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Abstract— Task and motion planning (TAMP) algorithms
aim to help robots achieve task-level goals, while maintaining
motion-level feasibility. This paper focuses on TAMP domains
that involve robot behaviors that take extended periods of
time (e.g., long-distance navigation). In this paper, we develop
a visual grounding approach to help robots probabilistically
evaluate action feasibility, and introduce a TAMP algorithm,
called GROP, that optimizes both feasibility and efficiency. We
have collected a dataset that includes 96, 000 simulated trials of
a robot conducting mobile manipulation tasks, and then used
the dataset to learn to ground symbolic spatial relationships
for action feasibility evaluation. Compared with competitive
TAMP baselines, GROP exhibited a higher task-completion
rate while maintaining lower or comparable action costs. In
addition to these extensive experiments in simulation, GROP is
fully implemented and tested on a real robot system.

I. INTRODUCTION

Task and motion planning (TAMP) algorithms and systems
have been used for robot planning at both discrete and
continuous levels [1], [2]. Task planners sequence symbolic
actions for guiding the robot’s high-level behaviors [3], and
motion planners calculate low-level motion trajectories in
continuous spaces [4]. TAMP algorithms aim to bridge the
gap between task planning and motion planning towards en-
abling robots to fulfill task-level goals and maintain motion-
level feasibility at the same time [5]–[13].

One way to categorize TAMP domains is based on if a
problem domain requires robot actions that take relatively
short time (e.g., seconds, such as picking up and putting
down objects) or relatively long time (e.g., minutes or even
hours as navigating from one location to another) [14].
In the former type of domains, action feasibility is much
more important to consider than plan efficiency, since extra
plan steps do not add much time to the expected execution
time. On the other hand, this paper is motivated by the
latter type of TAMP domains, wherein it is advantageous to
incorporate both efficiency and feasibility into the evaluation
of plan qualities. Some existing TAMP research incorporates
both efficiency and feasibility into task-motion planning [9],
[14]. However, those methods evaluate feasibility in a de-
terministic way, and rely on predefined “state mapping
functions” for mapping each symbolic state into feasible
poses in continuous space. For instance, to unload an object
to a table, a robot needs to move to the table first, i.e.,
beside(table)=true, where previous TAMP research
that we are aware of relies on predefined feasible poses that
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Fig. 1. Our mobile manipulation domain that includes a long banquet
table surrounded by chairs. Given a target location (on the table) to place
an object, the robot needs to navigate to a location from which it can
successfully perform the manipulation action, ideally as quickly as possible
(thus preferring the near side of the table when feasible).

are spatially close to the table to evaluate the truthfulness of
the “beside table” statement.

Such predefined state mapping functions that assume de-
terministic action feasibility have at least two deficiencies.
First, a predefined state mapping function is not robust to
dynamic obstacles (e.g., people seated around the table).
Second, not all “feasible” behaviors are equally preferred,
e.g., standing far and stretching out to place an object
may be less preferred than standing close to do so. Those
observations motivate this work that learns to evaluate action
feasibility for robot task-motion planning.

The main contribution of this work is a visually grounded
TAMP algorithm, called Grounded RObot Task and Motion
Planning (GROP), that probabilistically evaluates action fea-
sibility, and incorporates both feasibility and efficiency to-
wards maximizing long-term utility. Inspired by the concept
of “symbol grounding” [15], we use “visual grounding” to
refer to methods that use computer vision techniques to help
an agent interpret abstract symbol tokens and connect them
to the real world.

We have applied GROP to a domain of a mobile manipula-
tor setting “dinner tables,” as illustrated in Fig. 1. The robot
needs to decide how to approach a table at the task level
(e.g., from which side of the table), compute 2D navigation
goals (connecting task and motion levels), and plan motion
trajectories for navigation and manipulation behaviors. We
have collected a dataset that includes 96, 000 instances of a
robot conducting mobile manipulation tasks where in each
instance, a robot unloads an object with dynamic obstacles
surrounding a table. An instance is labeled “successful” if the
robot is able to compute and execute a task-motion plan that
includes both navigation and manipulation actions. We use
fully convolutional networks (FCNs) [16] to learn to visually
ground spatial relationships and evaluate action feasibility.
GROP is summarized in Fig. 2.

