fig. 3b shows the detection given by our system.

detection task, while at the same time allowing us to obtain the locations of the
robots and the orange ball accurately.

Robot Detection: We define a region in reffield in which we expect to find
robots. Since pointcloudfield is now available in this coordinate frame, we can
filter out all points which could possibly belong to a robot. We construct a new
pointcloudrobot from these filtered points based on the following constraints:

– We select those points which lie in the region marked out by Fig. 3a. We
avoid regions near the goal, since noisy points from the netting or goal post
may be detected as a robot.

– We select only those points which are above 30cm in height.

Since multiple robots may be present in the region of interest, we apply
Euclidean clustering on pointcloudrobot in an attempt to obtain 1 cluster per
robot. We provide a couple of parameters to the clustering algorithm. The first
is a tolerance of 10cm, which defines the maximum distance a point in the
cluster may have with its neighbors. Secondly, we retain only those clusters with
a minimum size of 200 points (min size). We treat all clusters as possible robot
detections, and the x and y coordinates of the cluster centers as the robot’s
position.

We perform some straightforward error checking for a couple of different
cases. First, since it may be required for human referees to step onto the field
during a game, we discard any cluster having points above 70cm (The nao has
a maximum height of 58cm). Second, if 2 robots on the field are too close, the
Euclidean clustering algorithm may return a single cluster for both of them. To
avoid a false reading, we also apply some loose size constraints designed to throw
out such a cluster. All remaining clusters are reported as robots.

Once a robot has been detected, we attempt to identify its team based on
the colored identification marker on its waist. Based on the output of the color
classifier, we count the number of blue or pink pixels close to the cluster center.
With this information we assign a team to each detected robot.



(a) Robot positions (b) Robot orientations

Fig. 4: Fig. 4a shows the locations where the robot was placed. Fig. 4b shows the orientation for
robot placement relative to the field, along with the position of the sensor.

Ball Detection: Ball detection follows a fairly similar approach to robot de-
tection. We construct a new pointcloudball from pointcloudfield based on the
following constraints.

– We select points close to the field, and unlike robot detection do consider
the regions around the goals.

– We impose a height constraint for selected points. They should lie fairly close
to the ground plane, between a height of 15cm and −15cm.

– We ensure that only points that have been marked as orange are selected.

We perform Euclidean cluster extraction on pointcloudball as well, using the
parameters for tolerance of 10cm and min size of 10. Finally a size restriction
is placed on each cluster, based on the true size of the ball. At this point, if
more than 1 cluster still remains, we discard all the readings to prevent any false
detection of the ball.

Spanning the entire field: Up to this point, we have only discussed using
information from a single Kinect, which can capture information for at most
half the field if placed at a reasonable range. To cover the entire field, we split
up the field into separate regions, place a Kinect sensor so that it captures one
region, and run a separate instance of our system for each Kinect. The search
space depicted in Fig. 3a is then split up according to the placement of these
regions and provided to each instance of our system. In practice, we have been
able to cover the SPL field with 2 Kinect sensors.

5 Experimental Results

In this section, we present experimental results that give error estimates on
the information provided by this system. To calculate the error, we place the
robot on some known locations on the field (Fig. 4a), and obtain the position
returned by our system. The error is then measured by comparing this value



against the known value of the location. To avoid being biased by a particular
orientation of the robot, we obtain estimates by placing the robot in 4 different
orientations at each position. In these orientations, the robot faces the +y, −x,
−y and +x directions as depicted in Fig. 4b. We name these orientations based
on their relative positions with respect to the sensor as front, right, back and
left, respectively.

We placed the Kinect at a location on the side of the field so that it could
sense half the field, and calculated the transformation (see Fig. 4b). Using the
transformation, the location of the sensor was recorded at (−155cm, 397cm,
210cm) in the global field coordinates. We then placed the robot in each of the
combinations of positions and orientations one by one, and recorded the output
of our system. This recorded reading was averaged across 20 frames captured by
the system.

Table 1: Average error in the robot’s position.

