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• Existing methods

– Discretization, neural nets, radial basis, case-based, ...
[Santamaria et al., 1997]

– Trade-offs:
representational power, time/space req’s, ease of use



Overview, cont.

• “Happy medium": tile coding

– Widely used in RL
[Stone and Sutton, 2001, Santamaria et al., 1997, Sutton, 1996].

– Use in robot soccer:
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• We contribute:

– An automated parameter-adjustment scheme
– Empirical validation
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Background: Reinforcement Learning

• RL problem given by 〈S,A, t, r〉:

– S, set of states;
– A, set of actions;
– t : S ×A → Pr(S), transition function;
– r : S ×A → R, reward function.

• Solution:

– policy π∗ : S → A that maximizes return
∑∞

i=0 γiri

– Q-learning: find π∗ by approximating optimal value
function Q∗ : S ×A → R

• Need FA to generalize Q∗ to unseen situations
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• Maintaining arbitrary f : D → R (often D = S ×A):

– D partitioned into tiles, each with a weight
– Each partition is a tiling; several used
– Given x ∈ D, sum weights of participating tiles

=⇒ get f(x)
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– r = w/t, resolution
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Background: Tile Coding Parameters

• We study canonical univariate tile coding:

– w, tile width (same for all tiles)
– t, # of tilings (“generalization breadth")
– r = w/t, resolution
– tilings uniformly offset

• Empirical model:

– Fix resolution r, vary generalization breadth t

– Same resolution =⇒ same rep power, asymptotic perf
– But: t affects intermediate performance
– How to set t?



Testbed Domain: Grid World

• Domain and optimal policy:
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• Episodic task (cliff, goal cells terminal)

• Actions:
(d, p) ∈ {↑, ↓,→,←}× [0, 1]
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Testbed Domain, cont.
• Move succeeds w/ prob. F (p), random o/w;

F varies from cell to cell:
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p• 2 reward functions:
−100 cliff, +100 goal, −1 o/w (“informative");
+100 goal, 0 o/w (“uninformative")

• Use of tile coding: generalize over actions (p)



Generalization Helps Initially
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Generalization improves cliff avoidance.



Generalization Helps Initially, cont.
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Generalization improves discovery of better actions.



Generalization Hurts Eventually
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Generalization slows convergence.
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Adaptive Generalization
• Best to adjust generalization over time

• Solution: reliability index ρ(s, a) ∈ [0, 1]

– ρ(s, a) ≈ 1 =⇒ Q(s, a) reliable (and vice versa)
– large backup error on (s, a) decreases ρ(s, a)

(and vice versa)

• Use of ρ(s, a):

– An update to Q(s, a) is generalized to largest nearby
region R that is unreliable on average:

1
|R|

∑
(s,a)∈R ρ(s, a) ≤ 1

2
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Effects of Adaptive Generalization

• Time-variant generalization

– Encourages generalization when Q(s, a) changing
– Suppresses generalization near convergence

• Space-variant generalization

– Rarely-visited states benefit from generalization for a
longer time



Adaptive Generalization at Work
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Adaptive generalization better than any fixed setting.
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Conclusions

• Precise empirical study of parameter choice in tile coding

• No single setting ideal for all problems, or even throughout
learning curve on the same problem

• Contributed algorithm for adjusting parameters as
needed in different regions of S × A (space-variant gen.)
and at different learning stages (time-variant gen.)

• Showed superiority of this adaptive technique to any
fixed setting
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