Compared with baselines from the literature [14], [17],
GROP performed better in success rate while maintaining
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Fig. 2. An overview of this work, including an FCN-based feasibility evaluation approach, and GROP, our grounded TAMP algorithm. A task corresponds
to one “unloading goal” on the table, as well as a configuration of obstacles (chairs in our case). Given a task, every pixel is considered a navigation
goal – the robot attempts to navigate there, and unload an object from there. This navigation-manipulation process is referred to as a trial. The robot
performs multiple trials for each navigation goal, which yields a feasibility value for that particular location. The feasibility values together form one
heatmap for each task. In our dataset, each instance is a top-down view image, whose label is the corresponding heatmap. The “Dataset” box shows a
few “combined heatmaps” where heatmaps are overlaid onto the corresponding images. Training with the dataset generates an FCN that is used for two
purposes: 1) evaluating the feasibility of task-level actions, and 2) selecting motion-level navigation goals. Finally, GROP incorporates both efficiency
(measured by action costs) and feasibility to compute task-motion plans for a mobile manipulator.

lower (or comparable) cumulative action costs. Finally, we
demonstrate GROP with real-world robot hardware.

II. RELATED WORK

TAMP methods aim to compute plans that fulfill task-level
goals while maintaining motion-level feasibility, as reviewed
in recent articles [1], [2]. Several TAMP algorithms have
been introduced in recent years (e.g., [6], [7], [18]–[29].
Within the TAMP context, we distinguish a few subareas of
TAMP that are closest to this research on learning to visually
ground symbolic spatial relationships towards planning effi-
cient and feasible task-motion behaviors under uncertainty.

A. TAMP for Efficient and Feasible Behaviors

When high-level actions only take a few seconds, TAMP
algorithms can focus mostly on action feasibility constraints
without fully optimizing high-level plan efficiency. However,
when there are actions that take significant time to execute
(e.g., long-distance navigation), task-completion efficiency
cannot be overlooked. Some recent methods have considered
efficiency in different aspects of TAMP, such as planning
task-level optimal behaviors in navigation domains [14],
integrating reinforcement learning with symbolic planning
in dynamic environments [8], computing safe and efficient
plans for urban driving [30], and optimizing robot navigation
actions under the uncertainty from motion and sensing [9].
In contrast to those methods that do not have a perception
component, GROP visually grounds symbols (about spatial
relationships) to probabilistically evaluate action feasibility
for task-motion planning.

B. TAMP under Uncertainty

While most TAMP methods assume a fully observable
and deterministic world [2], some have been developed
to account for the uncertainty from perception and action
outcomes [31]–[36]. For instance, the work of Kaelbling

and Lozano-Pérez extended the “hierarchical planning in the
now” approach to address both current-state uncertainty and
future-state uncertainty [31]. Going beyond those methods
that aim to maintain plan feasibility to complete tasks under
high-level uncertainty, we consider uncertainty in the robot
motion and also incorporate task-completion efficiency into
the optimization of robot behaviors. As a result, our GROP
algorithm is particularly suitable for TAMP domains that
require robot operations over extended periods of time, such
as long-distance navigation.

C. TAMP with Visual Perception

Recently developed methods have shown that visual in-
formation can be used to help robots predict plan feasibility,
including task-level feasibility [6], [37], and motion-level
feasibility [10], [17]. Those methods were developed to
maximize task completion rate in manipulation domains, and
actions that take relatively long time (such as long-distance
navigation) were not included in their evaluations. Focus-
ing on robots that operate over extended periods of time,
GROP (ours) incorporates efficiency into plan optimization.
For instance, when highly feasible plans have very high
costs, GROP supports the flexibility of executing slightly
less feasible plans with much lower costs. GROP achieves
this desirable trade-off between feasibility and efficiency
by probabilistically evaluating plan feasibility, which is not
supported by the above-mentioned methods.

