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Abstract— Recent advances of locomotion controllers utiliz-
ing deep reinforcement learning (RL) have yielded impressive
results in terms of achieving rapid and robust locomotion across
challenging terrain, such as rugged rocks, non-rigid ground,
and slippery surfaces. However, while these controllers pri-
marily address challenges underneath the robot, relatively little
research has investigated legged mobility through confined 3D
spaces, such as narrow tunnels or irregular voids, which impose
all-around constraints. The cyclic gait patterns resulted from
existing RL-based methods to learn parameterized locomotion
skills characterized by motion parameters, such as velocity
and body height, may not be adequate to navigate robots
through challenging confined 3D spaces, requiring both agile 3D
obstacle avoidance and robust legged locomotion. Instead, we
propose to learn locomotion skills end-to-end from goal-oriented
navigation in confined 3D spaces. To address the inefficiency of
tracking distant navigation goals, we introduce a hierarchical
locomotion controller that combines a classical planner tasked
with planning waypoints to reach a faraway global goal loca-
tion, and an RL-based policy trained to follow these waypoints
by generating low-level motion commands. This approach
allows the policy to explore its own locomotion skills within the
entire solution space and facilitates smooth transitions between
local goals, enabling long-term navigation towards distant goals.
In simulation, our hierarchical approach succeeds at navigating
through demanding confined 3D environments, outperforming
both pure end-to-end learning approaches and parameterized
locomotion skills. We further demonstrate the successful real-
world deployment of our simulation-trained controller on a real
robot.

I. INTRODUCTION

Quadruped robots capitalize on their systems’ many De-
grees of Freedom (DoFs) and enjoy superior mobility and
versatility to locomote through extremely challenging envi-
ronments, compared to conventional locomotion modalities
such as wheeled and tracked systems [1]. By coordinating
all the joint angles on their four limbs, quadruped robots can
quickly react to unstructured environments, such as rugged
rocks, non-rigid ground, and slippery surfaces, and maintain
a stable body pose while moving forward.

However, such advanced mobility and versatility comes at
a price: in order to coordinate the many DoFs to efficiently
maintain torso stability and progress forward, sophisticated
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Fig. 1: Dexterous quadruped legged locomotion in real-world
confined 3D spaces.

planning and control algorithms are necessary to run in
real time and react quickly to any environmental constraints
and disturbances. Classical gait-based controllers, introduced
decades ago [2]–[4], are inspired by the quadruped robots’
biological counterparts, e.g., dogs and horses, and are able
to move them through moderately challenging terrain. Re-
cently, with the advances in machine learning, robotics
researchers have also applied learning methods to enable
emergent quadruped locomotion behaviors [5]–[9]. These
learning-based methods can often produce better locomotion
performance compared to classical hand-crafted approaches,
enabling complex locomotion skills [10], [11], safe and agile
performance [12], [13], or superior robustness against a
variety of unstructured environments [14]–[16].

While current quadruped locomotion techniques allow
robots to robustly move through different terrain that give rise
to challenges from underneath the robot, there is limited re-
search on how a hyper-redundant quadruped robot can move
through confined 3D environments which impose all-around
constraints from 360° surroundings (Fig. 1), e.g., through
narrow cave networks [17], complex industrial plants [18],
and cluttered indoor environments (e.g., underneath a coffee
table) [19], where narrow tunnels or irregular voids are not
uncommon. In those spaces, robots not only need to maintain
stability due to the underlying terrain and protrusions from
the ground, but also precisely maneuver their torso and limbs
to squeeze between 3D obstacles from walls and ceilings
with a variety of body poses, e.g., large roll and pitch angles
with asymmetric, acyclic, and irregular limb movements. In
some scenarios, a stable torso may not even be possible to
maintain, requiring the robot to lean against obstacles to
enable obstacle-aided locomotion [20].

