
In EC-10 Workshop on Trading Agent Design and Analysis (TADA 10),
Cambridge, MA, June 2010.

A Particle Filter for Bid Estimation in Ad Auctions with
Periodic Ranking Observations

David Pardoe and Peter Stone
Department of Computer Science
The University of Texas at Austin

{dpardoe, pstone}@cs.utexas.edu

ABSTRACT

Keyword auctions are becoming increasingly important in
today’s electronic marketplaces. One of their most challeng-
ing aspects is the limited amount of information revealed
about other advertisers. In this paper, we present a particle
filter that can be used to estimate the bids of other advertis-
ers given a periodic ranking of their bids. This particle filter
makes use of models of the bidding behavior of other adver-
tisers, and so we also show how such models can be learned
from past bidding data. In experiments in the Ad Auction
scenario of the Trading Agent Competition, the combina-
tion of this particle filter and bidder modeling outperforms
all other bid estimation methods tested.

Categories and Subject Descriptors

I.2 [Computing Methods]: Artificial Intelligence

General Terms

Algorithms, Experimentation, Economics

Keywords

trading agents, sponsored search, keyword auctions, particle fil-

ters, machine learning

1. INTRODUCTION
Sponsored search [5] is one of the most important forms of

Internet advertising available to businesses today. In spon-
sored search, an advertiser pays to have its advertisement
displayed alongside search engine results whenever a user
searches for a specific keyword or set of keywords. An ad-
vertiser can thereby target only those users who might be
interested in the advertiser’s products. Each of the major
search engines (Google, Yahoo, and Microsoft) implements
sponsored search in a slightly different way, but the overall
idea is the same. For each keyword, a keyword auction [6] is
run in which advertisers bid an amount that they are willing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TADA ’10 Cambridge, MA
Copyright 2010 ACM ...$10.00.

to pay each time their ad is clicked, and the order in which
the ads are displayed is determined by the ranking of the
bids (and possibly other factors). Having an ad in a higher
position is generally considered to be more desirable.

Running a successful keyword advertising campaign can
be difficult. An advertiser must choose the keywords of in-
terest and its bids for each one based on an understanding
of customer behavior, competitors’ bidding patterns, and
its own advertising constraints and needs, all of which can
change over time. Complicating matters is the fact that ad-
vertisers receive very limited information about the actions
of other advertisers. In particular, advertisers do not see
the bids of other advertisers. Knowing the bids of other ad-
vertisers for a specific keyword would allow an advertiser to
predict the ad position and cost per click for any amount it
bid and use this information to choose the bid it expected to
maximize profit. Search engines typically release some in-
formation concerning the position that an advertiser could
expect for certain bids, but this information is generally in-
complete and out of date. Alternately, an advertiser could
experiment with different bids and observe the resulting po-
sitions, but such experimentation would be time consuming
and costly.

In this paper, we present a particle filtering approach to
estimating the bids of other advertisers in a single keyword
auction. This particle filter relies on periodic observations of
the rankings of all advertisers. In addition, it requires mod-
els of the bidding behavior of other advertisers, and we show
how such models can be learned. We implement and test our
particle filter in the context of the Ad Auction scenario of
the Trading Agent Competition (TAC/AA) [3], a competi-
tion developed in 2009 to encourage research into keyword
auction bidding within a carefully designed simulated envi-
ronment. Nevertheless, the basic approach to particle fil-
tering described here should generalize to any standard ad
auction setting.

The remainder of this paper is organized as follows. After
formally specifying the auction setting we consider in Sec-
tion 2, we present the design of the particle filter in Section 3.
Section 4 describes our experimental domain, TAC/AA, and
explains how our particle filter can be applied in this do-
main. Our particle filter requires bid transition models for
all other advertisers, and in Section 5, we present a ma-
chine learning approach to building these models. Finally,
Section 6 contains experimental results comparing the accu-
racy of our particle filter to other bid estimation methods in
three different TAC/AA settings.

2. AUCTION SETTING
We are interested in estimating the bids of N other ad-

vertisers for a single keyword for which we are advertising.
Each advertiser has a standing bid indicating the amount it
is willing to pay each time its ad is clicked, and this bid may
occasionally be revised. This bid must be above a known
reserve price reserve. When a user searches for the key-
word, the advertisers’ bids are ranked in descending order,
and their ads are shown in this order. If more than M bids
are above the reserve, then only the top M ads are shown.
When a user clicks on our ad, our cost per click (cpc) is
the minimum amount we could have bid and still had our
ad shown in its current position. In other words, our cpc
is equal to the amount of the bid ranked below ours, or to
reserve. At some regular interval, we receive a report con-
taining the following information: i) the bid ranking at time
t (for advertisers whose ads are being shown, i.e., at most
the top M), and ii) our own cpc at time t. Our goal is to
estimate the bids of the other advertisers at time t. De-
pending on the nature of the auction, advertisers may be
able to revise their bids more frequently than this reporting
interval; however, we will only attempt to estimate bids at
this interval, and our models of advertiser behavior will only
model changes in bids at this interval (e.g., from time t − 1
to time t).

