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Abstract
Multirobot symbolic planning aims at computing
plans, each in the form of a sequence of actions, for
a team of robots to achieve their individual goals
while minimizing overall cost. Solving this prob-
lem requires to model the limited resources of a
working environment (e.g., corridors that allow at
most one robot at a time) and the possibility of ac-
tion synergy (e.g., multiple robots going through
a door after a single door-opening action). How-
ever, it is a challenge to plan for resource shar-
ing and realizing synergy in a team of robots due
to the robots’ noisy action durations. This paper,
for the first time, focuses on the problem of mul-
tirobot symbolic planning under temporal uncer-
tainty (MSPTU). We present an algorithm inspired
by simulated annealing for MSPTU problems. The
algorithm has been evaluated using multirobot nav-
igation tasks in simulation. We observed significant
improvements in reducing overall cost compared to
baselines in which robots do not communicate or
model temporal uncertainty.

1 Introduction
Intelligent service robots, including CoBots [Veloso et al.,
2015], Dora [Hanheide et al., 2015], KeJia [Chen et al.,
2010], and Segbots [Khandelwal et al., 2015], have been de-
veloped for different research purposes. A fundamental capa-
bility for such robots is the ability to navigate through their
environments. At the lowest level, navigation consists of find-
ing continuous paths through local space that avoid obstacles
and smoothly reach designated waypoints. However, espe-
cially in large-scale environments, it can be useful to select
such waypoints by reasoning at a higher level of abstraction.

To this end, symbolic planning techniques allow a robot
to compute a sequence of actions, by reasoning about action
preconditions and effects, to bring about state transitions in
order to achieve a goal that is unreachable using individual
actions. For instance, the action of going through a door into
a room is preconditioned by the robot being beside the door
and the door being open; and the effect is the robot’s position
being changed to the new room. When action costs are further
incorporated into this planning process, robots can compute

optimal plans that maximize overall utility (or minimize over-
all cost).

When multiple robots share a physical environment, their
plans might interact such that their independently-computed
optimal plans become suboptimal at runtime, due to con-
strained resources such as narrow corridors that allow at most
one robot to pass. On the other hand, a team of robots have
the potential to leverage synergies in their plans by coordinat-
ing amongst themselves. For instance, when a robot knows its
teammate is going to take an expensive door-opening action,
it makes sense for the robot to plan to follow its teammate
through the door instead of opening it separately. A key chal-
lenge to planning for resource sharing and leveraging synergy
is the inherent uncertainty in the durations of robots’ actions
at runtime, which is largely overlooked in existing research.
This paper proposes a novel method to meet this challenge.

The first main contribution of this paper is the introduc-
tion of the Multirobot Symbolic Planning under Temporal
Uncertainty (MSPTU) problem. We then present a novel al-
gorithm inspired by simulated annealing search [Kirkpatrick
et al., 1983] for coordinating multiple robots under this prob-
lem setting, and experimentally evaluate it through compar-
isons against baselines in which robots do not coordinate their
plans, or coordinate but do not model temporal uncertainty.

2 Related Work
This work is closely related to existing research in the areas
of symbolic planning, multirobot task scheduling, scheduling
under uncertainty, and MDP-based multirobot planning.

Symbolic planning aims at computing a sequence of ac-
tions to achieve goals that are possibly unreachable through
individual actions. Since the development of STRIPS [Fikes
and Nilsson, 1972], many action languages have been devel-
oped for symbolic planning by describing preconditions and
effects of actions, including PDDL [Ghallab et al., 1998]. In
parallel, BC is an action language that is particularly attractive
for robotic applications because it can represent recursive flu-
ents, indirect action effects and defaults [Lee et al., 2013] (we
use BC in this work). However, these action languages do not
support the capability of reasoning about noisy action dura-
tions, which is critical for multirobot planning toward sharing
resources and constructing synergy at runtime.

A multirobot scheduling problem’s input includes a set of
robots and a set of tasks, and the output is a schedule that is



for each task an allocation of one or more time intervals to one
or more robots [Brucker, 2007; Zhang and Parker, 2013]. Re-
cent work on multirobot scheduling further considers tempo-
ral uncertainty [Brooks et al., 2015]. However, scheduling al-
gorithms are not developed for symbolic planning and hence
cannot generate action sequences in large, complex domains.

