
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2021),
Prague, Czech Republic, October 2021

From Agile Ground to Aerial Navigation: Learning from Learned Hallucination

Zizhao Wang1, Xuesu Xiao2, Alexander J Nettekoven3, Kadhiravan Umasankar4,
Anika Singh1, Sriram Bommakanti4, Ufuk Topcu4, and Peter Stone2,5

Abstract— This paper presents a self-supervised Learning
from Learned Hallucination (LfLH) method to learn fast and
reactive motion planners for ground and aerial robots to
navigate through highly constrained environments. The recent
Learning from Hallucination (LfH) paradigm for autonomous
navigation executes motion plans by random exploration in
completely safe obstacle-free spaces, uses hand-crafted halluci-
nation techniques to add imaginary obstacles to the robot’s per-
ception, and then learns motion planners to navigate in realistic,
highly-constrained, dangerous spaces. However, current hand-
crafted hallucination techniques need to be tailored for specific
robot types (e.g., a differential drive ground vehicle), and use
approximations heavily dependent on certain assumptions (e.g.,
a short planning horizon). In this work, instead of manually
designing hallucination functions, LfLH learns to hallucinate
obstacle configurations, where the motion plans from random
exploration in open space are optimal, in a self-supervised
manner. LfLH is robust to different robot types and does not
make assumptions about the planning horizon. Evaluated in
both simulated and physical environments with a ground and
an aerial robot, LfLH outperforms or performs comparably to
previous hallucination approaches, along with sampling- and
optimization-based classical methods.

I. INTRODUCTION

Although classical navigation systems can safely and
reliably move mobile robots from one point to another within
obstacle-occupied environments, recent machine learning
techniques have demonstrated improvement over their clas-
sical counterparts [1], e.g., by learning local planners [2],
[3], learning world representation [4], [5], or learning plan-
ner parameters [6]–[8]. However, these learning approaches
heavily depend on access to high quality training data.

Learning from Hallucination (LfH) [9], [10] is a recently
proposed paradigm to address the difficulty of 1) obtaining
high-quality training data for traditional Imitation Learning
(IL) from expert demonstrations [11] and 2) Reinforcement
Learning (RL) from trial-and-error [12]. During LfH training,
the robot executes a variety of random motion plans in a

1Department of Electrical and Computer Engineering
{zizhao.wang, anikasingh}@utexas.edu, 2Computer
Science {xiao, pstone}@cs.utexas.edu, 3Mechanical
Engineering nettekoven@utexas.edu, 4Aerospace
Engineering and Engineering Mechanics {kadhirus99,
sriram.bommakanti, utopcu}@utexas.edu, University
of Texas at Austin, Austin, Texas 78712. 5Sony AI.

This work has taken place in the Learning Agents Research Group
(LARG) and Autonomous System Group at UT Austin, supported in part by
NSF (CPS-1739964, IIS-1724157, NRI-1925082), ONR (N00014-18-2243,
N00014-20-1-2115), FLI (RFP2-000), ARO (W911NF-19-2-0333), ARL
(W911NF2020132), NASA (80NSSC19K0209), DARPA, Lockheed Martin,
GM, and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

completely safe open space, imagines obstacle configurations
for which the motion plans are optimal (called hallucination),
and learns an end-to-end local planner as a mapping from the
hallucinated obstacle configurations to the optimal motion
plans in open space. The inherent safety of navigating in a
completely open training environment allows generation of
a large amount of training data with no expert supervision
or costly failures during trial-and-error learning. During
deployment, learned local planners react to real obstacles
within constant time (i.e., querying a pre-trained neural
network), which is not dependent on how densely packed
the surrounding obstacles are.

However, existing LfH methods require manually designed
hallucination functions to generate the most constrained [9]
or a minimal [10] obstacle set. While the former requires
access to a fine-resolution global path and runtime halluci-
nation during deployment, the latter assumes a short planning
horizon to assure that one representative minimal unreach-
able set can approximately represent all possible minimal
unreachable sets. Furthermore, these limitations prevent the
manually-designed hallucination functions from extending
from simple differential-drive ground vehicles to different
robot types, e.g., aerial robots.