As this model is an abstraction of the keyword auctions
used in the real world, there are a number of complicating
factors it does not include, but we believe it to be a useful
model for study. One issue faced in real keyword auctions
is that ad positions are often not determined by bid rank
alone, but by a combination of bid rank and other factors
such as clickthrough rate. This is not a problem, however, as
in this case we could simply attempt to estimate the amount
we would need to bid to achieve a higher position than each
other advertiser, instead of the true bid of each advertiser,
and use the same particle filtering approach.

A larger concern is that search engines do not actually pro-
vide advertisers with periodic reports of the bid rankings of
other advertisers. Of course, it is possible to simply repeat-
edly search for the keyword and observe the order of the ads
displayed, but for a large advertising campaign this process
would need to be automated (using a “screen scraper”), and
search engines generally take measures to prevent this type
of activity. Nevertheless, a number of services offer to collect
this type of information for subscribers, so the assumption
of these periodic reports is not necessarily unrealistic.

Finally, we note that this auction setting is in fact an in-
stance of a repeated generalized second price auction, and
that our particle filter could be applied to any such auc-
tion given periodic ranking observations. Generalized sec-
ond price auctions are most commonly used in keyword auc-
tions, but they have been considered in other areas such as
electricity auctions [10].

3. PARTICLE FILTER
We now describe our particle filter for estimating the bids

of other advertisers given periodic reports. For now, we
assume that we have a model of each advertiser that gives us
a probability distribution over their next bid given a history
of their bids and rankings. Developing these models will be
the subject of Section 5. Again, we emphasize that we only
concern ourselves with the bids at the reporting interval –

by“next bid”we mean the bid at the time of the next report,
and likewise our history only reflects the auction state at the
times of past reports.

Given these advertiser models and reports, we estimate
the joint distribution over the bids of all other advertisers
using a particle filter. A particle filter is a sequential Monte
Carlo method that tracks the changing state of a system
by using a set of weighted samples (called particles) to es-
timate a posterior density function over the possible states.
The weight of each particle represents its relative probabil-
ity, and particles and weights are revised each time an ob-
servation (conditioned on the current state) is received. In
this case, the reports represent our observations, and each
particle represents an estimate of the bids of all advertisers
at the time of the last report. Additionally, each particle
stores all of its past bid estimates, so each particle can be
seen as a full bidding history of all advertisers. Particle
filters are a fitting solution to this problem because they
require no assumptions about the types of distributions in-
volved (unlike Kalman filters), they can be used efficiently
in high-dimensional spaces (unlike grid-based methods that
discretize the state space), and particles are a convenient
data structure for storing bidding histories. We estimate
the joint distribution over bids instead of estimating each
advertiser’s bid independently due to the fact that our esti-
mate for each advertiser is completely dependent on our es-
timate for all other advertisers. (In Section 6.2 we describe
a method of estimating bids independently, but this method
relies on several unrealistic simplifying assumptions.)

For the experiments of this paper, the implementation of
our particle filter makes use of a discretized set of bids b1

... bB , and so we describe our particle filter in terms of
discrete probability distributions over these bids; however,
continuous probability distributions could also be used in
our particle filter if they can be dealt with analytically.

3.1 SIS Particle Filter
The simplest particle filter, and the one from which more

complicated variations are derived, is the Sequential Impor-
tance Sampling (SIS) filter [1]. A SIS filter can be imple-
mented for our bid estimation problem as follows. Each
particle p contains a current estimate for the bids of all N
advertisers, as well as bid estimates for each past time step.
An initial set of particles P is chosen to reflect a possible dis-
tribution over bids when no reports have yet been received
– essentially our prior. |P | should be chosen to give an ac-
ceptable tradeoff between accuracy and speed. Each particle
p receives initial weight wp = 1/|P |. Each time we receive
a report, we update P by generating and weighting a new
set of particles. For each existing particle p, we sample a
new particle p′ (i.e., we copy the bidding history contained
in p and then sample a new set of current bids). Finally, we
reweight the particles.

The sampling and weighting procedures depend on our
choice of proposal distribution from which we sample new
particles: π(p′|p, report). π may be any distribution we
choose. The weighting procedure then follows from the choice
of π such that the set of weighted particles approximate the
true posterior distribution. If particle p had weight wp, then
particle p′ receives weight

wp′ = wp

Pr(report|p′)Pr(p′|p)

π(p′|p, report)
(1)

Finally, the weights of all new particles are normalized so
that they sum to one.