In parallel of symbolic planning, (PO)MDP-based plan-
ning techniques have been extensively studied in the liter-
ature. Existing (PO)MDP-based research has studied plan-
ning with concurrent actions [Mausam and Weld, 2008;
Smith and Weld, 1999], planning under temporal uncer-
tainty [Guo and Hernández-Lerma, 2009; Younes and Sim-
mons, 2004], incorporating temporal logic into navigation
task planning [Fentanes et al., 2015], and planning for multi-
robot systems [Khandelwal et al., 2015; Zhang et al., 2013].
Such algorithms are good at handling non-deterministic ac-
tion outcomes using probabilities and planning toward max-
imizing long-term reward. In contrast, symbolic planning
techniques, such as STRIPS, PDDL and BC, fall into a very
different planning paradigm, where the input are action pre-
conditions and effects, non-deterministic action outcomes are
handled by plan monitoring and replanning, and the output
is a sequence of actions that can be easily interpreted by
human users (compared to a policy in (PO)MDP). Symbolic
planning techniques have been widely used in service robot
applications (e.g., [Chen et al., 2010], [Zhang et al., 2015]
and [Khandelwal et al., 2014]).

Existing work has investigated the problem of concurrent
task assignment and planning of trajectories for a team of
robots [Turpin et al., 2014; Ma and Koenig, 2016]. Given
N robots and N goal locations, the algorithms aim to find
a suitable assignment of robots to goals and the genera-
tion of collision-free, time parameterized trajectories for each
robot. However, their approach is only applicable to naviga-
tion problems and they do not model noisy action durations.
This paper, for the first time, focuses on multirobot symbolic
planning under temporal uncertainty.

3 Algorithm
In this section, we first define the MSPTU problem (§ 3.1)
and present our symbolic planner for single-robot navigation
tasks (§3.2). We then introduce our Poisson-based model of
noisy action durations (§3.3) and how to compute conditional
plan cost in two-robot systems (§3.4). Finally, we introduce
our MSPTU algorithm (§3.5). The problem definition and our
MSPTU algorithm are not restricted to specific applications.

3.1 Problem definition
In this paper, we assume each robot can work on at most
one task at a time and each task requires only one robot,
which corresponds to the “single-robot”, “single-task” prob-
lems following Gerkey and Matarić’s taxonomy [Gerkey
and Matarić, 2004]. We assume the robots are homogeneous,
sharing the same set of sensing and actuating capabilities. The
performance of an MSPTU algorithm is evaluated by episode
in this paper. At the beginning of an episode, each robot has
exactly one task assigned and the tasks are not transferable.
The end of an episode is identified by the time of the slowest

robot finishing its task. A central controller runs our MSPTU
algorithm to compute plans for all robots and robots do not
have to make any decision themselves (i.e., robots work in a
centralized system). We assume that robots have a noise-free
communication channel that enables coordination.

Given a domain that includesN robots, an MSPTU problem
is of the form 〈D,A,S,G,R〉:
• D is a description of objects (including robots) in the do-

main, their properties, and their relations.

• A is a description of robot actions, including their precon-
ditions, effects and costs.

• S is a set of states in which each is the initial state of a
robot: si ∈ S is the state of the ith robot and |S|=N . A
robot’s state does not include the state of other robots.

• G is a set of goal states in which each corresponds to a
robot: gi ∈ G is the goal state of the ith robot and |G|=N .

• R is a set of constrained resources, each associated with a
cost of violation, that can be obtained by at most M robot
at a time, where M<N .

Domain descriptionD is about a static environment that in-
cludes all robots in it, e.g., two rooms are accessible via a door
that is being closed. Action description A focuses on robot
capabilities of making changes in the domain, e.g., a door-
opening action can change a door’s property from “closed” to
“open”. An action can be executed only if all preconditions
are fulfilled. A robot’s initial state, s ∈ S , and goal, g ∈ G,
are specified by values of domain properties. D and A cor-
respond to the rigid and dynamic laws of action languages
respectively (details in Section 3.2).

Under temporal uncertainty, robots can only succeed in
sharing constrained resources probabilistically. We say robots
fail in sharing a resource, if K robots physically compete for
a constrained resource that can only be shared by M robots
and K>M . It is difficult but necessary to model the conse-
quences of such failed cases in planning. For instance, two
robots competing for a narrow corridor may cause collisions,
detours, and many other consequences. For the sake of sim-
plicity, we model collaboration failures (violations of con-
straints) with fixed costs.