These demanding behaviors are not likely to emerge in
transitional parameterized locomotion skills trained by an RL
agent tracking motion parameters, such as linear and angular
velocities and torso orientations. Instead, we hypothesize that



such dexterous locomotion, combined with navigation and
manipulation, can only be developed by end-to-end learning
of goal-reaching tasks in diverse and confined 3D spaces.
In addition, to address the inefficiency of reaching faraway
navigation goals, we develop a hierarchical locomotion sys-
tem, which is composed of a high-level sampling-based
planner that plans a feasible body pose as a local goal in
front of the robot, and a low-level locomotion policy that
is trained with RL to reach this local goal. The sampling-
based high-level reactive planner is able to quickly respond to
the limited and mostly obstructed robot perception in those
confined 3D spaces in a computationally efficient manner
to assure real-time execution. The low-level RL policy can
robustly move the many limb joints to follow the high-level
local poses while considering the all-around constraints not
only from the terrain underneath but also 360°-surrounding
irregular obstacles. Such a hybrid setup allows the low-level
RL policy to fully exploit the hyper-redundant solution space
with better sample efficiency compared with pure end-to-end
learning using sparse goal-reaching reward. By training on
sequences of local goals planned by the high-level controller,
the low-level RL policy also enables smooth transitions
between local goals, which guides the long-term navigation
to distant global goals. The hierarchical training pipeline
outperforms both pure end-to-end learning and learning of
parameterized locomotion skills. Our main contributions are
as follows:

1) We introduce a novel hybrid approach that combines
long-term path planning from a classical planner with
short-term local goal-reaching via an RL-based loco-
motion controller.

2) We provide a procedural environment generation
pipeline for generating diverse and challenging con-
fined 3D spaces.

3) We investigate the limitations of pre-defined parame-
terized locomotion skills and pure end-to-end learning
in traversing 3D confined spaces.

II. RELATED WORK

In this section, we review related work on both classical
and learning-based quadruped locomotion.

A. Classical Quadruped Locomotion
Quadruped locomotion has been a focus of the robotics

research community for decades. Starting from building
reliable legged hardware [1], [21]–[24], researchers have
also developed autonomous navigation and locomotion tech-
niques to move these highly articulated robots in the real
world [3], [25], [26]. Most research into quadruped loco-
motion focus on adapting robot joint angles in the form
of gaits [3] to challenging underlying terrain, including
rugged rocks, non-rigid ground, and slippery surfaces. With
sophisticated gait planners and controllers, quadruped robots
can overcome the limitations of conventional wheeled mobile
robots and successfully move through a variety of hard-to-
reach spaces. However, the hyper redundancy of the many
DoFs has led to capabilities beyond just overcoming the

terrain challenges from underneath the robot: by carefully
coordinating the limb joints, quadruped robots can also fit
in confined 3D spaces through a combination of dexterous
locomotion, manipulation, and navigation.

One line of research into navigating legged robots through
confined 3D spaces is based on whole-body planning-based
methods. Mathieu et al. [27] showed that the acyclic gait
planner, first introduced by Tonneau et al. [28], can be ap-
plied to multilegged robots. Inspired by this work, Buchanan
et al. [29] integrated the acyclic gait planners into a hier-
archical system that uses a high-level perceptive trajectory
planner that plans intermediate body poses for the low-
level gait planner to follow. Although the method improved
upon Tonneau et al. [28] in a way that takes the precise
collision models of the legs into consideration, which enables
navigation in very confined 3D spaces, the system still suffers
from relatively slow speed caused by frequent replanning
and the complicated hierarchical structure. In contrast, our
proposed approach is highly efficient, leveraging a sampling-
based high-level reactive planner and an RL-based low-level
locomotion policy to quickly produce joint angle commands
and move the robot through confined 3D spaces.

B. Learning-Based Quadruped Locomotion
Researchers from the robot learning community have

also investigated quadruped locomotion using data-driven
approaches [5]–[9]. Thanks to the vast amount of simulated
trial-and-error experiences gathered using RL, quadruped
robots are able to learn superior locomotion skills [10],
[11], speed [30], [31], stability [14]–[16], [32], and energy
efficiency [11], [13] compared to the classical methods.

