
In Opportunities and Challenges with Autonomous Racing Workshop at 2021 International Conference on Robotics and
Automation (ICRA 2021),
Xi’an, China, May 2021

Learning Inverse Kinodynamics for
Accurate High-Speed Off-Road Navigation on Unstructured Terrain

Xuesu Xiao1, Joydeep Biswas1, and Peter Stone1,2

Abstract— This paper presents a learning-based approach to
consider the effect of unobservable world states in kinodynamic
motion planning in order to enable accurate high-speed off-
road navigation on unstructured terrain. Existing kinodynamic
motion planners either operate in structured and homogeneous
environments and thus do not need to explicitly account for
terrain-vehicle interaction, or assume a set of discrete terrain
classes. However, when operating on unstructured terrain, espe-
cially at high speeds, even small variations in the environment
will be magnified and cause inaccurate plan execution. In
this paper, to capture the complex kinodynamic model and
mathematically unknown world state, we learn a kinodynamic
planner in a data-driven manner with onboard inertial obser-
vations. Our approach is tested on a physical robot in different
indoor and outdoor environments, enables fast and accurate
off-road navigation, and outperforms environment-independent
alternatives, demonstrating 52.4% to 86.9% improvement in
terms of plan execution success rate while traveling at high
speeds.

I. INTRODUCTION

Current mobile robot navigation methods can navigate
a robot from one point to another safely and reliably in
structured and homogeneous environments [1], such as in-
door hallways or outdoor paved surfaces. These consistent
environments allow the robots to use simple kinodynamic
motion planners independent of the environment, thanks to
the limited environment disturbances and stochasticity.

Dating back at least to DARPA’s Grand Challenge [2]
and LAGR (Learning Applied to Ground Vehicles) [3] pro-
gram, researchers have also looked into applying autonomous
navigation in unstructured outdoor environments. Challenges
arise from multiple fronts in those natural spaces, but most
off-road navigation work focused on perception, e.g. de-
tecting natural obstacles [3], classifying underlying terrain
types [4], or building semantic maps [5]. For motion control,
most off-road robots simply travel at low speeds to minimize
uncertainty and to maximize safety [6].

While recent advances in deep learning provide roboticists
with a different avenue to investigate those perception prob-
lems in off-road navigation, researchers also started to com-
bine perception, planning, and motion control using end-to-
end learning in unstructured environments [7]. These systems
do not require a heavily-engineered navigation pipeline, and
can react to natural environments in a data-driven approach.
Although these methods can enable successful navigation,

1Xuesu Xiao, Joydeep Biswas, and Peter Stone are with Department of
Computer Science, The University of Texas at Austin, Austin, TX 78712.
{xiao, joydeepb, pstone}@cs.utexas.edu

2Peter Stone is with Sony AI.

Fig. 1: The UT Automata scale 1/10th autonomous vehicle
drives an eight-turn (T1–T8 on the red path) outdoor race
track with unstructured terrain. Close-ups of some terrain
(black inserts) are shown, including cement, mud, grass,
which are covered by leaves, stalks, and/or twigs at different
densities. For high-speed terrain-aware navigation, the robot
has to interact with these unstructured terrain (red insert).

they are data-intensive and and generally do not lead to better
navigation than their classical counterparts.

In this paper, we focus on the motion control side of off-
road navigation on unstructured terrain, and use learning to
capture the effect of complex and unknown environmental
factors on the robot’s low-level kinodynamic model. We use
onboard inertial observation to encode environmental factors
and learn an inverse kinodynamic model to produce fast and
accurate low-level control inputs. Using our method, even
with extensive disturbances caused by high-speed terrain-
vehicle interaction, the robot is still able to perform fast
and accurate off-road navigation (Fig. 1), compared to a
kinodynamic model based on ideal assumptions and a learned
model that does not consider environmental factors.

II. RELATED WORK

In this section, we review related off-road navigation work
in terms of perception and motion control.