3.2 Choice of Proposal Distribution
The choice of proposal distribution can significantly af-

fect the performance of the particle filter. The distribution
π(p′|p, report) = Pr(p′|p, report) is what is known as the
optimal proposal distribution and results in a weighting of
wp′ = wpPr(report|p). This proposal distribution is called
optimal because it results in the least variance between par-
ticle weights – wp′ is independent of p′, and so it will be
the same regardless of which p′ is sampled. However, the
optimal proposal distribution is often not used in practice
because it can be difficult to sample from this distribution
and perform weight calculations. Instead, the proposal dis-
tribution that would typically be used is π(p′|p, report) =
Pr(p′|p), which results in a weighting of wp′ = wpPr(report|p′).

The typical proposal distribution is indeed much easier to
work with in our bid estimation problem, but is has a seri-
ous flaw: Pr(report|p′) may frequently be zero. If too few
particles receive any weight, then the filter may eventually
become degenerate, with mostly identical particles. To see
why Pr(report|p′) might be zero, recall that the report con-
tains a ranking and our cpc. If the current bids represented
by p′ are inconsistent with this ranking, then the likelihood
of p′ will be zero. The fraction of inconsistent particles will
depend on advertiser behavior; in the worst case of random
bids, only 1/N ! of the particles would be expected to be
consistent with the ranking, as any of the N ! possible rank-
ings would be equally likely. Even in less extreme cases, we
would still expect there to be occasional improbable rank-
ings. Furthermore, even if p′ is consistent with the rankings,
it will likely not be consistent with our observed cpc.

We therefore use the optimal proposal distribution in our
particle filter. Particles drawn from this distribution are
guaranteed to be consistent with the report. Thus, we need
methods of sampling from Pr(p′|p, report) and computing
Pr(report|p). These methods are described in the following
two subsections.

3.3 Computing Pr(report | p)
For n ∈ 1...N , let an be the advertiser ranked nth, exclud-

ing ourselves (i.e., lower ranked advertisers have their rank
increased by one). Unranked advertisers may be assigned to
the remaining a values arbitrarily. For a given set of current
bid estimates, let cn indicate that an’s bid is consistent with
the bids of advertisers a1 ... an−1 and with our own bid and
cpc. Then Pr(report|p) = Pr(c1 ∩ c2 ∩ ... ∩ cN |p). That
is, the probability of particle p from the previous time step
leading to a new particle consistent with report is equal to
the probability that for each other advertisers, that adver-
tiser’s new bid estimate does not exceed the bid estimate of
a higher ranked advertiser or conflict with bid or cpc. Fur-
thermore, Pr(c1 ∩ c2 ∩ ... ∩ cN |p) = Pr(cN |p, c1... ∩ cN−1) ·
... · Pr(c2|p, c1)Pr(c1|p). Below, we show how each of these
N probabilities can be computed.

For each n ∈ 1 ... N , we would like to compute Pr(cn|p, c1

... cn−1), that is, the probability that particle p leads to a
new bid for advertiser an that is consistent with our bid and
cpc and the new bids of advertisers a1 ... an−1, given that
these bids are already known to be consistent. This proba-
bility is computed differently for each of five different cases.
Let fn be the probability mass function for an’s next bid

given the information in p, as determined by our advertiser
model for an. In each case, we will determine f ′

n, the prob-
ability mass function for an’s next bid given p and c1 ...
cn−1, as well as the corresponding cumulative distribution
function F ′

n giving the probability that the new bid is less
than (but not equal to, as is usual in a CDF) a given value.
We begin by setting F ′

0 to be 0 everywhere.

• Case 1: an has a higher rank than us. Because the
advertiser is ranked, its bid will be consistent with the
bids of a1 ... an−1 so long as its bid is no greater
than the bid of an−1. Because the advertiser is ranked
above us, its bid must be no less than bid. Therefore,

Pr(cn|p, c1...cn−1) =

bB∑

x=bid

fn(x)[1 − F ′

n−1(x)] (2)

Similarly, we can define

f ′

n(x) = fn(x)[1 − F ′

n−1(x)]Z (3)

where f ′

n has support between bid and bB and Z is a
normalizing constant.

• Case 2: an is ranked one below us. Our cpc is deter-
mined by the advertiser ranked below us, so we know
the bid of an.

Pr(cn|p, c1...cn−1) = fn(cpc) (4)

and we define F ′

n to be 0 at or below cpc and 1 else-
where.

• Case 3: an is ranked at least two below us. As in Case
1, we need the bid of an to be no greater than the bid
of an−1. Because the advertiser is ranked below us, its
bid must be between reserve and cpc. Therefore,

Pr(cn|p, c1...cn−1) =

cpc∑

x=reserve

fn(x)[1−F ′

n−1(x)] (5)

and

f ′

n(x) = fn(x)[1 − F ′

n−1(x)]Z (6)

where f ′

n has support between reserve and cpc.

• Case 4: an is unranked and there are M ranked adver-
tisers. Because the maximum of M advertisers were
ranked, we do not know if an placed a bid or not. We
only know that an’s bid is no greater than the bid of
ak, where ak is the advertiser ranked M .