The Learning from Learned Hallucination (LfLH) method
introduced in this work removes the necessity of manually
designing hallucination functions specific to certain robot
types and assumptions. In a self-supervised manner, LfLH
automatically learns distributions of obstacles which make
randomly explored motion plans in open space optimal,
samples obstacle configurations from learned obstacle distri-
butions, and finally learns a local planner that maps halluci-
nated obstacles to optimal motion plans. During deployment,
the robot precepts real obstacles and uses the learned local
planner to generate motion plans. LfLH is tested on a
ground and an aerial robot, both in simulated benchmark
testbeds [13] and physical environments. Superior naviga-
tion performance is achieved compared to existing LfH
approaches [9], [10] and classical sampling-based [14] and
optimization-based [15] planners.

II. RELATED WORK

This section reviews classical motion planning and recent
machine learning techniques for mobile robot navigation.

A. Classical Motion Planning
Classical motion planning techniques for mobile robot

navigation mostly work in the robot Configuration Space (C-
Space) [16] and mainly comprise two categories: sampling-



based and optimization-based. Sampling-based motion plan-
ners [14] generate sample motion plans and select the
best sample based on a certain metric, such as maximum
clearance, shortest path, or a combination thereof [16].
Optimization-based planners [15] start with an initial motion
plan, then use optimization techniques to iteratively refine the
initial plan to avoid obstacles while observing kinodynamic
constraints. One common shortcoming of both categories is
that when dealing with more constrained obstacle spaces,
classical motion planners require increased computation:
sampling-based planners require more samples to find a
collision-free motion plan to go through all obstacles, while
optimization-based planners require more optimization iter-
ations until a feasible plan can satisfy both collision and
kinodynamic constraints.

Compared with classical motion planning algorithms, one
advantage of the proposed LfLH approach is that its com-
putation is not dependent on obstacle density during de-
ployment, because LfLH simply queries a pre-trained neural
network to produce feasible and fast navigation behaviors.

B. Machine Learning for Navigation
Machine learning approaches have been applied to the

classical navigation pipeline in different ways [1], such as
constructing a world representation [4], [5], fine-tuning plan-
ner parameters [6]–[8], improving navigation performance
with experience [2], or enabling social [17] and terrain-
aware navigation [3]. Most learning methods require either
extensive (RL) or high-quality (IL) training data, such as
that derived from trial-and-error exploration or from human
demonstrations, respectively.

LfH [9], [10] has been recently proposed to alleviate the
difficulty of acquiring extensive or high-quality training data:
from random exploration in a completely safe open space
with complete safety, motion planners can be learned by syn-
thetically projecting the most constrained [9] or augmented
minimal [10] C-space onto the robot perception. Through
carefully designed hallucination functions, these methods
have shown fast and agile maneuvers on ground robots com-
pared to classical motion planning and traditional learning
approaches. However, the design of specific hallucination
functions does not easily extend to other robot types (e.g.,
aerial robots [9]) and relies on specific assumptions (e.g., a
short motion plan/planning horizon to make approximated
hallucination valid [10]).

LfLH removes the requirement for a carefully designed
hallucination function tailored to a specific robot with strict
assumptions, and instead learns hallucinated obstacle dis-
tributions which assure the motion plans executed in open
space are optimal in a self-supervised manner. Sample ob-
stacle configurations can be drawn from the learned obstacle
distributions as training data to learn a motion planner.

III. APPROACH
In this section, we present our Learning from Learned

Hallucination (LfLH) approach. We first formulate the prob-
lem using the LfH framework, then present the proposed ap-
proach to learn (instead of manually design) a hallucination

function, from which a motion planner is finally learned, as
shown in Fig. 1.

A. Problem Definition
We adopt the same notation used by Xiao et al. to formal-

ize LfH [9] and Hallucinated Learning and Sober Deploy-
ment (HLSD) [10]: given a robot’s C-space partitioned by
unreachable (obstacle) and reachable (free) configurations,
C = Cobst∪Cfree, the classical motion planning problem is
to find a function f(·) that can be used to produce optimal
plans p = f(Cobst | cc, cg) that result in the robot moving
from the robot’s current configuration cc to a specified goal
configuration cg without intersecting (the interior of) Cobst.
Here, a plan p ∈ P comprises a sequence of actions {ui}ti=1