A. Off-road Perception

The first challenge arises from off-road navigation is per-
ception. In unstructured off-road environments, perception
is no longer simply in the geometric sense (e.g. free vs.
obstacle), but also requires semantic information (e.g. grass
vs. mud). A plethora of research in terrain classification has
leveraged vibration-based signals to classify terrain types [4].

Vision-based sensors, e.g. LiDAR and camera, combined
with current deep learning methods, have also been used to
build semantic maps [5]. These perception methods assign
costs to discrete terrain classes for planning, but do not
consider robot’s kinodynamic model when moving on these
terrain. Our work does not distinguish among discrete terrain
classes and uses observations collected during interactions
with different terrain to enable fast and accurate kinodynamic
planning.

B. Off-road Motion Control
Although research thrust for off-road navigation has been

primarily focused on perception, roboticists have also in-
vestigated off-road navigation from the motion control side.
Many wheel slip models [6] have been developed and used
to design controllers to minimize slip. Most of these models
treat slip only as a function of the vehicle kinematics. But
to achieve high-speed off-road navigation, slip is inevitable
and also highly dependent on the underlying terrain.

Researchers have also used machine learning for motion
control in off-road navigation. A recent survey [8] pointed
out that learning is most efficient when targeting at navi-
gation components, e.g., learning local planners [9], [10],
costmaps [11], or planner parameters [12]. Research on using
learning for motion control in off-road scenarios is scarce.
Pan, et al. [13] enabled high-speed navigation with end-to-
end imitation learning from RGB input in a closed circular
dirt track. The expert demonstrator is a model predictive
controller with access to high-precision sensors including
GPS-RTK. The end-to-end learning approach most likely
does not generalize well to other terrain and tracks. Aiming
at a variety of terrain, Siva, et al. [14] used imitation learning
from human demonstration to navigate five discrete terrain
types (concrete, grass, mud, pebble, rock). In contrast, our
method only targets at learning a kinodynamic model and
can navigate any global path. We also do not intentionally
separate terrain into discrete types, and treat different terrain
characteristics in a continuous manner.

III. LEARNING INVERSE KINODYNAMIC MODELS

Most navigation systems either assume kindodynamic
models to be independent of the environment, or that there
exists a discrete set of environment classes [14], e.g., one
model for paved terrain and another for grass. In this work,
we relax these assumptions by learning a single continuous
inverse kinodynamic model that accounts for environmen-
tal factors across different terrain types without having to
perform discrete terrain classification, or analytic modelling.
The learned model takes as input inertial observations that
make the impact of environmental factor on kinodynamic
motion observable (e.g. how bumpiness from gravel will re-
sult in understeer at high speeds). This inverse kinodynamic
model is learned in a data-driven manner.

A. Problem Formulation
Given vehicle state x, control input u, and world state w,

the state dynamics and observation y are given by

ẋ = f(x, u, w), y = g(x,w), (1)

where f(·, ·, ·) is the system’s forward kinodynamic function,
while g(·, ·) is the observation function. Note that in most
cases, w is not directly observable and cannot be easily
modeled. A navigation planner generates a global plan Π :
[0, 1] → X mapping from a unitless progress variable
s ∈ [0, 1] to planned vehicle state x ∈ X , incorporating
both global (e.g., traversable map) and local (e.g., sensed
obstacles) information to take the robot from the start state
Π(0) to the goal state Π(1). A projection operator ρ : X →
[0, 1] maps the robot state x (e.g., from localization) to infer
the progress variable s (i.e., the robot’s progress along the
global plan so far), such that the closest state in the plan to
a robot state x is Π(ρ(x)). For simplicity of notation, we
represent the projected state at any time as xΠ = Π(ρ(x)).
We also omit the explicit time-dependence of variables x(t),
u(t), and y(t), denoting them simply as x, u, and y. The
objective of our controller u is thus to minimize the total
navigation time T while following the plan precisely, as
represented by the joint cost function

J = T + γ

∫ T

0

||x(t)− xΠ(t)||2dt. (2)

Here, γ is a hyperparameter that trades total navigation time
for execution accuracy.