However, previous research on RL-based locomotion con-
trollers primarily focuses on learning a limited set of gait
parameters such as leg velocity, step frequency, and step
amplitude. Such predefined gait patterns might be inefficient
when maneuvering robots through complex and confined
environments. To overcome these limitations, Rudin et al.
[10] proposed to learn a locomotion controller using end-to-
end RL training on position-based locomotion tasks. Specif-
ically, the robot is only rewarded positively for reaching a
goal position, which allows the agent to select its own path
and gait beyond the predefined gaits. However, it is unclear
whether acyclic and asymmetrical gait patterns can emerge
from such end-to-end learning pipeline in order to react in
real-time to obstacles in confined 3D spaces. Moreover, such
an end-to-end training can be inefficient when the goal is far
away from the robot. In contrast, our proposed approach aims
at using RL to efficiently enable the full potential of highly
articulated quadruped robots beyond only challenging terrain
but also confined 3D spaces that require close and accurate
coordination of all the joint angles to fit the robot through
360°-surrounding obstacles (Fig. 1).

III. APPROACH

In this paper, the objective is to learn a quadruped locomo-
tion controller for goal-reaching tasks in confined 3D spaces
with RL. Each task in this context is distinctly characterized
by a goal location denoted as (xg,yg) ∈ R2, representing



a 2D coordinate within the world’s reference frame. The
locomotion controller is represented by a neural network
policy π(a | o) that takes as input observations o and gives
as output joint position commands a. This section introduces
three distinct approaches: end-to-end dexterity, hierarchical
dexterity, and parameterized motor skills.

A. Observation and Action Spaces

The observation and action spaces are shared across the
three approaches except for the definition of commands.
Specifically, an observation, denoted as o = (g,q, q̇,h,c),
constitutes a five-element tuple, each of which is elaborated
as follows:

a) Gravity Vector (g ∈R3): This element characterizes
the orientation of the gravity vector within the robot’s body
frame, and it is acquired through the use of an Inertial
Measurement Unit (IMU).

b) Proprioceptive States (q ∈ R12 and q̇ ∈ R12):
These elements contain 12-dimensional joint angles and joint
velocities measured by motor encoders.

c) Height Field (h ∈ R220): This element is measured
following a methodology similar to Agarwal et al. [15].
However, it extends beyond the measurement of just the
floor height to address terrain challenges. Instead, it captures
both floor and ceiling heights to capture all-around obstacles.
Precisely, the height field h is represented as two 10× 11
matrices, encompassing measurements of floor and ceiling
heights. These measurements are taken at predefined 10×11
scandots evenly distributed across a 1-meter by 1-meter area
situated in front of the robot. Subsequently, the height field
is flattened and concatenated with the other components of
the observation.

d) Commands (c): Locomotion controllers operate un-
der specified commands, which are included as a part of
the observation. The definition of commands c varies across
the three different approaches. For example, the end-to-end
dexterity and hierarchical dexterity are commanded with the
global and local goal locations respectively. We provide the
formal definitions of commands in the subsequent sections.

With regards to actions, each action a ∈ R12 assigns joint
position targets at a frequency of 50 Hz for a Proportional-
Derivative (PD) controller. The controller itself operates at a
frequency of 200 Hz with the proportional and derivative
gains remaining consistent with the values established in
prior work [11].

B. End-to-End Dexterity

In the end-to-end dexterity approach, the commands de-
noted by c are defined as the relative goal position (xr,yr) ∈
R2, representing the x-y coordinates within the robot’s body
frame of reference. This means that the policy always takes
the relative position of the global goal, and it is trained to
directly compute the low-level motor commands necessary
for navigating to that global goal. Motivated by a similar
end-to-end training pipeline introduced by Rudin et al. [10],
the end-to-end dexterity approach incorporates four distinct
reward terms: (1) goal-reaching reward; (2) stalling reward;

(3) exploration reward; (4) penalty reward. The reward terms
are elaborated as follows:

a) Goal-reaching reward:

rg =

{
+1, if

√
x2

r + y2
r < dg,

0, otherwise.
(1)

This reward term assigns +1 when the agent reaching the
global goal within a threshold distance denoted as dg. Then,
the episode terminateds.

b) Stalling reward:

rs =

{
−1, if

√
v2

x + v2
y < 0.1m/s,

0, otherwise.
(2)

Here vx and vy are the robot’s linear velocity in the x and y
directions in robot’s own frame of reference. The stalling
reward penalizes the robot for standing still. A negative
reward is assigned at every time step when the robot’s linear
velocity is smaller then 0.1 m/s.