Pr(cn|p, c1...cn−1) =

cpc∑

x=0

fn(x)[1 − F ′

k(x)] (7)

and

f ′

n(x) = fn(x)[1 − F ′

k(x)]Z (8)

where f ′

n has support between 0 and cpc .

• Case 5: an is unranked and there are fewer than M
ranked advertisers. an did not bid or else it would have
been ranked. We treat any non-bid (or bid below the
reserve) as a bid of 0, so

Pr(cn|p, c1...cn−1) = Fn(0) (9)

and f ′

n(0) = 1.

By proceeding through the advertisers in order, we can de-
termine Pr(cn|p, c1 ... cn−1) for each n ∈ 1 ... N and take
the product to get Pr(report|p). We repeat this process for
each p ∈ P and normalize the results to obtain the distribu-
tion from which we sample when generating new particles.

3.4 Sampling from Pr(p′ | p, report)
Now given a particle p and the report, we would like to

sample a new particle p′. This involves choosing a new
bid bn for each advertiser an, and so Pr(p′|p, report) =
Pr(b1 ∩ b2∩ ... bN |p, report) = Pr(b1|p, report, b2 ... bN)· ...
·Pr(bN |p, report).

Observe that for advertiser aN , the function f ′

N generated
above is in fact the same as Pr(bN |p, report) because it rep-
resented the distribution over bN given that the bids of all
other advertisers were consistent with report. For any other
advertiser an, if bids bn+1...bN are known, then we can com-
pute Pr(bn|p, report, bn+1...bN) by taking the highest bid
of any lower ranked advertiser (if any) and normalizing the
portion of f ′

n above that bid. Thus, by starting with bN and
working backwards, we can sample all bids in such a way
that the bids are consistent with report and the probability
of the resulting particle p′ is Pr(p′|p, report).

3.5 Example
We now use an example to illustrate particle filters using

both the typical and optimal proposal distributions. Sup-
pose that there are two advertisers x and y in addition to
ourselves, and that according to our advertiser models, at
each time step each either increases or decrease its bid by
1, with probability 0.5 in each case. We receive a report for
time t + 1 indicating that y had the highest bid, x had the
second bid, and we had the lowest bid of 0.25. Now consider
a particle p that has the following bid estimates for time t:
bx = 2 and by = 1.5.

For the typical proposal distribution, to sample a new
particle p′ reflecting time t + 1 we would sample new bids
for each bidder according to our advertiser models. However,
of the four possible outcomes, only one, bx = 1 and by = 2.5,
is consistent with the bid ranking. If we sampled a different
set of bids for p′, then the weight of p′ would be set to zero.

For the optimal proposal distribution, we let a1 = y and
a2 = x and follow the procedure described above. First, we
determine Pr(report|p). We have f1(0.5) = f1(2.5) = 0.5
and f2(1) = f2(3) = 0.5, with both functions zero elsewhere.
For a1, we follow Case 1. Pr(c1|p) = 1 and f ′

1 = f1 because
F ′

0 is zero and either possible bid is above our bid of 0.25.
For a2, we follow Case 1 again. Pr(c2|p, c1) = 0.25 and
f ′

2(1) = 1, because 1−F ′

1(3) = 0, 1−F ′

1(1) = 0.5, and either
possible bid is above our bid of 0.25. Thus Pr(report|p) =
Pr(c2|p, c1)Pr(c1|p) = 0.25, which we know is correct.

To sample a new particle p′, we first sample b2 from f ′

2

and get 1, the only possibility. Then we sample b1 from the
portion of f ′

1 that is above 1, and we get 2.5, again the only
possibility. So we are guaranteed to sample b1 = 2.5 and
b2 = 1, the only possibility for p′ given report.

3.6 Resampling
This section has described an implementation of an SIS

particle filter using the optimal proposal distribution. A
commonly used extension of an SIS filter is the Sampling
Importance Resampling (SIR) filter, which occasionally re-
samples the set of particles to prevent the weights of some

particles from approaching zero. Our implemented particle
filter is an SIR filter, and we resample the particles in P
after each update by replacing P with |P | particles sampled
(with replacement) according to the weights, then setting all
weights to 1/|P |.