We formulate the solution to this optimal control problem
as a receding-horizon controller u∗ over a unitless progress
horizon (along the global plan) ∆ and corresponding time-
horizon ∆t such that the control input drives the robot state
from x to the receding horizon plan state Π(ρ(x) + ∆) over
time-period ∆t:

u∗ = arg min
u

∆t+ γ

∥∥∥∥∥∆xΠ −
∫ ∆t

0

f(x, u, w)dt

∥∥∥∥∥
2
 ,

∆xΠ = Π(ρ(x) + ∆)− x, (3)

where ∆xΠ is the state change between the receding horizon
plan and current vehicle state. The optimal control u∗ can
be solved using the receding horizon inverse kinodynamic
model f−1 as

u∗ = f−1(∆x, x, w), (4)

that takes as input the desired relative state change ∆x, the
current robot state x, and world state w. Unfortunately, it is
hard to express f−1 accurately via analytical models, and
even if it could be expressed accurately, computing u∗ is
error-prone since the world state w is not directly observable.

B. Learning Inverse Kinodynamics

In this work, in order to enable fast and accurate navigation
under the influence of different terrain interactions from the
world state w, we adopt a data-driven approach to capture
the effect of w. Specifically, we introduce the function

f+
θ (∆x, x, y) ≈ f−1(∆x, x, w), (5)

parameterized by θ, as an approximation for the original
receding horizon inverse kinodynamic function (superscript

+ denotes pseudo inverse). The key insight in this approx-
imation is that the impact of w on u∗ becomes predictable
given observations y related to high-speed terrain-aware
navigation—in our case we use onboard inertial sensing to
capture speed-dependent terrain interaction. To learn f+

θ , a
training dataset T with N samples

T = {〈∆xi, xi, ui, yi〉Ni=1}

is desired, using the optimal but unknown receding horizon
inverse kinodynamic function ui = f−1(∆xi, xi, wi) and
observation function yi = g(xi, wi) from Eqns. 1 and 4.
Unfortunately, we neither know f−1, nor do we know the
world states wi. However, we do have access to f as a
black-box function via real-world execution: we can simply
pick arbitrary sample controls ui at corresponding starting
states xi, and observe the resulting state change ∆xi after
the chosen receding horizon ∆t, including the impact of the
unknown wi:

∆xi =

∫ ∆t

0

f(xi, ui, wi)dt.

Thus, the original chosen control ui is the control1 for the
resulting state change ∆xi from the original state xi, for the
corresponding but unknown (and hence unrecorded) world
state wi. Along with the corresponding sensor observation
yi, we generate each sample i for dataset T . To ensure that
the learned parameters θ of f+

θ approximate f−1 accurately
at states that the robot will encounter during execution, T
must include representative samples for x, u, and y. With
the collected dataset T , we formulate deriving f+

θ (·, ·, ·) as
a learning problem by minimizing a supervised loss:

θ∗ = arg min
θ

∑
(∆xi,xi,yi)∈T

‖f−1(·, ·, ·)− f+
θ (∆xi, xi, yi)‖H

= arg min
θ

∑
(ui,∆xi,xi,yi)∈T

‖ui − f+
θ (∆xi, xi, yi)‖H ,

(6)

where ||v||H = vTHv is the norm induced by positive
definite matrix H , used to weigh the learning loss between
the different dimensions of the control input ui. We represent
f+
θ (·, ·, ·) as a neural network and can therefore use gradient

decent to find an approximately optimal θ∗. In this work,
we collect raw 6-DoF readings from an onboard IMU, and
construct y by feeding inertial data through an autoencoder to
encode relevant terrain-vehicle interaction at different driving
speeds. More details are provided in Sec. IV.

C. Online Execution

The learned inverse kinodynamic model f+
θ∗(·, ·, ·) pro-

vides a means to approximately account for w using the
onboard observation y for fast, terrain-aware, and precise
navigation. At each time step t during online execution, we
compute the desired change of state ∆xΠ = Π(ρ(x)+∆)−x

1Here, we assume the optimal control that follows the global path (second
term in Eqn. 2) also implicitly minimizes navigation time (first term).

with x from localization, the projection operator ρ(·), pro-
jection horizon ∆, and global plan Π(·). Along with onboard
observation y and current vehicle state x, we use the learned
inverse kinodynamic model f+

θ∗ to produce system control
input:

u(t) = f+
θ∗(∆xΠ, x, y), (7)

and repeat this process for every time step.