(ui ∈ U, P and U are the robot’s plan and action space, re-
spectively). Considering the inverse problem of finding f(·),
LfH [9] and HLSD [10] use hallucination functions denoted
as g(p | cc, cg), to generate the (unique) most constrained and
a (not unique) minimal obstacle set, respectively, to make a
motion plan p generated by a random policy πrand in open
space optimal. To instantiate these hallucination functions,
hand-crafted rules are designed for specific robot types (e.g.
differential drive robots) and do not easily extend to others.
LfH [9] further requires a fine-resolution global path and
a runtime hallucination function h(·) to augment the real
obstacle perceptions to the most constrained cases during
deployment. HLSD [10] uses one representative minimal
unreachable set to approximately represent all of them. This
approximation is accurate only for short planning horizons or
motion plans, either requiring frequent replanning or limiting
navigation speed at runtime.

LfLH aims to learn a parameterized hallucination function
gψ(·), which outputs probability distributions of obstacles,
in a self-supervised manner, without the need to manually
design hallucination functions for each robot type and thus
avoiding the subsequent problems described above. Then it
samples many times from this learned distribution, Cobst ∼
gψ(·), to generate many obstacle configurations, in which
the free-exploration motion plans in open space are close to
optimal.

B. Learning Hallucination
We adopt an encoder-decoder architecture to learn the

hallucination function gψ(p | cc, cg) parameterized by ψ.
Taking the current configuration cc, goal configuration cg ,
and the corresponding plan p as input, the encoder gψ(·)
generates probability distributions of obstacles. We assume
obstacles are ellipses (or ellipsoids), and thus the obstacle
distributions are modeled as normal distributions of obstacle
locations and sizes in the C-Space. To shape the obstacle
distributions such that the given plan p is optimal, LfLH uses
a classical motion planner which does not have learnable
parameters as the decoder d(Cobst ∼ gψ(p | cc, cg)). The
decoder d(·) samples from the obstacle distributions and
then computes the optimal motion plan for the sampled
obstacles using its built-in algorithms. If the reconstructed
motion plan is the same as the given plan p, it indicates p
is also optimal for the sampled obstacles. In this work, we



Fig. 1: The Encoder-Decoder architecture learns hallucination function gψ from motion plans in open space (a) to obstacle distributions
(b). Sampling from hallucinated obstacle distributions and rendering corresponding observations (d), motion planner fθ is learned with
Behavior Cloning using motion plans collected in the open space as ground truth (c). During deployment, fθ takes in real obstacle
perceptions and generates corresponding motion plans.

choose d(·) to be a differentiable optimization-based motion
planner for easy training. To use non-differentiable motion
planners, one can use approximate gradients algorithms, like
REINFORCE [18]. Overall, our encoder-decoder architecture
uses gradient descent to find the optimal parameters ψ∗ for
gψ(·) by minimizing a self-supervised loss using a dataset
P of motion plans collected using random exploration in an
open space:

ψ∗ = argmin
ψ

E
p∼P

Cobst∼gψ(p|cc,cg)

[
`(p, d(Cobst))+`r(Cobst, p)

]
.

(1)
The choice of the reconstruction loss function `(·, ·) depends
on the representation of a motion plan p (e.g., a sequence of
raw motor commands or a B-spline trajectory). In addition
to the main reconstruction loss `(·, ·), a regulization loss `r
is employed to stablize training,

`r(Cobst, p) = λ1`prior(Cobst) + λ2`coll(Cobst, p), (2)

where `prior prevents gψ from overfitting by encouraging
a larger probability that Cobst is sampled from a prior
distribution (i.e., minimizing the discrepancy between the
output of gψ and the prior), `coll is the penalty for collision
between obstacles Cobst and plan p as well as between each
pair of obstacles in Cobst, and λ1, λ2 are corresponding
regularization weights. Implementation details of `, `prior,
and `coll can be found in Sec. IV.

After learning gψ∗(·) in a self-supervised manner, we can
sample from the learned obstacle distributions gψ∗(p | cc, cg)
many times to generate many obstacle configurations Cobst
where the motion plan p is close to optimal. We then
form a training set Dtrain with individual data points
(Cobst, p, cc, cg). The specific instantiation of Cobst depends
on the perception modality of the mobile robot. For example,
for ground robots with 2D LiDAR, we use 2D ray casting
from the onboard sensor to the sampled obstacles to deter-
mine range readings for each laser beam; for aerial robots
with 3D depth cameras, we use 3D rendering to determine
each camera pixel’s depth value to the sampled obstacles.