The goal of solving an MSPTU problem is to compute sym-
bolic plans, each in the form of a sequence of actions, for a
team of robots to achieve their individual goals while min-
imizing expected overall cost. Therefore, the output of an
MSPTU algorithm is a set of plans, one for each robot. Since
MSPTU problems model the temporal uncertainty in the dura-
tions of robots’ actions, it is necessary to replan when uncer-
tainty has been reduced considerably at runtime, e.g., after a
robot finishes a time-consuming action.

3.2 Single-robot symbolic planning using BC

We use action language BC [Lee et al., 2013] in this work
because it can formalize defaults (e.g., without knowing the
contrary, we believe office doors are closed over weekends)
and recursively defined fluents (e.g., two rooms are acces-
sible to each other if each of them is accessible to a third
room). However, the algorithms developed in this paper are
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Figure 1: A domain map used in simulation experiments. Opening
a corridor door is an expensive action.

not restricted to specific action languages or symbolic plan-
ners. It should be noted that planning for single-robot naviga-
tion tasks using BC has been studied, e.g., [Khandelwal et al.,
2014], and we adapt that formulation for multirobot settings.

Figure 1 shows the domain we use for instantiating our ap-
proach and in experiments. In domain description D, corri-
dors (r10 and r11), labs (r4, r5 and r6), coffee shop (r3), and
offices (r1, r2, r7, r8 and r9) are rooms. Room doors (d1, d2,
· · · ) and corridor doors (dc1 and dc2) are doors. The follow-
ing rules define the ownership between rooms and doors.

hasdoor(r1, d1). hasdoor(r10, dc1). · · ·
default ¬hasdoor(R,D).

where, R and D represent a room and a door respectively.
The last rule above is a default for reasoning with incomplete
knowledge: it is believed that room R does not have door D
unless there is evidence supporting the contrary.

Action description,A, includes the rules that formalize the
preconditions and effects of actions that can be executed on
each robot. We use fluents open(D), facing(D), beside(D),
and loc(R) to represent door D is open, the robot is fac-
ing door D, the robot is beside door D, and the robot is in
room R. Robot identities are not included in the representa-
tion of a robot’s location, loc(R), because a robot’s state does
not model the state of other robots. Robot actions include
approach(D), opendoor(D), cross(D), and waitforopen(D),
where waitforopen(D) enables a robot to wait for another
robot to open doorD and is only useful in multirobot systems.
Due to space limit, we arbitrarily select action cross(D) and
present its definition as below. Crossing door D changes the
robot’s location from R1 to R2, the room on the other side of
door D. The last three rules below describe the executability,
e.g., cross(D) cannot be executed if door D is not open.
cross(D) causes ¬facing(D).
cross(D) causes loc(R2) if loc(R1), acc(R1, D,R2).
nonexe cross(D) if loc(R), ¬hasdoor(R,D).
nonexe cross(D) if ¬facing(D).
nonexe cross(D) if ¬open(D).

Given a planning goal, a planner can find many solutions.
We select the one that minimizes the overall cost. As an ex-
ample, if the robot is initially placed in the post office, r9, and
the goal is to move to lab r6, our planner will produce a plan:

approach(d9). opendoor(d9). cross(d9).
approach(d62). opendoor(d62). cross(d62).

In implementation, to model the progress of navigation ac-

tions (approach(D), in our case). We discretize distance by
representing each corridor using a set of grid cells. Accord-
ingly, each approach(D) action is replaced by a sequence of
actions that lead the robot following waypoints.

3.3 Modeling noisy action durations
This subsection presents a novel model for representing and
reasoning about temporal uncertainty in noisy action dura-
tions. In this paper, we consider only the uncertainty from ac-
tion approach(D) and deriving this action’s probability den-
sity function (PDF) builds on the following assumptions:

1. Unless explicitly delayed, all robots move at the same ve-
locity, v. Unless specified otherwise, v=1 in this paper.

2. A human obstacle appears within every unit distance at a
known rate, and their appearances are independent of each
other. We use λ to denote this rate.