IV. EXPERIMENTS

In this section, we present experimental results using a
learned inverse kinodynamic model f+

θ∗(∆x, x, y), which
considers unobservable world state w by taking y as input,
and can precisely track different global plans by different Π.

We denote the baseline forward and inverse kinodynamic
functions, which do not consider world state w, as fB(x, u)
and f+

B (∆x, x), respectively. As an ablation study to test the
effectiveness of capturing the world state w with y, we also
learn an ablated inverse kinodynamic model f+

Aφ∗(∆x, x),
which is parameterized by φ∗ and does not take observation
y as input to represent w. We show that the learned f+

Aφ∗

can outperform the baseline f+
B . Adding the learned obser-

vation y as another input, f+
θ∗(∆x, x, y) can outperform both

f+
Aφ∗(∆x, x) and f+

B (∆x, x).
The learned inverse kinodynamic model for online exe-

cution is also agnostic to different online plans and unseen
terrain. We show that the model learned through a global
planner Π1 (a randomly exploring policy driven by a human
operator) can also generalize well to a complicated global
planner Π2 on an outdoor race track, and a simple global
planner Π3 on an indoor track. We also test the generalizabil-
ity with respect to unseen world states through the encoded
y and f+

θ∗(∆x, x, y) on unseen terrain.

A. Implementation

1) Robot Platform: Our learned inverse kinodynamic
model is implemented on a UT Automata robot, a
scale 1/10th autonomous vehicle platform (Fig. 2a). The
Ackermann-steering four-wheel drive vehicle is equipped
with a 2D Hokuyo UST-10LX LiDAR for localization, a Vec-
tornav VN-100 IMU for inertial sensing (200Hz), a Flipsky
VESC 4.12 50A motor controller, and a Traxxas Titan 550
Motor. Although the platform has individual suspensions,
the relatively short-travel suspensions are not specifically
designed for off-road navigation. We specifically pick this
platform because its small size and weight and the lack of
designed off-road capability can maximize the difference in
accuracy between navigating with and without the learned
terrain-aware inverse kinodynamic model. The robot has a
NVIDIA Jetson onboard, but only the CPU is used during
deployment.

2) Environment: The environment comprises of cement,
grass, and mud; and some patches are covered by different
artifacts, such as leaves, stalks, and/or twigs, with different
densities (Fig. 1). For a small vehicle like the UT Automata
robot, these artifacts can cause significantly different world
states (Fig. 1 red insert). Note that the terrain also changes

(a) (b)

Fig. 2: (a): A UT Automata robot, scale 1/10th autonomous
vehicle platform used in the experiments. (b): The sampling-
based baseline approximates ∆xΠ by rolling out the optimal
uB among 100 samples with fB .

due to environmental factors such as sunlight, wind, and
moisture, and is also affected by the robot’s wheel and
chassis. To minimize the effect of artifacts being pushed
off the course during extended experiments, we frequently
shuffle and redistribute the artifacts. We do not specify
discrete terrain classes and treat the terrain characteristics
in a continuous manner.

3) Model Implementation: During autonomous naviga-
tion, the robot uses Episodic Non-Markov Localization
(ENML) [15] with a pre-built map of the environment to
derive vehicle state x. A global planner Π includes a pre-
generated global path for the robot to follow and uses line-
of-sight control (similar to [16], [17]) to generate desired
receding horizon plan state Π(ρ(x) + ∆) on the global path
1m away from the robot. In a model predictive control
manner, the robot uses the baseline forward kinodynamic
function fB and samples candidate velocity and curvature
control inputs u ∈ U evenly distributed within a physically-
feasible window to jointly find the desired state change ∆xΠ

and control input uB (shown in Fig. 2b). More specifically,
to compute control input, the baseline inverse kinodynamic
model f+

B produces the curvature input, which results in the
desired ∆xΠ and drives the robot as close to Π(ρ(x) + ∆)
as possible:

uB = f+
B (·, ·)

= arg min
u
‖Π(ρ(x) + ∆)−

∫ ∆t

t=0

fB(x, u)dt‖,
(8)

for the second term in Eqn. 2, and selects the fastest
possible velocity for the first term T , considering the robot’s
acceleration limit and a safety distance to decelerate in case
of obstacles.