C. Learning from Learned Hallucination
With the training set Dtrain constructed using the learned

hallucination function gψ∗(·), we learn a parameterized mo-
tion planner fθ(·) from Dtrain by minimizing a supervised

learning loss using gradient descent:

θ∗ = argmin
θ

E
(Cobst,p,cc,cg)∼Dtrain

[
`(p, fθ(Cobst | cc, cg))

]
.

(3)
The loss function `(·, ·) in Eqns. 1 and 3 could take the
same form. But in practice, the encoder gψ(·)’s input plan
(Eqn. 1) and the motion planner fθ(·)’s output plan (Eqn.
3) can take different forms to faciliate learning. Details can
be found in Sec. IV. During deployment, the learned fθ∗

uses real obstacle perceptions rather than hallucinated ones
to generate effective motion plans.

The entire learning pipeline is shown in Alg. 1, including
data collection, learning hallucination, learning from learned
hallucination, and deployment.

IV. EXPERIMENTS

LfLH is implemented on a ground and an aerial robot
to validate our hypothesis that LfLH can automatically learn
obstacle configurations where motion plans executed in open

Algorithm 1 Learning from Learned Hallucination

Input: πrand, gψ(·), sampling count, fθ(·)

1: // Data Collection
2: collect motion plans (p, cc, cg) in free space with πrand

to form motion plan dataset P
3: // Learning Hallucination
4: learn ψ∗ using Eqn. 1 for gψ(·) with P
5: Dtrain ← ∅
6: for every (p, cc, cg) in P do
7: for sampling count times do
8: sample Cobst ∼ gψ∗(p | cc, cg)
9: Dtrain = Dtrain ∪ (Cobst, p, cc, cg)

10: end for
11: end for
12: // Learning from Learned Hallucination
13: learn θ∗ using Eqn. 3 for fθ(·) with Dtrain

14: // Deployment (each time step)
15: receive Cobst, cc, cg
16: plan p = {ui}ti=1 = fθ∗(Cobst | cc, cg)
17: return p



space are near-optimal, and agile motion planners can be
learned through the learned halluciantion.

A. Ground Robot
We first implement LfLH on a ground robot and compare

LfLH’s performance with a classical sampling-based motion
planner [14] and state-of-the-art learning approaches from
hallucination, including LfH [9] and HLSD [10].

1) Implementation: We use a Clearpath Jackal robot, a
four-wheeled, differential-drive, Unmanned Ground Vehicle
(UGV), running the Robot Operating System move base
navigation stack. The Jackal has a 720-dimensional 2D
LiDAR with a 270◦ field of view, which is used to instantiate
obstacle configuration Cobst using ray casting. Its DWA local
planner is replaced with LfLH.

For data collection (line 2 in Alg. 1), we collect three
separate datasets: a dataset with mostly constant 0.4m/s
linear velocity (v) and varying angular velocity (ω); a varying
v and ω dataset with 1.0m/s max v; and a varying v and ω
dataset with 2.0m/s max v. To be specific, πrand samples
a target (v̂, ω̂) pair at random according to the max limit
and commands the UGV to reach that speed with constant
increments/decrements considering its acceleration limit. The
most constrained hallucination in LfH [9] only works with
the 0.4m/s dataset, while being confused by the ambiguity
of varying v in 1.0m/s and 2.0m/s datasets in the most
constrained spaces. The minimal hallucination in HLSD [10]
works with both the 0.4m/s and 1.0m/s datasets, but does not
learn well from the 2.0m/s dataset because the approximation
of the representative minimal unreachable set used in HLSD
fails to represent all minimal sets in the long trajectory
produced by the faster speed. Only LfLH works well with
all datasets.