3. While taking action approach(D), each obstacle appear-
ance causes a delay for a known amount of time, δ, for
example, by forcing the robot to stop and say “excuse me”.

Following Assumptions 1 and 2, we can use a Poisson dis-
tribution to model the number of delays caused by human
appearances in a unit time and its corresponding PDF is:

f̂(k, λ) =
λke−λ

k!
(1)

where e is Euler’s number and k is the number of delays.

Proposition 1: If X and Y are two independent discrete ran-
dom variables with a Poisson distribution: X∼Poisson(λ1)
and Y ∼ Poisson(λ2), then their sum Z = X+Y follows
another Poisson: Z∼Poisson(λ1+λ2) [Knill, 1994].

According to Proposition 1, when a robot travels for time
t (instead of unit time), the number of delays, k′, accumu-
lates over time and follows another Poisson distribution with
a PDF of f(k′, λ′). Following Assumption 1, parameter λ′ is
a function of traveled distance d:

λ′(d) = λ · t(d) = λ · d/v (2)

Since k′ follows a Poisson distribution, we can compute
the overall time needed for traveling a distance of d:

t = tact + tdel = d/v + k′ · δ (3)

where tact=d/v, as a linear function of distance d, represents
the acting time, and tdel = k′ · δ is the delayed time.

Using Equations 2 and 3, we can see the overall navigation
time t follows a (non-Poisson) distribution with PDF:

f
(
t, λ′(d)

)
=

(
λ′(d)

) t−d/v
δ · e−λ′(d)( t−d/v
δ

)
!

(4)

Figure 2 visualizes two example PDFs. For instance, it is
the most likely that traveling distance d = 50 at velocity
v = 1 takes 60 time units while modeling possible delays
(instead of 50 in obstacle-free domains). It also shows that
a longer distance produces more uncertainty in completion
time. We also collected navigation time using a real robot, and
the results suggest that a shifted Poisson distribution can well
represent noisy durations of navigation actions (Figure 3).
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Figure 2: Two example PDFs of shifted Poisson distributions used
for modeling the noisy durations of navigation actions: v = 1, δ =
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The Left shows the histogram of traveling time and a shifted Pois-
son that well models the action’s noisy durations (with parameters
properly set), and the Right shows the Segway-based robot.

We further remove the parameter of λ′ and substitute d/v
with tact, so Equation 4 is converted into Equation 5, model-
ing action completion time. For action approach(D), λ′> 0,
meaning that the time of action completion can be delayed.
For other actions, λ′=0.

f
(
t, λ′

)
=

(
λ′
) t−tact

δ · e−λ′(
t−tact
δ

)
!

(5)

We use Dist(tact, λ′) to represent a distribution over pos-
sible lengths of completion time with a density function of
Equation 5. Modeling noisy action durations in this way
paves the way to further investigating how uncertainty is ac-
cumulated over plans that include a sequence of actions. For
instance, tact=50 and λ′=2.5 correspond to the (blue) circle-
mark curve in Figure 2. Since (we assume) non-navigation
actions do not introduce extra uncertainty at running time,
Equation 3 can be directly applied to modeling the distribu-
tion over possible lengths of time consumed by a sequence
of actions including potentially both navigation and non-
navigation actions. A plan of form 〈a0, a1, · · · 〉 can be rep-
resented as below to further model the distribution over pos-
sible lengths of completion time of each action. We call p an
extended plan (or simply plan).

p : 〈 (a0, t
act
0 , λ′0), (a1, t

act
1 , λ′1), · · · 〉

According to Proposition 1, the time consumed by execut-
ing the first K actions in plan p follows a distribution of:

Dist(

K−1∑
k=0

tk
act,

K−1∑
k=0

λ′k)

Therefore, Dist(tact, λ′) represents a novel distribution
that can model the temporal uncertainty that accumulates over
a sequence of actions in robot navigation problem. Note that
other application domains may require very different repre-
sentations (PDFs) for modeling their noisy action durations,
and this subsection simply presents a concise PDF represen-
tation for navigation actions.