For our learned ablated and final model, f+
Aφ∗ and f+

θ∗ ,
we utilize the ∆xΠ from the baseline kinodynamic model
(corresponds to uB), but instead of using the baseline’s
control input, we query our learned models to produce
u = f+

Aφ∗(∆xΠ, x) or u = f+
θ∗(∆xΠ, x, y). In practice, we

use the baseline control input uB = {v, c} (linear velocity
and steering curvature) to represent the desired state change
rate ∆xΠ.

4) Data Collection: To collect training data, the robot
is teleoperated with a joystick in an open environment
with linear velocity v ∈ [0, 3]m/s and steering curvature

Fig. 3: Neural Network Architecture. Input: blue IMU en-
coder and orange desired state change (desired velocity
and curvature in practice); Output: purple learned function
approximator f+

θ∗ as the inverse kinodynamic model.

c ∈ [−1.35, 1.35]m−1 for 30 minutes (24418 data points).
The teleoperator randomly varies both linear velocity and
steering curvature (Π1). In our specific implementation, the
robot reasons in the robot frame and therefore the state
xi in the training trajectory T = {〈∆xi, xi, ui, yi〉Ni=1}
becomes the origin in the robot frame. The ground truth
∆xi is represented as real {vir, cir}, where vir is from vehicle
odometry and cir = ωir/v

i
r (ωir is the sensed angular velocity

around the vertical z axis from the IMU). Currently, we take
vir from wheel odometry only, which can be further improved
by adding visual, point cloud, and/or inertial information in
future work. The commanded control input ui = {vic, cic} is
recorded from joystick input. For y, we collect the 6-DoF
raw IMU signal, including 3-DoF accelerometer and 3-DoF
gyroscope, as a sliding history window.

5) Network Architecture: As a function approximator for
f+
θ∗ , we use a two-layer neural network with 32 neurons

each layer (shown in purple in Fig. 3). The neural network
takes realistic/desired {vir, cir} (as a proxy for ∆xi, Fig.
3, orange) and observation y as input, and outputs to-be-
commanded control input ui = {vic, cic}. For observation y,
we concatenate the last 100 IMU readings (0.5s) into a 600-
dimensional vector, and feed it into two 256-neuron layers as
an autoencoder (Fig. 3, blue). The final embedding for y is a
two dimensional vector, then concatenated with {vir, cir}, and
finally trained in an end-to-end fashion. The entire network
architecture is shown in Fig. 3. For the ablated model
f+
Aφ∗ , the two-dimensional y embedding is removed (only

the orange and purple components remain). Training both
models takes less than five minutes on a NVIDIA GeForce
GTX 1650 laptop GPU. During runtime, the trained model
is used onboard the robot’s Jetson CPU with libtorch.

B. Navigation on Seen Terrain

We first test the inverse kinodynamic model’s performance
on the same terrain where the training data is collected,
but with a different global planner Π2. After collecting the
training data with Π1, an outdoor race track is constructed
using plastic panels and wooden posts (Fig. 1). Starting from
the origin (robot location in Fig. 1), eight turns are created
(T1–T8, Π2). While Turn 1, 2, and 3 are relatively gentle
left-, right-, and left-hand turns, Turn 4 and Turn 8 are

(a) 1.6m/s (b) 1.7m/s (c) 1.8m/s (d) 1.9m/s (e) 2.0m/s

(f) 2.1m/s (g) 2.2m/s (h) 2.3m/s (i) 2.4m/s (j) 2.5m/s

Fig. 4: Results of Outdoor Experiments on Seen Terrain: Localized robot positions of all 300 laps are plotted around the
pre-defined global path (black line segments) on the map (grey lines). The size of the circles at each turn denotes the number
of failures at that turn. Red: baseline f+

B (∆x, x), blue: ablated model f+
Aφ∗(∆x, x), green: learned model f+

θ∗(∆x, x, y).