For the UGV, a single odometry point oi consists of
position xi, orientation φi, linear velocity vi, and angular
velocity ωi. We use N = 125 odometry points to compose
a motion plan p that takes 2.5s and train the hallucina-
tion function gψ∗(·) with Eqn. 1 (line 4 in Alg. 1). The
encoder gψ(·) is modeled as a network with three one-
dimensional convolutional layers to extract temporal features
and a fully-connected layer to map temporal features to
ten obstacles’ location and size distributions, in the form
of means and variances. The decoder d is Ego-Planner
[15], an optimization-based planning algorithm which we
reimplement with differential convex optimization layers [19]
to enable differentiation through d itself. The reconstruction
loss ` in Eqn. 1 is the mean squared error of all positions
and linear velocities {xi, vi}Ni=1 in p and their reconstructed
values. For regularization, the obstacle location prior distri-
bution is a normal distribution fitted on all positions {xi}Ni=1

in the plan p, to prevent obstacles from getting too far away
from the plan p. Meanwhile, the obstacle size prior is a
normal distribution with an empirically chosen mean of 0.3m
and variance of 0.0025m2. The obstacle-obstacle/obstacle-
plan collision regularization loss is `coll =

∑
max(c−d, 0)2

where clearance c =0.5m and d is the distance either between
two obstacles or between the obstacle and its closet point on

the plan p. Regularization weights are tuned with grid search
as λ1 = 0.3 and λ2 = 2.0.

After training, we construct the training set Dtrain by
sampling ten obstacle configurations from gψ∗(·) for each
collected plan. Beyond the ten hallucinated obstacles, to
increase the variance of training samples, we randomly
sample five additional obstacles whose distances to p are
proportional to the velocity to account for motion uncertainty
at fast speeds. To make sure the training samples are valid,
we filter out invalid samples where obstacles are too close
to the path p (clearance c < 0.5m). Finally, the observations,
i.e., 2D Lidar scans, are rendered using ray casting given the
UGV’s configuration cc and obstacle configurations Cobst.
The motion planner fθ∗ is trained to produce only the first
action (v1, ω1) in the entire motion plan p for simplicity
(line 13 in Alg. 1), and it is represented as a fully-connected
network with 2 hidden layers of 256 units. During deploy-
ment, the UGV reasons in the robot frame, so cc is the origin
and cg is a point 1.5m away from the robot on the global
path (line 15 in Alg. 1). We use the same Model Predictive
Control (MPC) model as HLSD [10] to check for and avoid
collisions.

2) Simulated Experiments: We first use the BARN
dataset [13] with 300 navigation environments (example en-
vironments shown in Fig. 2) randomly generated by Cellular
Automata to compare the different motion planners. As a
classical sampling-based planner, DWA’s [14] max linear
velocity is increased from the default 0.5m/s to 2.0m/s for
a fair comparison with other planners. We find that by
also quadrupling DWA’s default sampling rate for linear and
angular velocity (to 24 and 80), the UGV’s performance is
roughly the same as when using the default parameters (but
at quadruple the speed). We train nine different planners with
LfH [9], HLSD [10], and LfLH on all three datasets. For all
the planners, we run three navigation trials in each of the
300 navigation environments in BARN between a specified
start and goal location without a map and record the traversal
time (with 50s maximum).

We list the average traversal time with the standard de-
viation in Tab. I. The ∞ sign indicates the motion planner
learned using the corresponding method and dataset fails to
navigate to the goal in most of the trials (getting stuck or
colliding). For the other entries, a low traversal time means
efficient and agile navigation performance. LfLH is the only
learning method that works well with all three datasets,
and achieves the best navigation performance. For clarity,
we only plot the test results in each environment (averaged
over three trials) using each variant with its fastest working
dataset, i.e., LfH 0.4, HLSD 1.0, and LfLH 2.0, along with
DWA 2.0 in Fig. 3 (scattered dots). We also fit a line to
show the trend of each method. In Fig. 3 we order the
navigation environments from left to right with increasing
average traversal time achieved by DWA 2.0 (red). Note that
the y axis uses a log scale to better visualize the differences
in the small traversal time range. LfLH 2.0 (green) achieves
similar results in easy environments (left) and significantly
outperforms DWA 2.0 in difficult ones (right). Although LfH



Fig. 2: Four example BARN environments

TABLE I: UGV Simulated Average Traversal Time

DWA 2.0 Dataset LfH HLSD LfLH

0.4m/s 13.8±5.3s 13.2±7.9s 13.4±6.4s
22.1±11.4s 1.0m/s ∞ 8.5±5.2s 8.3±3.8s

2.0m/s ∞ ∞ 8.1±5.4s

0.4 (orange) and HLSD 1.0 (yellow) have a disadvantage
due to slow max speed in easy environments, they exhibit
good agility in more constrained difficult ones, especially
HLSD 1.0. LfLH 2.0 is the only planner that achieves
good performance in both easy and difficult environments,
shown by the flat green line. Note that the maximal velocity
of the UGV is 2.0m/s and the highly constrained BARN
environments require slow speeds for agile maneuvering in
most places.

