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Abstract

We presentageneral ActiveLearning paradigmandillustrate
it within the domain of robotic soccer. We then discuss the
measurement of confidence in what has been learned using
Active Learning.

Introduction

Machine Learning experiments often involve a training
phase and a testing phase. During the training phase, a
learning algorithmis (traditionally) applied to a randomly
distributed set of examples in the instance space. Then
during the testing phase, atest set is drawn from the same
distributionto measure generalization performance. Learn-
ing is deemed to be successful if performance after training
is better than performance before training.

However, especially in complex and hostile environ-
ments, researchers report successful learning results even
though performance on the test set indicates that there is
still much room for improvement. For example, if areason-
ableagorithmcan only classify 30% of thetest set correctly,
then alearner that can achieve 60% correct classification is
considered wildly successful. But perhaps more carefully
chosen training datawould have led to till better results.

We have recently been working in the domain of robotic
soccer. This is a domain with difficult learning tasks in
which the training data can have ahuge effect on therobot’s
performance. First we present a general Active Learn-
ing paradigm which can be applied to different learning
techniques and different domains. We then illustrate this
paradigm with a particular case study within our domain.
Finally, we discuss the implications of the paradigm with
respect to the concept of confidence in learning.

A General Active Learning Paradigm

Althoughthetesting phaseisgenerally the end of aMachine
Learning experiment, from an Active Learning perspective
it can actually be seen as the beginning. Especialy when
thereisso much roomfor improvement, appropriately ater-
ing thetraining set could potentially improve performance.
Assuming that certain regionsof theinstance space aremore
easily classified than others, at least relative to the original
training set (perhaps the training set did not have enough

examplesin acertain region of the space), thetesting results
can be used to construct a new training set that will allow
the same learning agorithm to cover the instance space
more completely. Now the testing phase can beviewed asa
“what-do-I-need-most-hel p-with?’ phase in an “I-can-get-
better!” process.

The paradigm we proposeis as follows:

1. Gather training data.

2. UseaMachineLearning algorithmtolearnfromthetrain-
ing data.

3. Gather testing data.
4. Test the performance of the learner.

5. If generalization performance is adequate, continue test-
ing (Goto Step 3) or stop.

6. Using theresults of testing, analyze which regions of the
instance space are covered least well by the learner.

7. Gather additional training datafrom askewed distribution
of the instance space, favoring those regions discovered
in Step 6.

8. Combine both sets of training data.
9. Goto Step 2.

Notice that this paradigm can be used with any type of
Machine Learning that uses a pre-specified training set. For
example, it can be used either with Neura Networks or
with Decision Tree Learning. A requirement for Step 7
(and Step 1) is that the instance space can be queried for
training examples.

Step 6 is the key step in our paradigm. It requires that
the there be some notion of a topology on the instance
space so that it makes sense to think of certain regions that
require more training examples than others. Theincorrectly
classified test exampl es can indicatewheretheseregionslie,
thus favoring additional training on those regions that are
not yet learned well, but that do occur during testing (i.e.
if part of the instance space is rarely queried, then thereis
no need to train for it). Then examples from these regions
can be combined with (part of) the original training set to
produce amore useful training set. The original training set
should beretained so asto increase the chance that the good
learning resultswill be retained and repeated.



Robot Soccer: A Case Study

As an illustrative example, consider the domain of robotic
soccer in which we have been working. We have been
using a simulator based on a real-world system to study the
learning possibilitiesin a complex, real-time domain. In
particular, we have been studying the task of learning to
shoot a moving ball into a goal. The ball passes between
the robot and the goal with some speed and heading; the
robot must learn when to accel erate so asto redirect the ball
into the goal.

This instance space has a clear topology. If the robot
is good at scoring when it starts at a particular point, it
can probably aso score from nearby points. Similarly, if
the robot is good a scoring when the ball is moving a a
certain speed or in a certain direction, it is probably also
good for similar speeds and directions. On the other hand,
if therobotisnot good at scoring for agiven position, speed,
and/or direction, it will also have problemsat nearby points.