(a) Per Target Speed (b) Per Turn

Fig. 5: Failure Rate on Seen Terrain

roughly 90◦ left-hand turns. Turn 5, 6, and 7 are sharp 180◦

left-, right-, and left-hand turns.
Ten different target speeds (the maximum speed the robot

targets at reaching while maintaining safety tolerance to
decelerate and avoid potential collisions) are tested, ranging
from 1.6m/s to 2.5m/s with 0.1m/s intervals. For the three
models, the baseline f+

B (∆x, x), the ablated f+
Aφ∗(∆x, x),

and learned f+
θ∗(∆x, x, y), we repeat ten trials/laps each for

statistical significance. A total 300 laps are executed. The
localized robot position from ENML are shown in Fig. 4 in
the subplots corresponding to the target speeds.

At lower target speeds, the green trajectories by the learned
model f+

θ∗(∆x, x, y) are much closer to the pre-defined
global path, compared to the baseline f+

B (∆x, x), because
the latter model fails to consider the world state caused by
the unstructured terrain. With increasing speed, the robot
trajectory becomes more scattered around the global path
due to increased stochasticity from vehicle-terrain interac-
tion. But overall speaking, the green trajectories are always
closer to the global path than other alternatives. The blue
trajectory is generated by the ablated model f+

Aφ∗(∆x, x).
Like f+

θ∗ , it learns from actual terrain interactions, but it
does not consider the current observation y. So f+

Aφ∗ is
roughly an averaged model over the continuous spectrum
of terrain. Therefore, f+

Aφ∗ outperforms the baseline f+
B , but

underperforms f+
θ∗ because it fails to consider the current

world state.
At each turn, the size of the red, blue, and green circles

TABLE I: Overall Success Rates of All Speeds and Turns
Baseline Ablation Learning

Seen 52.4% 82.9% 86.9%
Unseen 49.5% – 87.0%

represents the number of failed turns (collision or getting
stuck) in the ten attempted turns. Turn 6 and 7 cause a
lot of trouble for the baseline even at lower speeds. With
increasing speed, more turns cause failure for other models
as well, but in general, the baseline fails more frequently at
most turns than the ablated and learned models. Fig. 5a and
Fig. 5b show the percentage of failed turns per target speed
and per turn, respectively. In Fig. 5a, failure rate increases
with faster speed, while within each speed, the learned model
achieves the lowest failure rate, while the baseline fails
most frequently. In Fig. 5b, Turn 6 is the most difficult for
all three alternatives, and at most turns, the learned model
outperforms the ablation and the baseline. Since Turn 8 is
immediately after the terrain change from grass to cement,
the robot sometimes oversteers (to compensate for slip on
grass) and does not react quickly enough to understeer (for
higher friction on cement), causing it to get stuck in a few
laps with the learned model. This problem can be addressed
by adding forward looking camera to predict future wheel-
terrain interaction in future work. The overall success rates
of the three models for all turns are shown in Tab. I.

C. Navigation on Unseen Terrain

To test that the learned model generalizes to different
global planners Π and also to unseen terrain, we further
conduct an indoor experiment with a different track and
global path (Π3) on an unseen wooden floor (Fig. 6a). Note
that f+

θ∗ has only seen training data from random exploration
on the outdoor terrain (Fig. 1). Since the unseen wooden
floor is relatively more consistent and therefore easier to
navigate than the outdoor unstructured terrain, we increase
the navigation target speed to 2.4m/s - 2.8m/s, also with
0.1m/s intervals. The baseline and the learned model are

(a) Unseen Test (b) 2.4m/s (c) 2.5m/s (d) 2.6m/s (e) 2.7m/s (f) 2.8m/s

Fig. 6: Experiment Results in Unseen Environment

(a) Per Target Speed (b) Per Turn

Fig. 7: Failure Rate on Unseen Terrain

applied with these five different target speeds, ten repetitions
each. Fig. 6 shows the results from the 100 laps on the unseen
terrain with a different global path. Similar to the results on
seen terrain, the learned model produces more concentrated
and also closer robot trajectories to the global path to be
tracked. As shown in Fig. 7a and 7b, the learned model also
outperforms the baseline in terms of failure rate at all target
speeds and in most turns (except Turn 2). The overall success
rates of the baseline and learned model are shown in Tab. I.