Type Average error (cm)

Robot (front) 10.19 (±5.86)

Robot (right) 10.90 (±5.87)

Robot (back) 9.72 (±4.55)

Robot (left) 10.87 (±6.97)

Robot (overall) 10.41 (±5.85)

The average error for different orientations of the robot is presented in Table
1. During the collection of this data, there were no false positives (defined as
any reading more than 50cm away from truth point). The robot was detected
in 95.64% of the frames recorded by our system. Detection did not occur in all
cases because the Kinect driver occasionally returned an incomplete point cloud,
in which the robot was not present.

While performing these tests we came across 2 factors that may add to the
reported error of our system. First, while marking the locations of the points
shown in Fig. 4a, we realized that due to deformities in the field it was impossible
to mark all locations exactly. Although these deformities crept into our field
through years of use, such errors were also recorded by many teams on the
newly constructed venues at RoboCup 2010. As a result, in an attempt to provide
realistic error estimates we do not correct for this error. The second error was
introduced because of manual placement of robots on these markers, and is
unavoidable. It is difficult to measure the amount of error added by these 2
factors, but we do not believe it to to be greater than 2–3cm.

We also measured the consistency of the calibration procedure for obtaining
the transformation. For the given Kinect setup, we entered the set of landmarks
3 times and calculated the transformation separately each time. We then selected
the 4 outermost landmarks available in the image, and transformed them in the



(a) Robot search region (b) pointcloudrobot

Fig. 5: The robot search region is split up between the 2 Kinect sensors, and each system is run
independently. Fig. 3b shows the detections given by our system.

reffield coordinate frame using the 3 transformations available. We measured
the standard deviation of these points across the 3 calibrations, and found it to
be 2.02cm. This is much less than the noise in our system, suggesting that the
calibration procedure produces consistent results.

An interesting observation made from Table 1 was that the errors for the
front and back orientations were marginally less than the other orientations.
We believe this difference to be a result of a bias introduced by the position of
the sensor. Since the points returned by the point cloud are from the surface it
hits, these points automatically get moved towards the sensor from the center of
the robot. In the left and right orientations the Kinect sensor faces the side of
the robot, which is closer to the sensor in comparison of the front or back of the
robot. To further investigate the movement of points towards the sensor, we plot
the error of each recorded location with respect to its true location in Fig. 5a.
The points are biased in the +y direction, which is roughly the same direction
in which the sensor lies. To estimate the amount of this shift, we again plot the
error, but rotate the axis for each point in the direction of the sensor (Fig. 5b).
The mean error along the direction of the camera is 8.15cm. Knowledge of this
value can help compensate for this systematic shift in points, further reducing
the error of our system.

6 Discussion

In this paper, we have presented a new ground truth detection system for appli-
cation in the Standard Platform League of RoboCup. This ground truth system
has many desirable qualities such as a low cost, portability, and ease of use,
with a fast calibration time. We have also presented an experimental analysis
to indicate the system’s accuracy. We aim to use this system for evaluating and
improving self-localization algorithms on the robots, and expect to find it useful
for other applications within the SPL environment as well.

A RoboCup team can easily apply this system to their own research by
acquiring the Microsoft Kinect sensor, and using it along with the open source



infrastructure that will be made available with this paper. We also hope that
as this system finds greater application in the future, members from multiple
teams and research labs may contribute towards its further development.

There are still a number of ways in which this system can be improved. Cur-
rently this system is unable to provide the orientation of the robot, which is
necessary for a full description of the pose as required for self-localization algo-
rithms. Although the solution of appending markers on the robots to determine
orientation is possible, an alternative un-invasive method would be preferable.
We believe that it may be possible to perform some further analysis of the data
available from the Kinect to make some rough estimates of the robot’s orienta-
tion. For instance, supervised learning techniques may enable shape modeling
for estimating orientation based on features obtained from the image and the
pointcloud. We hope to examine such possibilities in the future.

Another area that needs further examination is automating the transforma-
tion calculation. Although this procedure is fast and requires little input from
the user, while conducting our experiments we have occasionally managed to
dislodge the sensor from its position requiring recalibration. This is problematic
should it happen while recording a competition game, as a few crucial minutes
may pass while the sensor is being recalibrated. By taking the user out of the
loop, we may be able to avoid such situations. We believe that automated reg-
istration [7] may be possible, by registering the point cloud from the Kinect
against an artificially generated point cloud of the field. The only requirement
is an approach that can scale to the size of the field and the amount of data
provided by the Kinect.