4. TAC/AA
We now briefly describe the experimental domain in which

we test our particle filter, TAC/AA [3]. For full details, see
the game specification [2]. In each TAC/AA game, eight
agents compete as advertisers to see who can make the most
profit from selling a limited range of home entertainment
products over 60 simulated game days, each lasting 10 sec-
onds. Products are classified by manufacturer (3) and by
component (3) for a total of nine products. Search engine
users, the potential customers, submit queries consisting of
a manufacturer and a component, although either or both
may be missing. There are thus 16 total query types. Each
day, for each of the 16 query types, a keyword auction is
run. For each auction, an advertiser submits i) a (real, non-
negative) bid indicating the amount it is willing to pay per
click, and ii) a daily spending limit (optional). The top five
bidders have their ads shown in order, but if an advertiser
hits its spending limit (as a result of having its ad clicked
enough times), its ad is not shown for the rest of the day,
and all advertisers with lower bids have their ads move up
one position. Bids must exceed a small reserve price. For
each query type, advertisers receive a daily report providing
limited information about the results of their actions and
the actions of other advertisers. Reports include the adver-
tiser’s average cpc and the average position of each other
advertiser. Note that these positions, and thus an adver-
tiser’s cpc, can change throughout the day due to spending
limits.

TAC/AA differs from the auction model described in Sec-
tion 2 in a number of ways. First, the daily reports provide
the average positions of other advertisers instead of a rank-
ing of their bids. Fortunately, it is possible to transform
average positions into bid rankings with fairly high accu-
racy as described in [8]. Second, in TAC/AA the reserve
price is unknown, but we can obtain a reasonably accurate
estimate and use this in our particle filter. Third, we are
only given an average cpc. If the agent ranked one spot
below us hits its spending limit before we do, the average
cpc will not equal the bid of that agent, as was assumed
in Case 2 above. Once again, we can use the reported av-
erage positions to determine if this was the case, and if so
we can apply Case 3 instead for that advertiser. Finally, as
mentioned in Section 2, in TAC/AA ad positions are deter-
mined by a combination of bid rankings and clickthrough
rates. In our experiments, we address this issue by adjust-
ing each bid of each other advertiser to be the amount we
would have needed to bid to achieve a higher position than
that advertiser.

The use of spending limits in general represents another
significant difference. We avoid dealing with spending lim-
its by using our particle filter to estimate each advertiser’s
bid at the start of the day, before spending limits cause any
advertiser to drop out of the bidding. Estimating the spend-
ing limits of other advertisers can be treated as a separate
problem, as in [7].

The application of our particle filter to a single query type
in a TAC/AA game can therefore be summarized as follows.

On each day d, we receive a report that includes our average
cpc and the average position of all advertisers on day d− 1.
We transform the average positions into the bid rankings,
and we determine whether our average cpc does in fact equal
the bid of the advertiser ranked below us. Then, using this
information, we update our particle filter, and the result is
an estimated distribution over the bids of all advertisers at
the start of day d − 1.

In our experiments, without loss of generality we consider
only the nine query types in which both a manufacturer and
component are specified. In any one game, a number of ran-
dom factors affect the value of advertising for any particular
query type, and thus the bidding behavior of the agents.
The distributions from which these factors are drawn are
the same for all nine query types, however, and so this bid-
ding behavior is the same in expectation for any query type
in any game. As our particle filter is designed for a single
keyword auction, in our experiments we treat each game as
if it provides us with nine independent and identically dis-
tributed episodes, each representing a 60-day bidding history
for a single keyword.

5. ADVERTISER MODELS
In Section 3, we assumed that we had a bidding model

for each advertiser so that we could determine the distri-
bution over the advertiser’s next bid given its bid history.
We now describe a method of generating such a model us-
ing machine learning. While the details of this section are
specific to TAC/AA, the general approach could be used in
any situation in which sufficient bidding data is available for
use in learning.

The problem we are trying to solve is a conditional den-
sity estimation problem. While a number of parametric ap-
proaches to solving these problems exist, we choose to use a
nonparametric approach. The bidding behavior of advertis-
ers can be quite complex, and we would prefer to make as
few assumptions about this behavior as possible. Methods
of nonparametric conditional density estimation have been
used in previous TAC domains to solve problems such as
predicting future hotel prices [9] and predicting the proba-
bility of an offer to a customer resulting in an order [4]. The
approach we take is to learn a model that takes as input both
a bid amount b and a set of features representing the cur-
rent state, and outputs the probability that the advertiser’s
next bid is less than or equal to b. Thus by evaluating this
model for different values of b, we can build the cumulative
distribution function for the advertiser’s next bid for any
given state. This approach is similar to the one used in [9]
except that rather than including a price as an input to the
model, there the space of prices is discretized and the model
outputs a separate probability prediction for each price.

For a given advertiser, we assume that we have access to
the logs from a number of TAC/AA games in which both
that advertiser and our own agent participated. From these
logs, we can determine the actual bids of the advertiser as
well as the reports that would have been available to our
own agent at any point in time. For each day d > 0 and
any given bid b we generate a feature vector containing the
following:

• b,

• d,

• the last five bids: bd−1 ... bd−5,

• five bid differences: b − bd−1 ... b − bd−5,

• the last average position: apd−1,

• five average position differences: apd−1 − apd−2 ...
apd−1 − apd−6,

• the maximum and minimum bids so far: max and min,

• the differences b − max and b − min,

• the maximum and minimum bids over the last ten
days: max10 and min10, and

• the differences b − max10 and b − min10

Any reference to a day before the first day is replaced with
the corresponding reference to the first day. Finally, each
vector is labeled with a 1 or 0 to indicate whether the ad-
vertiser’s bid on day d was less than or equal to b.