III. PROBLEM STATEMENT

We consider a mobile manipulation domain that includes
N objects Obj. There are obstacles (tables and chairs in
our case) that prevent the robot from navigating to some
positions in the domain. Location l is a symbolic concept that
corresponds to a set of obstacle-free 2D poses (X), where
each pose (x ∈ X) specifies a 2D position and an orientation.



The robot needs to move each object o ∈ Obj from its initial
location to a goal position.

Actions: The robot is equipped with skills of performing a
set of symbolic (task-level) actions denoted as A : An∪Am,
where An and Am are navigation actions and manipulation
actions respectively. A navigation action anl,l′ ∈ An is
specified by its initial and goal locations, l, l′ ∈ L, where L
includes a set of symbolic locations. A manipulation action,
amo,l ∈ Am, is specified by an object to be manipulated,
o ∈ Obj, and a symbolic location, l ∈ L, to which the
robot navigates and performs the manipulation action. We
consider two types of manipulation actions of loading and
unloading, represented by am+ and am− respectively. Ac-
tions are defined via preconditions and effects. For instance,
the action load(o1) has preconditions of at(robot,l1)
and at(o1,l1), meaning that to load the object o1, the
object must be co-located with the robot at the location l1.
The effects of load(o1) include o1 being moved into the
robot’s hand, i.e., inhand(o1).

Perception: The robot visually perceives the environment
through top-down views over the areas where manipulation
and navigation actions are performed. We use IM to represent
a 2D image that captures the current obstacle configuration,
as shown in the “Image Input” of Fig. 2 (bottom right). To
facilitate robot learning, we provide a dataset (as illustrated
in the “Dataset” box of Fig. 2). Each instance includes a
top-down view image, and a target object with a predefined
position, while each label is in the form of a heatmap. Each
pixel of a heatmap is associated with a 2D position, and has
a “feasibility” value that represents the success rate of the
robot navigating to the 2D position, and manipulating the
target object from there.

A map is generated in a pre-processing step, and provided
to the robot as prior information for navigation purposes
using rangefinder sensors.

Uncertainty: The outcome of performing navigation action
anl,l′ to goal pose x is deterministic at the task level, but
is non-deterministic at the motion level. In other words, the
robot will end up in position x′, which is not necessarily
the same as x. This setting captures the fact that a mobile
robot never achieves its exact 2D navigation goal (due to
its imperfect localization and actuation capabilities), though
successfully navigating to an area (l) is generally possible.

We focus on the interdependency between navigation and
manipulation actions. For instance, the execution-time uncer-
tainty from navigation actions results in different standing
positions of the robot, which makes the outcomes of manip-
ulation actions non-deterministic. This challenge generally
exists in mobile manipulators. We assume no noise in the
execution of manipulation actions (loading and unloading)
to objects within a reachable area.

Format of Solution: A solution is in the form of a
task-motion plan p = 〈pt, pm〉, where task plan pt is of
the form 〈an0 , am0 , an1 , am1 , ...〉, indicating that navigation and
manipulation actions are interleaved. Motion plan pm is of

the form 〈ξn0 , ξm0 , ξn1 , ξm1 , ...〉, and ξni (or ξmi ) is a trajectory
in continuous space for implementing symbolic action ani (or
ami ). The quality of task-motion plan p is evaluated using a
utility function U(p), which considers both feasibility and
efficiency of plan p:

U(p) = R · F(p)− C(p), (1)

where F(p) ∈ [0, 1] is the plan feasibility (i.e., the probabil-
ity that p can be successfully executed), C(p) is the overall
plan cost of executing p, and R→R is a success bonus
reflecting the reward from a successful execution. An optimal
algorithm reports a task-motion plan of the highest utility:

p∗ = arg max
p

U(p)

Next, we present an algorithm that computes such task-
motion plans through visually grounding spatial relationships
while considering both efficiency and feasibility.