V. CONCLUSIONS

In this paper, we present a data-driven approach to learn
an inverse kinodynamic model for accurate high-speed nav-
igation on unstructured terrain. To capture the elusive and
stochastic world state caused by vehicle-terrain interaction
at different high speeds, we use an inertia-based observation
embedding as an input to the learned inverse kinodynamic
function. This approach is tested on a physical robot on seen
and unseen terrain with different global plans at different
high speeds. The experimental results show that the learned
model can significantly outperform an ideal baseline model
without consideration of world state. Our ablation study also
shows our observation embedding is useful to enable fast
and accurate off-road navigation on unstructured terrain. For
future work, better ground truth linear velocity estimation
needs to be investigated: in addition to wheel odometry
alone, other sources of perception, e.g. vision, point cloud,
and/or inertia, can be leveraged. Better linear velocity esti-
mation can account for significant wheel slippage on more
challenging terrain, e.g. on ice, and enable even faster naviga-
tion. Adding vision-based observation also has the potential
to enable the robot to prepare for future interactions, e.g. to
reduce the failures at Turn 8. Another interesting direction
to investigate in the future is generalization from easier to
harder environments.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[2] G. Seetharaman, A. Lakhotia, and E. P. Blasch, “Unmanned vehicles
come of age: The darpa grand challenge,” Computer, vol. 39, no. 12,
pp. 26–29, 2006.

[3] L. D. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan,
“The darpa lagr program: Goals, challenges, methodology, and phase
i results,” Journal of Field robotics, vol. 23, no. 11-12, pp. 945–973,
2006.

[4] W. Shi, Z. Li, W. Lv, Y. Wu, J. Chang, and X. Li, “Laplacian sup-
port vector machine for vibration-based robotic terrain classification,”
Electronics, vol. 9, no. 3, p. 513, 2020.

[5] P. Wolf, A. Vierling, T. Ropertz, and K. Berns, “Advanced scene
aware navigation for the heavy duty off-road vehicle unimog,” in IOP
Conference Series: Materials Science and Engineering, vol. 997, no. 1.
IOP Publishing, 2020, p. 012093.

[6] S. Rabiee and J. Biswas, “A friction-based kinematic model for skid-
steer wheeled mobile robots,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 8563–8569.

[7] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-
road obstacle avoidance through end-to-end learning,” in Advances in
neural information processing systems. Citeseer, 2006, pp. 739–746.

[8] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” arXiv preprint
arXiv:2011.13112, 2020.

[9] ——, “Toward agile maneuvers in highly constrained spaces: Learning
from hallucination,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1503–1510, 2021.

[10] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[11] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, “Robot
navigation from human demonstration: Learning control behaviors,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1150–1157.

[12] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[13] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou,
and B. Boots, “Imitation learning for agile autonomous driving,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 286–
302, 2020.

[14] S. Siva, M. Wigness, J. Rogers, and H. Zhang, “Robot adaptation
to unstructured terrains by joint representation and apprenticeship
learning,” in Robotics: science and systems, 2019.

[15] J. Biswas and M. M. Veloso, “Episodic non-markov localization,”
Robotics and Autonomous Systems, vol. 87, pp. 162–176, 2017.

[16] X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “Uav assisted usv
visual navigation for marine mass casualty incident response,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 6105–6110.

[17] X. Xiao, E. Cappo, W. Zhen, J. Dai, K. Sun, C. Gong, M. J. Travers,
and H. Choset, “Locomotive reduction for snake robots,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 3735–3740.