Observe that any choice of b results in a unique feature
vector. To generate a set of training data from game logs,
we need to choose one or more values of b to use for each
bid observed. If on day d the advertiser’s bid was bd, we
generate 14 training instances by using 14 different values
of b. The first two values are bd and bd + 0.01. The next
two values are 0 and b̂, where b̂ is 1.1 times the highest bid
ever observed for the advertiser. Next, we divide the inter-
val [0, bd] in fifths and choose one bid uniformly randomly
from each fifth. Finally, we do the same with the interval
[bd + 0.01, b̂]. These choices give good coverage of the range
of possible bids. The number 14 was chosen to give a rea-
sonable tradeoff between model accuracy and keeping the
size of the training set manageable.

Now that we have a training set, we need to choose a
learning algorithm to build our model. We experimented
with the learning algorithms available in the WEKA ma-
chine learning toolkit [11] and found that M5P model trees
gave the best performance both in terms of probability pre-
diction accuracy on the data set and bid estimation accuracy
of the complete particle filter. Note that our learning prob-
lem can be treated as either a regression problem (treating
the probability as a number to predict) or a binary classi-
fication problem (predicting the probability of belonging to
the class ‘1’), and so both types of algorithms were tested.

One final issue that must be dealt with is the fact that we
wish to use our model to produce a cumulative distribution
function, but the output of our model may not in fact satisfy
the requirements. For a given state, as the bid b increases
from 0 to b̂, the output of our model should monotonically
increase and reach a maximum of 1, but this will sometimes
not be the case. We address this problem as follows. Let
the function g(b) represent the output of our model for bid
b in the current state. In our particle filter, we work with
a discretized set of bids b1 ... bB . We define a probability
mass function f over this set of bids:

f(bi) = max(g(
bi + bi+1

2
) − g(

bi + bi−1

2
), ǫ)Z (10)

for a normalizing constant Z and some small ǫ > 0. The
corresponding cumulative distribution function F is now
strictly increasing, and F (bB) = 1.

Each time the particle filter needs to draw a new particle
p′ based on an existing particle p, we generate f and F

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

B
id

Day

AstonTAC
QuakTAC

Figure 1: Daily bids of two advertisers

for each advertiser and then follow the procedure described
in Section 3.1. Note that in this case, the advertiser’s bid
history used to generate the feature vector that is input to
the model is based on the bid history stored in the particle
p, and not on the (unknown) true bid history.

6. EXPERIMENTS
We now report on experiments that demonstrate the ef-

fectiveness of our particle filter for bid estimation. We begin
by presenting the experimental setup and describing alter-
nate bid estimation methods against which we compare our
particle filter.

6.1 Setup
We evaluate our particle filter in three different settings.

For each setting, we use our agent TacTex [7], winner of the
2009 TAC/AA competition, as the advertiser we participate
as (i.e., the agent whose observations we see and on whose
behalf we are estimating bids). The other seven advertiser
agents are chosen from the TAC Agent Repository1, a col-
lection of agent binaries. Different sets of agents are used
for each of the three settings. For each setting, we run 50
games. 40 games are used to generate training data, and
the remaining 10 are used for testing. For each advertiser,
we train a model as described in Section 5.

For testing, we run our particle filter independently for
each of the 90 60-day bidding episodes (nine per game, as
described in Section 4) contained in the test games. In each
episode, we initialize each particle by drawing a bid for each
advertiser from a histogram of that advertiser’s initial bids.
Then each day, we update our bid estimates by giving the
particle filter the bid rankings, average positions, and Tac-
Tex’s bid and cpc for that day and performing the update
procedure described in Section 3.1.

In our particle filter implementation, we use 2000 particles
and did not observe an increase in accuracy from increasing
this number. We discretize the bid space into intervals of
0.01, with a maximum bid of 1.1 times the highest bid ob-
served from any advertiser, and we set ǫ = 0.0001.

1http://www.sics.se/tac/showagents.php

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60

B
id

Day

Figure 2: Top five daily bids

Our goal in estimating bids is not to track the behavior
of a specific advertiser but to get an idea of how much we
would need to bid to reach a certain position. We therefore
evaluate the performance of our particle filter by comparing
our estimate of the nth ranked bid (based on the weighted
mean of the particles) with the actual bid for each relevant
value of n.