IV. THE GROP ALGORITHM

In this section, we introduce the paper’s main contribution,
an algorithm called Grounded RObot Task and Motion
Planning, or GROP for short.

A. Algorithm Description

Algorithm 1 presents the GROP algorithm. Implementing
GROP requires a task planner Plnrt, a motion planner Plnrm,
a success bonus R→R, and a cost function Cst that evaluates
the cost of any motion trajectory generated by Plnrm. Inputs
of GROP include a rule-based task description T , a robot
initial 2D position xinit, and a provided dataset D. GROP
outputs a task-motion plan p in the form of 〈pt, pm〉.

GROP starts with training an FCN-based feasibility evalu-
ator Ψ using provided dataset D in Line 1. Then it initializes
an empty set of task-motion plans P in Line 2. Plnrt takes
T as input and outputs a set of task-level satisficing plans,
denoted as Pt in Line 3. The outer for-loop (Lines 4-
21) iterates over each task-level satisficing plan. In each
iteration, GROP evaluates the utility value of one task plan
U(p), which incorporates both plan feasibility F(p) and plan
efficiency C(p). Aiming to evaluate F(p) and C(p), each
iteration in the first inner for-loop (Lines 7-13) considers a
pair of navigation and manipulation actions in the task plan,
and evaluates its feasibility and cost. In the second inner
for-loop of Lines 14-17, GROP calls Plnrm to compute one
motion plan for each task-level action. Line 18 puts together
task plan pt and motion plan pm to form a task-motion plan
p. In the same line, p is added to task-motion plan set P.
Lines 22-23 are the final steps to select and return the optimal
task-motion plan from P given utility function U(p).

B. Feasibility Evaluation

In this subsection, we discuss how to evaluate action
feasibility at task and motion levels (Line 10 in Algorithm 1),
where the feasibility evaluation at the task level relies on the
feasibility evaluation at the motion level.
Motion-Level Feasibility: In our mobile manipulation
domain, motion-level feasibility Feam(x, y) is a function



Algorithm 1 GROP
Require: Task planner Plnrt, motion planner Plnrm, success bonus
R, and cost function Cst

Input: Task description T , robot initial position xinit, dataset D
1: Train a motion-level feasibility evaluator Ψ using dataset D

(detailed in Section IV-B)
2: Initialize a set of task-motion plans P← ∅
3: Compute a set of task-level satisficing plans: Pt ← Plnrt(T )
4: for each plan pt ∈ Pt do
5: Initialize a motion-level position sequence: X seq ← [xinit]
6: Initialize tmpf ← 0 and tmpc ← 0
7: for each action pair 〈anl,l′ , amo,l′〉 in pt do
8: Capture IM of location l′

9: Predict heatmap h = Ψ(IM), using Eqn. 3
10: tmpf ← tmpf + Feat(anl,l′ , a

m
o,l′), using Eqn. 4

11: x′ ← Smp(l′, h), and append x′ to X seq

12: tmpc←tmpc + Cst
(
Plnrm(anl,l′)

)
+ Cst

(
Plnrm(amo,l′)

)
13: end for
14: for each (xi, xi+1) ∈ X seq do
15: Compute motion-level trajectory ξ ← Pm(xi, xi+1)
16: Append ξ to motion plan pm

17: end for
18: Generate task-motion plan p ← 〈pt, pm〉, and append p to

the task-motion plan set P
19: Update F(p)← tmpf and C(p)← tmpc

20: U(p)←R · F(p)− C(p) (Eqn. 1)
21: end for
22: Compute optimal task-motion plan: p∗ = arg maxp∈P U(p)
23: return p∗

of 2D positions x and y, and is the probability of a robot
successfully navigating to x and manipulating an object that
is in position y. Feam(x, y) can be extracted from gray-scale
heatmap image hy that is centered around y:

Feam(x, y) = hy[x] (2)