3.4 Computing conditional plan cost
In a two-robot system that includes robots R and R′, p and
p′ are robots’ extended plans. The conditional plan cost of p′
given p is the estimate of total cost robot R′ will consume,
if R and R′ simultaneously execute their plans, p and p′, re-
spectively. Different from single-robot planning, we have to
consider possible collisions and door-sharing behaviors (and
any conflicts or synergies in general) in computing condi-
tional plan costs. It should be noted that we use integrals in
this section primarily for the cleanness of representations. In
implementation, the integrals are replaced by summation op-
erations, because action completions only happen at specific
time instances (e.g., Figure 2). We first compute the probabil-
ity of robot R′’s navigation action a′ overlapping p’s naviga-
tion action a over time (parameter λ omitted from PDFs):

Provlp(a, a′) = 1−
∫ ∞
0

∫ ∞
t2

fs1 (t1)f c2(t2) dt1 dt2

−
∫ ∞
0

∫ ∞
t1

f c1(t1)fs2 (t2) dt2 dt1 (6)

where fs1 and f c1 are the PDFs of starting and completion
times of action a; fs2 and f c2 are the PDFs of starting and com-
pletion times of action a′. The first double integral computes
the probability of the completion of a′ being earlier than the
start of a, and the second computes the probability of the start
of a′ being after the completion of a.

In modeling door-sharing behaviors, we assume: 1) all
doors are automatic in such a way that they give enough
going-through time for the robots that are ready to go through
the door; and 2) a door closes automatically when it detects
no more robot awaiting. We use twait(a, a′) to represent the
time of robot R′ waiting for R to open door D, where a′ is
R′’s action and is waitforopen(D).

twait(a, a′) =

∫ ∞
0

∫ ∞
t2

(t1−t2)f c1(t1)fs2 (t2) dt1 dt2

where f c1 is the PDF of the completion time of action a; and
fs2 is the PDF of the start time of action a′.

It is possible that robot R has finished the action of going
through door D before robot R′ arrives. In this case, robot R′
may have avoided closer doors and has to reopen the door.
We compute the probability of such failures:

Prfail(a, a′) =

∫ ∞
0

∫ ∞
t1

f c1(t1)fs2 (t2) dt2 dt1 (7)

where f c1 is the time of robot R completing action a, the ac-
tion of crossing doorD, and fs2 is the time of robotR′ starting
the action of waitforopen(D), i.e., a′.

Algorithm 1 presents our algorithm for computing condi-
tional plan cost (in our navigation domain). While comput-
ing the cost of waitforopen(D), we need to consider both



Algorithm 1 Computing conditional plan cost (in navigation)

Input: Plan p′, where |p′| = K′

Input: Plan set P that the cost of p′ is conditioned on
Input: µ : collision cost
Input: ω : waitforopen(D) failure cost
Input: ρ : value of time
Output: C′: overall cost of plan p′

1: C′=0
2: for each p ∈ P do
3: for each a ∈ p do
4: for each a′ ∈ p′ do
5: C′ ← C′ + cost(a′)
6: if a is opendoor(D) and a′ is waitforopen(D) then
7: C′ ← C′ + ρ · twait(a, a′) ·

(
1− Prfail(a, a′)

)
8: C′ ← C′ + ω · Prfail(a, a′)
9: else if both a and a′ are navigation actions then

10: C′ ← C′ + µ · Provlp(a, a′)
11: end if
12: end for
13: end for
14: end for
15: return C′

the cases that have synergy and those that failed (Lines 7-
8). Although the form of temporal uncertainty varies signifi-
cantly over different robot actions, this approach can be eas-
ily applied to other domains for sharing limited resource and
constructing “wait-for-action”-style synergies, as long as the
PDFs of the actions’ durations are available. In the next sec-
tion, we present our main algorithm that addresses general
MSPTU problems.

3.5 Our MSPTU algorithm
Planning for a team of robots under temporal uncertainty in a
joint-action, continuous-time search space is intractable from
a practical point of view, even if the number of robots and the
lengths of individual plans are within a reasonable range.

Algorithm 2 shows our novel algorithm for N -robot
MSPTU problems, where N≥2. This algorithm is inspired by
simulated annealing search for approximating the global op-
timum of overall system utility [Kirkpatrick et al., 1983]. The
input includes the robots’ initial and goal states, and a set of
parameters that have been defined in Algorithm 1. The input
also includesM , the number of other robots being considered
while computing conditional plan cost, and Θ that represents
how many rounds of “negotiations” the robots can have be-
fore finalizing their plans. The output is a set of plans, one
for each robot. Algorithm 2 has O(Θ·N) complexity for op-
erations of computing conditional plan costs, where N is the
number of robots.