c) Exploration reward: Due to the sparse nature of
the main reward, it is beneficial to add a reward term
encouraging exploration at the beginning of training. In order
to bias the policy to walk towards the global goal, the
exploration reward term incentivizes any base velocity in the
correct direction. The reward is defined as

re =
vxxr + vyyr√

(v2
x + v2

y)(x2
r + y2

r )
.

d) Penalty reward: We penalize joint accelerations,
joint torques, collisions, and abrupt actions changes. The
penalty reward is defined as follows

rpenalties =−c1||q̈||2 − c2||τ||2 − c3Nc − c4||a−a−1||2.

where q, τ , Nc, a, a−1 represent joint positions, joint torques,
number of collisions, actions, and the actions from last time
step respectively, and c1−4 are scaling constants. A collision
is recorded whenever the thighs, calf, or torso of the body
collide with an obstacle or the floor.

C. Hierarchical Dexterity
In contrast to direct navigation to the final goal position,

the hierarchical dexterity approach involves a hierarchical
system with a classical planner that constantly computes
local goals, following which the robot can reach the global
goal location, and a locomotion controller that receives
commands of local goal locations. Therefore, c is defined as
the local goal position gl = (xl ,yl) within the robot’s body
frame of reference.

However, planning in 3D space is very expensive and
infeasible during real-world deployment where the entire 3D
space is not known a priori, i.e., obstacles in the confined
3D space may obstruct the sensors’ fields of view. Therefore,
we employ a reactive sampling-based planner, which only
uses the available information locally, checks the validity1

1To avoid expensive whole-body collision checking, the validity of a
candidate pose is checked based on collisions between only the torso and
the obstacles. Therefore, the planner only provides a rough guidance to the
RL locomotion controller.



of a few pre-defined candidate poses, and selects the valid
candidate pose that is closest to the final goal position.
These candidate poses are expressed as 6-DoF states p =
(x,y,hz,φ ,θ ,ψ), where (x,y) represents a 2D coordinate in
the body-frame, hz denotes the body height, and (φ ,θ ,ψ)
denote roll, pitch, and yaw angles, respectively. Then, the
x-y coordinate of the selected candidate pose is used as the
local goal location (xl ,yl). Notably, this planning process can
be efficiently computed in parallel on a GPU.

The reward design closely matches that of the end-to-end
dexterity approach, with the global goal replaced by the local
goal in all reward terms.

D. Parameterized Motor Skills

Instead of allowing the robot to learn its own motor
skills, the parameterized motor skills approach only searches
within the parameter space of a predefined motor skill. This
approach operates under the assumption that these predefined
motor skills are sufficiently effective for moving the robot
through 3D confined spaces, and learning on this smaller
solution space is potentially more efficient.

In this approach, the commands c are defined as
the parameters of motor skills, specifically denoted as
(vcmd

x ,vcmd
y ,ωcmd

z ,hcmd
z ,θ cmd ,ψcmd). Here, vcmd

x and vcmd
y rep-

resent the target linear velocities in the body-frame x- and y-
axes, while ωcmd

z signifies the target angular velocity around
the yaw axis. Additionally, hcmd

z , θ cmd , and ψcmd correspond
to the target height, roll, and pitch angles, respectively.

Notably, unlike prior works that mostly train the policy
on randomly sampled commands [11], [33], the parame-
terized motor skills approach trains the policy on the real
command distribution of the task of moving through 3D
confined spaces. To achieve this, the approach utilizes the
same reactive sampling-based planner employed in the hier-
archical dexterity approach. During training, the commands
always direct the robot toward the planned local goal poses.
Specifically, let pl = (xl ,yl ,hzl ,φl ,θl ,ψl) be the body pose
of the planned target local goal. The target linear velocity is
a constant 0.5m/s, directed toward the local goal location,
which is defined by vcmd

x = 0.5 · xl/
√

x2
l + y2

l and vcmd
y =

0.5 ·yl/
√

x2
l + y2

l . ωcmd
z is a constant 1.57 rad/s, maintaining

a fixed rate of rotation towards the target yaw angle. hcmd
z ,

θ cmd , and ψcmd are kept the same as the target local goal.
To learn these parameterized motor skills, the approach

incorporates a velocity tracking reward that encourages the
robot’s linear and angular velocity to be the same as the
target velocities, and a pose tracking reward that penalizes
deviations of the robot’s height, roll, and pitch angles from
the target orientations. The rewards are formally defined as
follows.