We use a FCN-based feasibility evaluator Ψ to generate
heatmap hy , given a top-down view image IMy captured right
above unloading position y (“Image Input” in Fig. 2):

hy = Ψ(IMy) (3)

Data Collection and Learning Ψ with FCN: Here we
discuss how to learn Ψ in Equation 3. A task specifies an
obstacle configuration and a position y that a robot wants to
unload objects to. In each trial of our data collection process,
a robot attempts to navigate to position x, and then unload
an object to position y. Such a trial produces a data point in
the following format:

(IMy, x) : r

where IMy is a top-down view image captured right above
y, and r is either true or false depending on if the robot
succeeds in both navigation and manipulation actions. The
robot repeated the same process for N times (N = 5 in our
case), and we used the results (r0, r1, · · · , rN−1) to compute
a success rate for positions x and y, which determines a gray-
scale color for one pixel of a heatmap: h[x].

Iterating over all possible positions of x in an area of
Width×Height (24 pixels by 8 pixels in our case) in image
IM, we were able to generate one full heatmap h for the

current task. Here we assume this area is large enough
to cover all positions, from which the robot can unload
objects to y. To diversify the instances, we randomly placed
obstacles (chairs in our case) to generate ten different “envi-
ronments,” and then randomly sampled unloading positions
to generate a total of 100 tasks. As a result, our dataset
contains 100 instances, each in the form of a top-down view
image (64 × 32). Each instance has a label that is in the
form of a heatmap. The size of our dataset is 96, 000, i.e.,
100×N×Width×Height.

Task-Level Feasibility: Feat(anl,l′ , a
m
o,l′) evaluates the fea-

sibility (in the form of a probability) of a robot successfully
performing both task-level navigation action anl,l′ and task-
level manipulation action amo,l′ .

Feat(anl,l′ , a
m
o,l′) =

∑
i=0···N−1

Feam
(
Smpi(l

′, h), y
)

N
(4)

where function Smpi(l
′, h) samples the ith 2D position from

location l′. The positions are weighted by heatmap h that
is centered around object o. Intuitively, positions of higher
motion-level feasibility are more likely to be sampled.

V. EXPERIMENTS

We conducted extensive experiments in simulation, where
a mobile manipulator performs navigation and manipulation
actions to set “dinner table.” We also demonstrate GROP
using a real robot system that includes a mobile platform and
a robot arm. Our main hypothesis is that GROP outperforms
existing TAMP algorithms in task completion rate without
introducing additional action costs.

Baselines: GROP is evaluated through comparisons with the
following baselines. All baselines are TAMP algorithms, and
they vary in whether efficiency is considered in plan opti-
mization, and whether feasibility is considered. All baselines
select navigation goals by randomly sampling an obstacle-
free position that is close to the unloading position.
• Satisficing (weakest baseline): Action costs are not con-

sidered, so it does not avoid long-distance navigation.
All actions share the same feasibility (FCN not used).

• PETLON [14]: It considers plan efficiency, but does
not quantitatively evaluate action feasibility.

• DVH [17]: It does not consider plan efficiency, but
quantitatively evaluates action feasibility.

• FCN-Planning (most competitive): The same as GROP
except that the heatmap (Line 11 in Algorithm 1) is not
used for selecting 2D navigation goals.

It should be noted that, we cannot authentically implement
DVH [17] for evaluation, because they used convolutional
neural networks (CNNs) for task-level action feasibility
evaluation, and we do not have a dataset from our domain for
training the CNNs. We did the best we could by replacing
their CNN-based visual component with our FCN-based
feasibility evaluator.