The first for-loop (Lines 2-5) is used for computing one
plan for each robot, ignoring the existence of the other robots.
If Θ = 0, meaning that there is no collaboration among the
robots, the independently-computed optimal plans are re-
turned. Otherwise, the program enters the second for-loop
(Lines 7-14), where α is a negotiation depth that incremen-
tally grows by 1/Θ in each iteration. The loop continues until
α reaches 1. Intuitively, the negotiation depth measures how
much a robot considers its teammates: when α= 0, it totally
ignores its teammates; when α=1, it considers its teammates
as important as itself, in terms of plan cost. In the inner for-

Algorithm 2 Our MSPTU algorithm
Input: S, a set of N states, and, G, a set of N goals (N≥2)
Input: µ, ω and ρ, as defined in Algorithm 1
Input: M : number of other robots conditioned in Alg-1, M<N
Input: Θ: number of iterations, Θ ≥ 0
Output: [p1, p2, · · · , pN ]
1: Initialize an empty plan queue of size M : PM

2: for each i ∈ [1, N ] do
3: Compute plan pi and corresponding cost cost(pi) (§3.2)
4: Push back pi to PM

5: end for
6: if Θ 6= 0 then
7: for each i ∈ [1,Θ] do
8: α = i/Θ, where α is the negotiation depth
9: for each j ∈ [1, N ] do

10: [p′j , cost(p
′
j)]←Alg-1 (p′j , P

M , αµ, αω, ρ)
11: pj ← p′j and cost(pj)← cost(p′j)

12: Push back pj to PM

13: end for
14: end for
15: end if
16: return [p1, p2, · · · , pN ]

loop (Lines 9-13), we first compute plan for the jth robot
while minimizing the conditional plan cost given the plans
computed for the previous M robots (Line 10). We then up-
date the jth robot’s plan and plan cost. In the end of the pro-
gram, a set of plans is returned.

Although the output of Algorithm 2 includes plans for all
robots to achieve their goals, the robots do not necessarily fol-
low the plans all the way to the end of episodes. The temporal
uncertainty of a plan is reduced after an action of the plan is
completed. We recompute plans for all robots after one of the
robots finishes its current action. However, we have noticed
that it makes sense to activate replanning only if the change
in uncertainty is significant and only for the robots who have
potential to find better plans given the uncertainty change. We
leave further exploration of this issue to future work.

4 Experiments
Our MSPTU algorithm has been implemented and evalu-
ated using a team of mobile robots working on navigation
tasks in an indoor office environment. We use two types
of simulation in our experiments: an abstract simulator and
GAZEBO [Koenig and Howard, 2004]. In the abstract simu-
lator, navigation actions’ noisy durations are sampled from
a shifted Poisson distribution (Eqn. 4); collision cost is 40;
waitforopen(D) failure cost is 12; and collisions are possible
only if both robots are taking navigation actions. In GAZEBO,
we add human walkers into the environment to simulate the
process of walking people causing delays to robot navigation
actions, and the performance is evaluated based robots’ av-
erage completion time (no arbitrary costs are used). We use
CLINGO4 for solving BC programs [Gebser et al., 2014].

GAZEBO simulation: Figure 4 (Left) shows the GAZEBO
simulation environment used in the first set of experiments.
Two robots need to navigate from their initial positions, la-
beled by green dots in the bottom, to their goal positions,
labeled by red dots on the top. The two robots start at the
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Figure 4: GAZEBO simulation environment: Left shows a top-down
view, and Right shows a robot and a human walker.
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same time, and we record the completion time for each of
the robots. Figure 4 (Right) shows a screenshot of a walker
blocking the way of the robot. Figure 5 shows the results col-
lected from the experiments conducted in GAZEBO. Without
collaboration, robot R2 takes an average of 278 seconds to
achieve its goal, and our MSPTU successfully reduces R2’s
average execution time to about 104 seconds. While consid-
ering both robots, MSPTU reduces the completion time from
more than 250 seconds to less then 120 seconds, and the im-
provement is significant.