a) Velocity Tracking Reward: This reward component
motivates the agent to reach the local goal with a constant
linear velocity pointing to the local goal location and a
constant angular velocity turning the robot to the target yaw
angle. The velocity tracking reward contains two reward

Fig. 2: An example of confined 3D environments constructed
from random pyramids (right) and an illustration of pyramid
parameters (left).

terms rvxy and rwz defined as

rvxy = exp{
−(vx − vcmd

x )2 − (vy − vcmd
y )2

σvxy
} (3)

rwz = exp{
−(wz −wcmd

z )2

σwz
} (4)

Here wz is the robot’s angular velocity around the yaw axis.
σvxy and σwz are two hyper-parameters.

b) Pose Tracking Reward: This reward component pe-
nalizes the robot for not using the target body poses to reach
the local goal position. It contains the following three reward
terms:

rh = (hz −hcmd
z ),rθ = (θ −θ

cmd),rψ = (ψ −ψ
cmd).

IV. EXPERIMENTS

This section provides an overview of the training pro-
cesses for the three approaches specified in Section III. In
Section IV-A, we describe the procedural pipeline used for
generating confined 3D environments, while Section IV-B
delves into the details of training and evaluating the learned
locomotion policies for each approach.

A. Environments
The 3D confined environments are constructed from ran-

domly generated 2×nr×nc matrices of pyramids, positioned
on both the ceilings and the floors. As shown in Fig. 2, each
pyramid is uniquely characterized by a a set of parameters
(xp,yp,zp, lp,wp,hp). Here, xp, yp, and zp represent the 3D
coordinate of the center of the base. The base itself is a
rectangle with lp and wp denoting its length and width, while
hp represents the height of the tip.

The set of parameters of an element indexed by (u, i, j)
from the 2 × nr × nc pyramid matrix is denoted as
(xp

u,i, j,y
p
u,i, j,z

p
u,i, j, l

p
u,i, j,w

p
u,i, j,h

p
u,i, j), signifying a pyramid lo-

cated at row i and column j, with u taking values from the set
{0,1} to distinguish between pyramids on the floor (u = 0)
and those on the ceiling (u = 1). The range of values for
these parameters are specified in Table I. Here, Uniform(a,b)
denotes a uniform distribution in the range of [a,b].

The x-y coordinates of the pyramids roughly adhere to a
2D grid with slight variances randomly sampled from the
range of [−0.3,0.3]. In the table, ∆x and ∆y are intervals of
the grid in x- and y-axis. The height of the base is set to
0 for pyramids on the floor and 0.5 meters for pyramids on
the ceiling. The length and width of the base are randomly



Parameter Values

xp
u,i, j ∆x · i+Uniform(−0.3,0.3)

yp
u,i, j ∆y · j+Uniform(−0.3,0.3)

zp
u,i, j 0.5 ·u

lp
u,i, j Uniform(0.2,0.4)

wp
u,i, j Uniform(0.2,0.4)

hp
u,i, j (2u−1) ·Uniform(0.15,0.35)

TABLE I: Pyramid parameters

Fig. 3: Different views of a legged robot moving through
confined 3D environments composed of random pyramids.

sampled from the range of [0.2,0.4]. The height of the tip
is randomly sampled from the range of [0.15,0.35]. Notably,
the height of the tip is negative for pyramids on the ceiling
to reflect their inverted orientation.

These 3D environments are categorized into three diffi-
culty levels: easy, medium, and hard, with the number of
columns nc set to 2, 3, and 4, respectively. The number
of rows, denoted as nr, remains constant at 3. The size
of the pyramid matrices remains the same for all three
difficulty levels to cover an area of 2.5 meters by 1.5
meters. Consequently, environments with more columns or
rows include denser pyramids, introducing greater challenges
for traversal. To navigate these 3D obstacles, the robots
are initialized at the point (−1.75,0), positioning itself 0.5
meters away from the pyramids. The navigation task is to
reach the goal location at (+1.75,0), situated 0.5 meters
beyond the pyramids. Fig. 3 shows different views of a robot
navigating in a 3D confined environment.