Experiment Setup: The mobile manipulator includes a
UR5e robot arm, a Robotiq 2F-140 gripper, an RMP 110
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Fig. 3. Overall performances of GROP and four baseline methods in efficiency (x-axis) and task completion rate (y-axis). Tasks are grouped based on
their difficulties. The ellipses represent the means and 2D standard variances of each approach. GROP produced the highest task completion rate, while
maintaining smaller or comparable execution time. This observation is consistent over tasks of different difficulties.

mobile base, and a Velodyne VLP-16 lidar sensor. We
used the Building-Wide Intelligence (BWI) codebase [38]
to construct our simulation platform, which relies on the
Gazebo physics engine [39]. We use a Rapidly exploring
Random Tree (RRT) approach [40] to compute motion-
level manipulation plans. The navigation stack was built
using the move base package of Robot Operating System
(ROS) [41]. The robot’s task planner is ASP-based [42], [43]
and we used the Clingo solver for computing task plans [44].

The dataset described in Section IV-B was fed into an FCN
for training Ψ. We adapted the FCN-VGG16 model [16] and
trained it with batch size 4 and learning rate e−3. We used
a machine equipped with an Intel 3.80GHz i7-10700k CPU
and a GeForce RTX 3070 GPU on a Ubuntu system.

The test environment contains two tables, one for loading
and the other (a long banquet table) for unloading. Obsta-
cles (chairs) are randomly placed near the unloading table.
Positions and the number of chairs are dynamically changed
for different environments. An RGB camera is attached to
the ceiling to capture overhead images of environments. A
mobile manipulator is tasked with moving three objects from
the loading table to three different positions on the unloading
table, where the robot can hold multiple objects at the same
time. There is a tolerance of 0.1m for unloading actions, and
an unloading action is considered unsuccessful if the object
is more than this distance away from the specified unloading
position. Task completion is evaluated based on whether each
“seat” of the table is set up. Reward R has a value of 40 in
our utility function defined in Equation 1.

GROP vs. Baselines: Fig. 3 shows the main results from
experiments of comparing GROP to the four baselines.
There were a total of 420 different tasks in 30 different
environments. Each data point in the figure represents an
average of 10 tasks. We grouped the tasks based on their
difficulties: Easy, Normal, and Hard. A task’s difficulty is
measured by the total area that a robot can navigate to and
unload an object from. For instance, a task with all unloading
positions being surrounded by obstacles has a high difficulty.
After sorting the tasks based on their difficulties, we evenly
placed them into the three groups.

GROP consistently performed better in task completion
rate (y-axis) in all three settings, while maintaining high
plan efficiency (x-axis). We also see that GROP performed

TABLE I
TASK COMPLETION RATE / AVERAGE EXECUTION TIME IN ONE OF THE

ENVIRONMENTS WITH DIFFERENT ROBOT’S NAVIGATION VELOCITIES.

GROP PETLON DVH

Slow 0.80 / 166.16 0.63 / 166.46 0.73 / 204.04
Medium 0.82 / 95.42 0.63 / 93.23 0.73 / 112.02
Fast 0.88 / 59.56 0.63 / 56.62 0.73 / 66.01

particularly well in hard tasks where it produced the highest
completion rate and the lowest action costs. While PETLON
generated efficient plans (comparable to GROP), it does not
reason about feasibility, resulting in low completion rate.
DVH generates feasible plans (like FCN-Planning), but it
does not consider action costs, resulting in long execution
time in task completions. Results support our hypothesis
that GROP improves plan efficiency without introducing
additional action costs.

Robot Velocities: In this experiment, we used three robots
that move at different velocities: 0.2 m/s (Slow), 0.4 m/s
(Normal), and 0.8 m/s (Fast). Results are shown in Table I.
Here we compare GROP to only the two baselines that are
available from the literature (PETLON and DVH). We see
that GROP outperforms the two baselines in task completion
rate. What is interesting is that when the robot moves
fast, GROP automatically weighted feasibility more, because
the robot will not take too long to complete a navigation
task anyway. As a result, GROP produced the highest task
completion rate of 0.88 on a fast robot, while the baselines
are not adaptive to the robot’s velocity.