In thissoccer domain, our paradigm works as follows:

1. Collect a training set by randomly (within ranges) se-
lecting starting positionsfor the robot and directions and
speeds for the ball. Especially in asimulator, it is possi-
bleto set the starting positionfor atrial asdesired. Then
the training examples can consist of haphazard attempts
to score from these starting positions.

2. Useaneura network to learn from the training data.
3. Gather arandom testing set asin Step 1.

4. Test the performance of the neural net on the test set:
how often can the robot score when using the output of
the neural net asitsdecision criterion?

5. If performance is adequate, stop. After thefirst iteration,
performance is not likely to be adequate since thisis a
noisy, complex environment.

6. Useanother neurd net to learn from the test datawhether
aparticular starting positionand ball speed and anglewill
lead to a successful trial (agoa) or an unsuccessful one
(amiss).

7. Use this second neurd net to filter possible training ex-
amples, choosing only examples that would probably not
be correctly classified test examples. Construct an ad-
ditiond training set half the size of the origina one by
again trying to score haphazardly (or as learned) from
these new examples.

8. Combine this training set with a randomly chosen 50%
of the original training set.

9. Goto Step 2.

Intuitively, this sequence can help learning because there
are neighborhoods of starting positions from which it is
more difficult to score. For instance, when the ball is mov-
ing quickly, thewindow of opportunity inwhichto intercept
the ball is smaller. Consequently, the neural net in Step 6
learns that more training examples with the bal moving
quickly areneeded. Similarly, there may beregionsof robot
positions (such as off to the side of the goal) which require
further training. On the other hand, if the original training

set was sufficient for therobot to learn how to shoot aslow-
moving ball into the goal, then further such training exam-
pleswould not beincluded in therevised training set. Note
that our implementation of the Active Learning paradigm
keeps the training set at a constant size. However, if the
learning agorithm can handle larger training sets without
degrading performance, all of theoriginal training examples
can be retained. Continuing this Active Learning process
iteratively helpsthe robot to become an expert shooter.

Confidencein Active Learning Results

Notice that our Active Learning paradigm contains an im-
plicit estimate of confidence in theresults produced. Step 4
of the general paradigm says test the performance of the
learner. But what does this statement mean? How does one
measure one's confidence in past learning?

The obviousinterpretation is a straightforward measure-
ment of how well the system performs on atesting set after
learning compared with how it performed before learning.
But the key here is the testing set. Although the training
data evolves throughout the iterative learning process, the
testing data must remain independent and identicaly dis-
tributed (i.i.d.). Aslong asthetesting datais gathered from
the same distribution each time, it can provide an accurate
measurement of confidence in what has been learned.

The applied version of our paradigm makes this notion
of consistency in data-gathering more explicit. Step 3 says
Gather arandom testing set asin Step 1. Step 1isonly vis-
ited once to construct theinitial training set, but the testing
set is constructed in the same way every time. Then Step 4
tests the learning system’s performance on the randomly
gathered testing set. Confidence is directly measured by
way of actual performance.

One important thing to keep in mind is that the testing
set need not come from an even distribution. Idedlly, it
comes from a realistic real-world distribution that reflects
the situationsin which the learner isintended to be applied.
Only then is it apparent how performance has improved
practically, and only then isit possible to get a meaningful
measurement of confidence in learning.

Conclusion

We havepresented ageneral activelearning paradigmandil-
lustrated its application to a specific domain. The paradigm
relies on repetitive testing with data that isi.i.d. Mean-
while, the training set evolves to better suit both the prob-
lem and the learning algorithm. The paradigm can be used
in conjunction with any learning algorithm that uses a pre-
specified training set. Searchinginthe space of training sets,
it iteratively moves towards more efficient and successful
learning.