B. Training Details
The implementation of the three approaches is based on

the massive parallel training pipeline introduced by Margolis
and Agrawal [33], employing the Isaac Gym [34] simulation
and the Proximal Policy Optimization (PPO) algorithm [35]
as the core Deep RL technique. The policies are trained in
parallel to control a Unitree Go1 robot to navigate on 1000
easy, 1500 medium, and 1500 hard environments describe in
Section IV-A. Fig 4 visualizes the massive parallel training
in Isaac Gym.

a) Domain randomization for Sim-to-real transfer: For
better sim-to-real transfer, we randomize a wide range of
parameters during training, including the robot’s body mass,
motor strength, joint position calibration, ground friction and
restitution, and orientation and magnitude of gravity.

b) Curriculum: Due to the sparse reward used by
the end-to-end dexterity approach, we employ a curriculum
strategy. This strategy initiates training with an initial x-
coordinate goal location, set at xg = 0.6. Then, the value
is incremented by 0.2 meters whenever the success rate of
reaching the current goal locations surpasses a threshold

Fig. 4: Massive parallel training in Isaac Gym.

End-to-end dexterity Hierarchical dexterity Parameterized motor skills

600 million 40 million 80 million

TABLE II: Number of time steps to convergence

of 40%. Importantly, this curriculum strategy is specifically
applied to the end-to-end dexterity approach and is not
employed for the other two approaches.

V. RESULTS

The trained policies are tested on both simulated and real
Go1 robots. This section describes the testing results from
these two settings.

A. Simulated results
The trained policies are evaluated on 100 easy, 100

medium, and 100 hard environments. The evaluation runs 10
independent trials in the simulation for each environment,
resulting in a total of 3000 test trials. The approximate
training steps required for convergence, average success rates
during testing, and average collision counts of all successful
test trials are reported in Tables II, III, and IV respectively.
We provide in-depth analysis as follows.

1) Learning Efficiency: As shown in Table II, during
training, the hierarchical dexterity approach demonstrates
significantly superior learning efficiency. It converges after
approximately 40 million environment steps, whereas the
end-to-end dexterity approach requires roughly 600 million
environment steps. The simulation runs at a speed of about
5000 steps per second on a single-GPU machine, which
attributes to 2.2 hours and 33.3 hours of training for hierar-
chical dexterity and end-to-end dexterity respectively.

Approach Easy Medium Hard

End-to-end dexterity 29.4% 7.0% 5.1%
Hierarchical dexterity (ours) 96.8% 51.5% 39.4%
Parameterized motor skills 65.7% 4.0% 2.4%

TABLE III: Success rates of the three approaches on confined
3D environments with three difficulty levels.

Approach Easy Medium Hard

End-to-end dexterity 7.9 16.2 29.8
Hierarchical dexterity 3.8 32.3 43.6

TABLE IV: Average Collision Count. Bold numbers indicate
better collision avoidance.



We attribute the enhanced performance of the hierarchi-
cal dexterity approach to its distinct separation of long-
term navigation and short-term motor skill acquisition, in
contrast to the end-to-end version. To be specific, the end-
to-end training approach attempts to encompass the entire
solution space for dexterous locomotion in confined 3D
spaces. However, such an approach is shown to be highly
inefficient in our experiments, particularly when dealing
with sparse rewards. In contrast, the hierarchical dexterity
approach preserves the solution space to effectively explore
motor skills but at the same time only needs to reach short-
term local goals computed by a classical planner. Such a
hierarchical approach provides denser reward signals and
therefore facilitates more efficient learning of the motor skills
which are essential for successful traversal within confined
3D spaces.

Acquiring predefined motor skills takes approximately 80
million environment steps, which is inferior but comparable
in terms of sample efficiency to the hierarchical dexterity
approach. However, these predefined motor skills do not
enable sufficient dexterity in confined 3D spaces.