Illustrative Trials in Simulation: Fig. 4 shows three illus-
trative trials using GROP (ours) and two baselines (PETLON
and DVH), where GROP produced the highest completion
rate (3/3), while the baselines succeeded in at most two tasks.
PETLON does not evaluate plan feasibility, and planned
to unload objects to the middle and right positions from
the south. In particular, unloading to the middle unloading
position from the south is very difficult (with a feasibil-
ity value of 0.223). PETLON does not take such factors
into consideration, which produced failures in unloading to
the middle position. DVH does not consider efficiency in
plan optimization, and generated a plan with long-distance
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Fig. 4. Three illustrative trials using GROP and two baselines (PETLON and DVH). The robot needs to move three objects from the loading table
(bottom) to three unloading target positions marked by blue stars, where the robot can hold multiple objects. Green dots (or purple circles) represent a
robot successfully (or unsuccessfully) navigating to the position and unloading an object to the corresponding target position. Three heatmaps are overlaid
onto overhead images, as shown on the right, indicating the feasibility values of navigating to and unloading from different positions. The numbers on
the very right represent task-level action feasibility values of unloading from one side of the table. Under each subfigure, we present the total navigation
distance and task completion rate, where we see GROP produced the highest completion rate, and performed better than DVH in efficiency.
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Fig. 5. The arm robot is placing an object onto the mobile robot in trial
T1. There are two loading positions on the south and east sides of the table,
marked by red flags. The mobile robot’s initial position is shown as the blue
dot. The green box highlights the obstacle that was removed in T2.

navigation actions. GROP incorporates both efficiency and
feasibility, and produced the best overall performance.

Real Robot Demonstration: We demonstrate two trials of
T1 and T2 using GROP on a real-robot platform. Instead
of using a mobile manipulator, we used a robot system that
includes two robots of a Segway-based mobile platform and
a UR5e robot arm. The mobile robot started from an initial
position, and was tasked with loading a distant object (an
orange cube in our case) from the arm robot. The object
was on the same table as the arm robot is, where the arm
robot could pick the object, and place it onto the mobile
robot to complete a loading behavior.

In trial T1, the system computed the task-level feasibility
values of loading from the south and east sides: 0.377
and 0.721. The corresponding costs were 7.5 and 19.3
respectively (distances of 4.5m and 11.6m), where the robot
moved at speed 0.6m/s. GROP evaluated the utility values
(7.6 and 9.5 in this case), and decided to load from the east
side (less efficient but more feasible), as shown in Fig. 5.

In trial T2, the robot system worked on the same task,
while one obstacle (green box in Fig. 5) was removed
from the environment. The obstacle removal changed the
feasibility: Loading from the south has higher feasibility of
0.520, and a higher utility of 13.3. Accordingly, the mobile
robot decided to load the object from the south, where there
existed little chance of failing in the loading behavior but
the overall efficiency was significantly improved. In both

demonstration trials, the robot system succeeded in loading
the object to the mobile platform.

VI. CONCLUSION AND FUTURE WORK

This paper introduces an algorithm, called Grounded
RObot Task and Motion Planning (GROP), that consid-
ers both efficiency and feasibility for robot task-motion
planning. GROP visually grounds spatial relationships to
probabilistically evaluate action feasibility, and is particularly
suitable for TAMP domains with long-term robot operations
(e.g., long-distance navigation). We have extensively evalu-
ated GROP in simulation using a mobile manipulator, and
demonstrated it using a real robot system that includes a
mobile robot and an arm robot. Results showed that GROP
outperformed competitive baselines from the literature in
plan efficiency without introducing additional action costs.

In this paper, we empirically evaluated the performance
of GROP, while there is room to improve the evaluation
through formal analysis, e.g., about its completeness and
optimality. The difficulty comes from the different problem
representations of task planning and motion planning. Also,
the FCN-based feasibility evaluator is data-driven, where
formal analysis is difficult. The current implementation of
GROP relies on top-down views. It would be interesting to
investigate the feasibility of applying egocentric vision to
GROP. Due to the various viewpoints, we expect GROP to
require a greater amount training data in this setting.
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