The first setting we consider involves a set of seven dif-
ferent advertiser agents: AstonTAC, QuakTAC, epflagent,
MetroClick, Merlion, and two different versions of Schle-
mazl. Bidding strategies differ considerably between agents.
For example, Figure 1 shows the bids of AstonTAC and
QuakTAC for one particular episode. Here AstonTAC’s bids
tend to drift only slightly from day to day, while QuakTAC’s
bids take larger jumps but show a clear cyclical pattern.
Figure 2 shows how the top five bids change each day, il-
lustrating the difficulty of the bid estimation problem. For
our second setting we run TacTex against seven copies of
QuakTAC, and for our third setting we run TacTex against
seven copies of AstonTAC.

6.2 Alternate Bid Estimation Methods
To evaluate the effectiveness of our particle filter, we need

to compare its accuracy to other bid estimation methods.
The first method we consider is a simple baseline of always
estimating the nth ranked bid to be the average nth bid over
the training set.

The second method was used in the TacTex agent, so we
will call it the TT estimator. Like the particle filter de-
scribed in this paper, this method is also a form of sequen-
tial Bayesian filtering, but there are several important differ-
ences. First, instead of using a set of particles to represent
a distribution over bids, the TT estimator is a grid-based
method, meaning that it explicitly computes a probability
mass function over a set of discrete bids. Second, the TT
estimator maintains this function independently for each ad-
vertiser, instead of estimating a joint distribution over all
bids, which requires a number of simplifying assumptions.
Third, the TT estimator makes use of a much simpler bid-
ding model than the models learned in Section 5.

The simple bidding model assumes that bids change in one

Bid Estimator Average RMS error per bid estimate for each bid rank
Setting 1 Setting 2 Setting 3

1 2 3 4 5 1 2 3 4 5 1 2 3

average bid 0.678 0.302 0.228 0.176 0.155 0.191 0.135 0.106 0.086 0.079 0.234 0.127 0.178
TT estimator 0.685 0.289 0.190 0.119 0.110 0.203 0.110 0.096 0.085 0.095 0.185 0.198 0.185
PF simple model 0.603 0.304 0.187 0.115 0.089 0.163 0.089 0.080 0.098 0.118 0.206 0.127 0.095
PF learned models 0.459 0.255 0.135 0.082 0.066 0.149 0.065 0.062 0.054 0.059 0.155 0.118 0.092

Table 1: Bid estimate errors for all estimators and settings. Significantly lowest errors in bold.

of three ways. First, with probability 0.1, the bid jumps to a
random bid. This case covers sudden jumps that are difficult
to model. Next, with probability 0.5, the bid changes only
slightly from the previous bid. This case reflects the behav-
ior of AstonTAC in Figure 1. The change in bids is modeled
under the assumption that the difference in logarithms of
successive bids is distributed normally with zero mean. Fi-
nally, with probability 0.4, the bid changes according to a
similar distribution, but the change is with respect to the
bid 5 days ago. This case reflects the behavior of QuakTAC
in Figure 1. This model is used for all advertisers.

The TT estimator performs a two step update each day.
First, it updates the distribution over each advertiser’s bid
using the simple bidding model. Second, it multiplies the
probability of each bid by the probability that the other
advertisers’ bids would be consistent with the observed bid
ranking given that bid (assuming that the estimated dis-
tributions over their bids are correct) and then normalizes.
Full details are available in [7].

The third alternate estimator we test is to use our particle
filter with the simple bidding model from the TT estimator.
We also considered the opposite combination – using the
bidding models described in Section 5 with the TT estima-
tor. However, because the TT estimator maintains only bid
distributions, and not particles representing bid histories, we
do not have the information required to use these bidding
models. We tried using the mean of each advertiser’s bid on
each previous day as the bid history, but results were poor.

6.3 Estimation Results
Table 1 shows the results for all three settings for all bid

estimators. For each of the 90 episodes from the 10 test
games, we found the root mean squared error of the esti-
mates, and the average RMS error is displayed. We ignored
the first five game days in computing these errors so that
the errors would not be skewed by start-game effects. (The
method of simply using the average bid was especially inac-
curate during this period.) In settings 1 and 2, we show the
errors of the estimates for the top five bids, since there were
nearly always at least five ranked bidders in these settings.
In setting 3, however, there were often only three ranked
bidders, and so we show three errors.

For all bid estimators, errors were highest on the top
ranked bid and generally decreased as the rank increased.
This result is expected since the top bid is essentially un-
bounded above and can fluctuate significantly (as in Fig-
ure 2), while lower bids tend to be grouped more tightly.
Errors on settings 2 and 3 were much lower than on setting 1.
Both QuakTAC and AstonTAC have somewhat predictable
bidding patterns and avoid particularly high bids.

Our particle filter with the learned bidder models consis-
tently gave the lowest error of any estimator. In all but one

case (setting 3 rank 3) the difference between this error and
all other errors was statistically significant (p < 0.05) ac-
cording to a Wilcoxon matched-pairs signed-ranks test. Not
surprisingly, using the average bid was worst overall. The
performance of the particle filter using the simple bidder
model and the TT estimator (which uses the same model)
was mixed, with neither clearly outperforming the other.
This result is somewhat surprising, since the particle filter
is in theory a more principled approach. It may be the case
that the deficiencies of the simple bidder model affect each
approach differently and that in some cases the TT estima-
tor is more robust.