3) Physical Experiments: We also deploy the four plan-
ners in a physical test course, for five trials each (Fig. 4). The
results are shown in Tab. II. The sampling-based DWA plan-
ner [14] fails to sample feasible motions in many constrained
spaces, and has to execute many recovery behaviors before
re-sampling. Therefore DWA takes a long average time with
large variance to traverse the course. LfH 0.4 requires a fine-
resolution global path [9] and drives smoothly but slowly
everywhere along the course. Being too conservative in wide
open spaces causes LfH 0.4 to achieve similar results to
DWA 2.0, which gets stuck in many places but makes up the
time by accelerating in open spaces. HLSD 1.0 also navigates
smoothly, but much faster than LfH 0.4, and outperforms
DWA 2.0. Our LfLH 2.0 is the only planner that can learn
from the fast 2.0m/s dataset, achieving the best performance
among all the variants.

B. Aerial Robot
We also evaluate LfLH on an Unmanned Aerial Vehicle

(UAV, a quadrotor) where hallucination is more challenging

Fig. 3: Simulation results in BARN

TABLE II: UGV Physical Average Traversal Time

DWA 2.0 LfH 0.4 HLSD 1.0 LfLH 2.0

73.6±3.8s 78.4±1.8s 50.6±0.8s 41.1±0.9s

Fig. 4: UGV Physical Experiments: Progress of HLSD 1.0 (yel-
low), LfH 0.4 (orange), and DWA 2.0 (red) in the obstacle course,
when LfLH 2.0 (green) reaches the goal.

Fig. 5: Left: In Ego-Planner’s simulator, the obstacles are shown
as blue clouds, the goal is marked green (cg), and the produced
motion plan p is marked red. The bottom right is the depth image
as an instantiation of Cobst.

due to higher dimensionality and more agility. We compare
LfLH with a state-of-the-art optimization-based UAV trajec-
tory planning algorithm, Ego-Planner [15].

1) Implementation: We apply LfLH to a simulated UAV
in Ego-Planner’s simulator and a physical PX4 Vision UAV
platform shown in Fig. 5. Both the simulated and physical
UAVs use depth input, acquired by rendering in simulation
and a Structure Core camera, respectively, to instantiate
obstacle configuration Cobst.

Due to unavailability of a motion capture system, we
collect a dataset of 20-min flight in simulation (line 2 in
Alg. 1). We represent the random exploration policy πrand
to collect p in an open space using Ego-Planner with 2.0m/s
max v in a highly constrained environment. We only record
motion plans p but do not record any perception input (as
if the UAV were flying in an open space),1 which is later
synthesized by LfLH. Note that previous learning approaches
from hallucination cannot solve this 3D aerial navigation
task: LfH [9] is not applicable because no global path
is available; The approximated minimal unreachable set in
HLSD [10] cannot effectively represent 3D obstacles given
the long flight plan.

For our LfLH implementation in 3D, the odometry point
contains the same information (xi, φi, vi, ωi) as the UGV
(but in 3D), and each plan p consists of M = 500 odometry
points that takes 2.5s. The encoder gψ , decoder d, recon-
struction loss `, and regularization `r are in the same format
as for the UGV, except that gψ(·) outputs distributions of
15 obstacles, the obstacle size prior has a different mean of
0.6m and variance of 0.2m2 in the prior regularization loss
`prior, the clearance increases to c = 0.6m in the collision
regularization loss `collsion, and λ1 = 0.5, λ2 = 5.0 for
regularization weights.

1We leave a true random exploration policy in an open space as future
work, such as random teleoperation or a random policy as in the UGV case.