2) Learned Dexterity: As shown in Table III, the hi-
erarchical dexterity approach outperforms the other two
approaches for all three difficulty levels and consistently
maintain a significant advantage. In easy environments, the
hierarchical dexterity approach almost finishes every single
trial, while the parameterized motor skills approach achieves
more than twice the success rate of end-to-end learning.
It is likely that the limited solution space provided by the
parameterized motor skills is sufficient to go through sparse
3D obstacles. Challenges arise when transitioning to more
demanding environments, characterized as medium or hard,
which necessitate advanced motor skills beyond those prede-
fined ones. In such scenarios, the success rate experiences a
significant decline, underscoring the need for end-to-end or
hierarchical training to preserve the full solution space for
an agent to explore its own motor skills. The success rates
of the end-to-end approach and parameterized motor skills
approach both drop to single digits for medium and lower
single digits for hard. Although performance also drops for
the hierarchical dexterity approach, it can still finish half of
the environments in medium and more than one third in hard.

3) Obstacle-Aided Locomotion: We also show the average
collision count measured during all successful trials of the
end-to-end and hierarchical dexterity approaches in Table IV,
which reveals an interesting finding in terms of obstacle-
aided locomotion. While the collision count for end-to-
end dexterity increases with more difficult environments, it
does not change much for hierarchical dexterity. Overall,
hierarchical dexterity has higher collision count compared
to end-to-end learning. Such an observation shows that
hierarchical dexterity is more willing to touch obstacles and
still achieves a higher success rate than its more conservative
counterpart. Considering the all-around obstacle constraints
in confined 3D spaces, it is likely that the robot has to lean
against some obstacles to assure torso stability and forward
progress. Guided by a local goal close to the robot, it can

focus more on discovering these emergent motor skills, e.g.,
obstacle-aided locomotion despite the small collision penalty,
to utilize the environment structure to move, rather than
trying to figure out how to navigate to a global goal far
away from the robot.

B. Real-World Demonstration
We demonstrate the policy learned in simulation on a

physical Unitree Go1 quadruped robot by creating an artifi-
cial setup replicating the simulated environments (Fig. 1).
This setup allows us to assess the policy’s performance
in a controlled real-world scenario. The robot generates a
point cloud from its front-facing stereo camera, which is
used to build real-time height maps during deployment. We
filter out the points to limit the robot’s observation to cover
only a 1m×1m×0.5m space directly in front of it. Height
maps of the ceiling and floor are then generated from the
filtered points based on the pitch and roll angle of the
camera detected by an onboard IMU and passed to the policy.
To enhance the quality of the height maps and mitigate
potential noise resulting from the stereo camera’s point cloud
generation process, we apply some basic smoothing. In this
experiment, we configure the goal location to always be one
meter in front of the robot to ensure continuous forward
motion. Our real-world demonstration shows that the robot
can navigate through confined 3D spaces, while occasionally
touching the obstacles made from rocks and cardboard boxes,
using the controller learned in simulation.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel and challenging scenario
in the realm of legged locomotion. In this scenario, legged
robots are tasked with traversing confined 3D spaces that
impose constraints from all around the robot, demanding the
adaptation of acyclic and asymmetric locomotion behaviors.
To tackle this challenging scenario, three distinct approaches
are proposed in this paper: end-to-end dexterity, hybrid
dexterity, and predefined motor skills. Empirical results point
to the hybrid dexterity approach as the most effective and
promising solution for locomotion in confined 3D spaces.
This approach combines high-level pose planning from a
classical planner with low-level local goal-reaching via an
RL-based locomotion controller.

While the experiments conducted in this paper utilize
randomly generated pyramid environments, it’s important
to acknowledge that these environments are artificial and
may not accurately represent real-world 3D confined spaces,
such as tunnels or other complex structures. In the future,
exploring training on real-world tunnels or constructing more
realistic simulation environments to capture a wider variety
of confined 3D spaces remains an important direction.

Furthermore, the paper’s focus on a simple reactive plan-
ner is noteworthy. This planner may not be able to adequately
address scenarios with highly complex navigation paths. An
open question remains whether it is feasible to employ more
advanced path planning techniques specifically designed for
3D spaces, while ensuring compatibility with the massive
training pipeline for legged locomotion in IsaacGym.
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