6.4 Application to Bidding
Finally, while the focus of this paper has been on estimat-

ing bids accurately, the goal of this estimation is ultimately
to allow an advertiser to set its own bids effectively. We
now briefly explore the usefulness of our particle filter when
utilized by a full bidding agent. For each setting, we ran 50
games using the original TacTex agent (which uses the TT
estimator to estimate other advertiser’s bids and then opti-
mizes with respect to these estimates), then repeated these
games using the particle filter with the learned bidder mod-
els. Surprisingly, TacTex’s score did not improve in setting
1, apparently due to issues with the estimation of other ad-
vertisers’ spending limits that are beyond the scope of this
paper. Fortunately, QuakTAC and AstonTAC do not make
significant use of spending limits, so this problem does not
impact settings 2 and 3. In setting 2, using the particle fil-
ter improved TacTex’s score by 452 (from 78,177), and in
setting 3, the score improved by 926 (from 82,424). In both
cases, the increase was statistically significant (p < 0.05) ac-
cording to a Wilcoxon matched-pairs signed-ranks test. For
reference, we ran each set of games again and fed TacTex the
true bids of the other advertisers, and the scores in settings
2 and 3 increased by 847 and 1582, respectively, compared
to the scores when the TT estimator was used. Thus, the
use of our particle filter appears to provide us with a large
portion of the gain to be had from improving bid estimation
accuracy.

7. CONCLUSION
In this paper we have introduced a particle filter that can

be used to estimate the bids of other advertisers in keyword
auctions given a periodic ranking of their bids. The key
to this particle filter is a method of sampling new particles
(representing an updated set of bids) in such a way that the
samples are consistent with the observed bid ranking. Addi-
tionally, we have described a learning approach to modeling
the bidding behavior of other advertisers. In experiments in
the TAC/AA domain, the combination of this particle filter
and bidder modeling outperforms all other bid estimation

methods tested, including the method that was used in the
2009 TAC/AA champion.

There are several areas in which future work is possible.
The results show the importance of using accurate bidder
models, and there are a number of additional conditional
density estimation approaches we could try. Also, we cur-
rently only consider the problem of estimating past bids.
The next step is to predict future bids, perhaps by using the
bidder models to propagate the estimates forward.

8. ACKNOWLEDGEMENTS
We would like to thank the TAC/AA development team

and all who contributed agents to the agent repository. We
also thank Doran Chakraborty for assisting with the devel-
opment of the TacTex agent. This work has taken place in
the Learning Agents Research Group (LARG) at the Ar-
tificial Intelligence Laboratory, The University of Texas at
Austin. LARG research is supported in part by grants from
the National Science Foundation (CNS-0615104 and IIS-
0917122), ONR (N00014-09-1-0658), DARPA (FA8650-08-
C-7812), and the Federal Highway Administration (DTFH61-
07-H-00030).

9. REFERENCES

[1] S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. A tutorial on particle filters for on-line
non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188,
Feb. 2002.

[2] P. Jordan, B. Cassell, L. Callender, and M. Wellman.
The Ad Auctions Game for the 2009 Trading Agent
Competition. Technical report, 2009.

[3] P. Jordan and M. Wellman. Designing the ad auctions
game for the trading agent competition. In IJCAI
2009 Workshop on Trading Agent Design and Analysis
(TADA), Pasadena, California, 2009.

[4] C. Kiekintveld, J. Miller, P. R. Jordan, L. F.
Callender, and M. P. Wellman. Forecasting market
prices in a supply chain game. Electronic Commerce
Research Applications, 8(2):63–77, 2009.

[5] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra.
Sponsored search auctions. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory. Cambridge University
Press, 2007.

[6] D. Liu, J. Chen, and A. Whinston. Current issues in
keyword auctions. In G. Adomavicius and A. Gupta,
editors, Handbooks in Information Systems: Business
Computing. Emerald, 2009.

[7] D. Pardoe, D. Chakraborty, and P. Stone. TacTex09:
A champion bidding agent for ad auctions. In
Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2010), May 2010.

[8] D. Pardoe, D. Chakraborty, and P. Stone. TacTex09:
Champion of the first Trading Agent Competition on
AdAuctions. Technical Report AI-10-01, Department
of Computer Science, The University of Texas, 2010.

[9] R. E. Schapire, P. Stone, D. McAllester, M. L.
Littman, and J. A. Csirik. Modeling auction price
uncertainty using boosting-based conditional density

estimation. In Proceedings of the Nineteenth
International Conference on Machine Learning, 2002.

[10] S. Schone. Auctions In the Electricity Market :
Bidding When Production Capacity Is Constrained.
Springer, Berlin, 2009.

[11] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kauffmann, 1999.