Using automated registration has another advantage. Currently we run sep-
arate instances of our system for different regions of the field. Typically there
is some overlap between the information produced by these sensors, which we
currently discard. We do so because unless the sensors are perfectly aligned with
respect to each other, slight differences could allow a single robot to be detected
twice. By using a technique based on Iterative Closest Point [4], we may be able
to register the point clouds against each other with high accuracy.

We believe that this system can also be extended beyond the SPL. Extending
it to other RoboCup soccer leagues such as the humanoid soccer league is a
fairly straightforward process. In addition, this system should be suitable for any
indoor environment which is structured enough to provide a means of obtaining
the transformation into a global reference frame. Given constraints about the
robots to be detected, the system’s parameters can be adapted to provide ground
truth regarding their locations over time.

7 Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at
the Artificial Intelligence Laboratory, The University of Texas at Austin. LARG
research is supported in part by grants from the National Science Foundation



(IIS-0917122), ONR (N00014-09-1-0658), and the Federal Highway Administra-
tion (DTFH61-07-H-00030).

References

1. Point cloud library. http://www.ros.org/wiki/pcl
2. Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D point sets. IEEE

transactions on pattern analysis and machine intelligence 9(5), 698–700 (1987)
3. Azevedo, J., Cruz, C., Cunha, J., Cunha, M., Lau, N., Martins, C., Neves, A., Pe-

drosa, E., Pereira, A., Teixeira, A., et al.: Cambada@ home 2011 team description
paper.
http://www.ieeta.pt/atri/cambada/athome/docs/CAMBADA@Home TDP2011.pdf

4. Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest
point algorithm. Pattern Recognition 3, 30545 (2002)

5. Eberly, D.: Least squares fitting of data. Chapel Hill, NC: Magic Software (2000)
6. Eggert, D., Lorusso, A., Fisher, R.: Estimating 3-D rigid body transformations:

a comparison of four major algorithms. Machine Vision and Applications 9(5),
272–290 (1997)

7. Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In:
Proceedings of the third Eurographics symposium on Geometry processing. pp.
197–206. Eurographics Association (2005)

8. Jansen, S., Lier, C., Neculoiu, P., Nolte, A., Oost, C., Richthammer, V., Schimbin-
schi, F., Schutten, M., Shantia, A., Snijders, R., et al.: Borg-the robocup@ home
team of the university of groningen team description paper.
www.ai.rug.nl/crl/uploads/Site/BORG TDP 2011.pdf

9. Niemüller, T., Ferrein, A., Eckel, G., Pirro, D., Podbregar, P., Kellner, T., Rath,
C., Steinbauer, G.: Providing Ground-truth Data for the Nao Robot Platform.
RoboCup 2010: Robot Soccer World Cup XIV pp. 133–144 (2011)

10. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA
Workshop on Open Source Software (2009)

11. Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., Feld-
pausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Honsel, D., Kast-
ner, P., Kastner, T., Markowsky, B., Mester, M., Peter, J., Riemann, O.J.L.,
Ring, M., Sauerland, W., Schreck, A., Sieverdingbeck, I., Wenk, F., Worch,
J.H.: B-human team report and code release 2010 (2010), only available online:
http://www.b-human.de/file download/33/bhuman10 coderelease.pdf

12. Sridharan, M., Stone, P.: Real-time vision on a mobile robot platform. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (August
2005)

13. Stulp, F., Gedikli, S., Beetz, M.: Evaluating multi-agent robotic systems using
ground truth. In: In Proceedings of the Workshop on Methods and Technology
for Empirical Evaluation of Multi-agent Systems and Multi-robot Teams (MTEE)
(2004)

14. Veltrop, T.: Humanoid robot navigation teleoperation using nao and
kinect. http://www.robots-dreams.com/2011/01/humanoid-robot-navigation-

teleoperation-using-nao-and-kinect-video.html
15. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The

shared vision system for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII pp. 425–436 (2010)