TABLE III: UAV Simulated Evaluation Results

Metrics Ego-Planner LfLH

Survival Time (s) 101.99±62.83 192.87±161.37
Survival Distance (m) 174.15±106.74 213.07±172.98
SPL 0.74 0.56

After training gψ(·) (line 4 in Alg. 1), the training set
Dtrain is constructed with the collected plans p and their
corresponding observed Cobst, i.e., depth images rendered
using ray casting given the 15 sampled hallucinated obstacles
and five additional obstacles sampled in the same way as the
UGV in Sec. IV-A.1. The motion planer fθ is modeled as
four convolutional layers and three fully-connected layers
used to extract features from the depth image, goal configu-
ration, and current velocities (h, cg, v, ω). Then fθ is trained
to produce positions and linear velocities {x̂i, v̂i}Mi=1 in the
entire motion plan p. A similar MPC method to HLSD [10]
used for ground navigation is also applied to check for
collisions by the UAV.

2) Simulated Environments: We first evaluate LfH and
Ego-Planner in simulation with a randomly generated forest
shown in Fig. 5 left. Each method is tested for 10 trials, and
in each trial the UAV keeps navigating to randomly generated
goals until the UAV collides with obstacles. Meanwhile,
we record the total traversal time and distance, as well
as the individual traversal time ti and distance pi to each
goal i, from which we measure Success weighted by Path
Length [20], SPL = 1

K

∑K
i=1 Si

li
pi

, where Si is the binary
indicator of success for reaching the ith goal, and li is the
Euclidean distance from the ith start to the ith goal, which
is always smaller than pi.

We list the average and standard deviation (if applicable)
of these metrics in Tab. III. Compared with Ego-Planner,
LfLH survives (keeps navigating in a collision-free manner)
longer both in terms of traversal time and distance, but it
has lower SPL. In other words, LfLH trades off aggressive
motions for safety. With safer motion plans, it can react
faster to unexpected obstacles in the highly constrained
environments (e.g., obstacles that are occluded until the robot
gets pretty close). To the best of our knowledge, LfLH is the
first learning-based planner for aerial robots that can navigate
in such highly constrained spaces.

V. CONCLUSIONS

LfLH is a self-supervised machine learning technique for
mobile robot navigation that only requires data in open space.
In addition to self-supervised learning of a motion planner,
LfLH also learns self-supervised to generate hallucinated
obstacle configurations, from which the motion planner
is learned, instead of requring hand-crafted hallucination
functions. In contrast to the manually designed ones [9],
[10], LfLH is robust to different robot types and can be
applied to agile ground and aerial robots navigating at
faster speeds. Although in our experiments the ground robot
learns from a real random exploration policy, one future
research direction is to investigate truly random exploration

for aerial vehicles, instead of using trajectories collected
from an existing motion planner. In addition to a physical
demonstration, other interesting directions include extending
LfLH to dynamic obstacles and designing better exploration
strategies to cover necessary navigation skills for all possible
obstacle configurations.

REFERENCES

[1] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” arXiv preprint
arXiv:2011.13112, 2020.

[2] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[3] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021.

[4] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, “Robot
navigation from human demonstration: Learning control behaviors,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1150–1157.

[5] C. Richter and N. Roy, “Safe visual navigation via deep learning and
novelty detection,” 2017.

[6] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[7] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “Appli: Adaptive
planner parameter learning from interventions,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2021.

[8] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “Applr: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[9] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, pp. 1503–1510, 2021.

[10] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[11] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[12] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[13] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[14] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[15] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, 2020.

[16] S. LaValle, Planning algorithms. Cambridge university press, 2006.
[17] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware

motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[18] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and
Z. Kolter, “Differentiable convex optimization layers,” arXiv preprint
arXiv:1910.12430, 2019.

[20] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al.,
“On evaluation of embodied navigation agents,” arXiv preprint
arXiv:1807.06757, 2018.


	INTRODUCTION
	RELATED WORK
	Classical Motion Planning
	Machine Learning for Navigation

	APPROACH
	Problem Definition
	Learning Hallucination
	Learning from Learned Hallucination

	EXPERIMENTS
	Ground Robot
	Implementation
	Simulated Experiments
	Physical Experiments

	Aerial Robot
	Implementation
	Simulated Environments


	CONCLUSIONS
	References