Abstract simulation: Figure 6 reports the results of ex-
periments evaluating the probabilistic model of noisy action
durations. The head start of R1 varies in a relatively small
range in x-axis (±6). R1 starts at a position close to the top
corridor door and needs to move to its goal position on the
other side of the door. When robot R1 has a head start of
−1, the overall cost of our MSPTU algorithm is smaller than
the baseline by more than ten (reduced from more than 50
to less than 40). Focusing on this performance improvement,
we find robot R2 can either open the bottom door by itself
or follow the first robot through the corridor door on the top
(trajectories shown as dashed lines). Without modeling tem-
poral uncertainty (baseline), R2 is not aware of the risk of
being delayed while moving upward. In contrast, using our
MSPTU algorithm, R2 dynamically evaluates the uncertainty
from its teammate and itself, and is able to balance the risk
and potential benefit to select the best path.

To evaluate the scalability of our MSPTU algorithm, we in-
crease the number of robots from two to three. The initial and
goal positions of these robots are shown in Figure 7. Each
robot can have a head start of 0, 15 or 30 (randomly selected).
After removing duplicates (e.g., head starts of [0, 0, 0] and
[15, 15, 15] are equivalent), there are 19 combinations in to-
tal. For each combination, we conducted 10 trials. We vary
the number of iterations Θ (1 and 2) and the number of other
robots conditioned in Algorithm 1 (1 and 2), so there are 4
combinations of parameters, corresponding to 4 configura-
tions of MSPTU. The average cost over the three robots are
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Figure 6: Planning for a two-robot system using our MSPTU al-
gorithm and a baseline that does not model temporal uncertainty.
Dashed lines show two possible ways for robot R2. The way on the
top is risky for R2, because it can be delayed in moving upward,
making R2 too late to follow R1 through the top corridor door.
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Figure 7: Initial and goal positions while planning for a three-robot
system using our MSPTU algorithm. Start time of each of the three
robots can be delayed by 0, 15, or 30 units (randomly decided).

presented in Table 1. The reduction of average cost by con-
sidering plans of all other robots is significant, regardless of
Θ’s value: p-value=0.03 when Θ=1, and p-value=0.02 when
Θ=2. However, running two iterations does not produce sig-
nificant improvement in reducing the average cost. The re-
sults indicate that Θ=1 is the best choice in setting the num-
ber of iterations in the current settings.

Table 1: Results of planning for three robots using our MSPTU algo-
rithm: average cost (over three robots) with standard deviation.

Number of other robots
Number of conditioned in Algorithm 1

iterations: Θ Only previous (1) All others (2)
1 71.77 (25.17) 57.86 (3.55)
2 71.44 (24.97) 56.38 (2.75)

5 Conclusions
In this paper, we introduce the multirobot symbolic plan-
ning under temporal uncertainty (MSPTU) problem. Although
symbolic planning techniques have been widely used on
single-robot systems for plan generation, when multiple
robots share a physical environment, their independently-
computed optimal plans might become suboptimal, due to
constrained resources and missed potential to leverage syn-
ergies. As the first work focusing on the MSPTU problem, we
develop a novel algorithm inspired by simulated annealing
using an action language for symbolic planning, and mod-
els noisy action durations using Poisson-like distributions.
The algorithm has been evaluated using multirobot navigation
tasks in simulation. We observe significant improvements
against baselines where robots do not coordinate their plans,
or coordinate but do not model temporal uncertainty.
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[Younes and Simmons, 2004] Håkan LS Younes and Reid G Sim-
mons. Solving generalized semi-markov decision processes us-
ing continuous phase-type distributions. In The AAAI Conference
on Artificial Intelligence, 2004.

[Zhang and Parker, 2013] Yu Zhang and Lynne E Parker. Multi-
robot task scheduling. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2992–2998. IEEE, 2013.

[Zhang et al., 2013] Shiqi Zhang, Mohan Sridharan, and Christian
Washington. Active visual planning for mobile robot teams
using hierarchical POMDPs. IEEE Transactions on Robotics,
29(4):975–985, 2013.

[Zhang et al., 2015] Shiqi Zhang, Fangkai Yang, Piyush Khandel-
wal, and Peter Stone. Mobile robot planning using action lan-
guage bc with an abstraction hierarchy. In Proceedings of the
13th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), Lexington, KY, USA, Septem-
ber 2015.


