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Many potential applications of artificial intelligence involve making real-time
decisionsin physical systems while interacting with humans. Automobile racing
represents an extreme example of these conditions; drivers must execute complex
tactical manoeuvres to pass or block opponents while operating their vehicles at their
traction limits'. Racing simulations, such as the PlayStation game Gran Turismo,
faithfully reproduce the non-linear control challenges of real race cars while also
encapsulating the complex multi-agent interactions. Here we describe how we trained
agents for Gran Turismo that can compete with the world’s best e-sports drivers.

We combine state-of-the-art, model-free, deep reinforcement learning algorithms
with mixed-scenario training to learn anintegrated control policy that combines
exceptional speed with impressive tactics. In addition, we construct areward function
that enables the agent to be competitive while adhering to racing’s important, but
under-specified, sportsmanship rules. We demonstrate the capabilities of our agent,
Gran Turismo Sophy, by winning a head-to-head competition against four of the
world’s best Gran Turismo drivers. By describing how we trained championship-level
racers, we demonstrate the possibilities and challenges of using these techniques to
control complex dynamical systems in domains where agents must respect
imprecisely defined human norms.

Deep reinforcement learning (deep RL) has been a key compo-
nent of impressive recent artificial intelligence (Al) milestones in
domains such as Atari?, Go**, StarCraft> and Dota®. For deep RL to
have an influence on robotics and automation, researchers must
demonstrate success in controlling complex physical systems. In
addition, many potential applications of robotics require inter-
acting in close proximity to humans while respecting imprecisely
specified human norms. Automobile racing is adomain that poses
exactly these challenges; it requires real-time control of vehicles
with complex, non-linear dynamics while operating within inches
of opponents. Fortunately, it isalso a domain for which highly real-
istic simulations exist, making it amenable to experimentation with
machine-learning approaches.

Research on autonomous racing has accelerated in recent years,
leveraging full-sized”'°, scale™ * and simulated'®* vehicles. A com-
mon approach pre-computes trajectories?®* and uses model predic-
tive control to execute those trajectories™. However, when driving
atthe absolute limits of friction, small modelling errors can be cata-
strophic. Racing against other drivers puts even greater demands
on modelling accuracy, introduces complex aerodynamic inter-
actions and further requires engineers to design control schemes
that continuously predict and adapt to the trajectories of other

cars. Racing with real driverless vehicles still seems to be several
years away, as the recent Indy Autonomous Challenge curtailed its
planned head-to-head competition to time trials and simple obstacle
avoidance®.

Researchers have explored various ways to use machine learning to
avoid this modelling complexity, including using supervised learning
to model vehicle dynamics®?*° and using imitation learning®, evolu-
tionary approaches® or reinforcement learning'®? to learn driving
policies. Although some studies achieved super-human performance
insolo driving® or progressed to simple passing scenarios'®**** none
have tackled racing at the highest levels.

To be successful, racers must become highly skilled in four areas:
(1) race-car control, (2) racing tactics, (3) racing etiquette and (4)
racing strategy. To control the car, drivers develop a detailed under-
standing of the dynamics of their vehicle and the idiosyncrasies of the
track on which they are racing. On this foundation, drivers build the
tactical skills needed to pass and defend against opponents, execut-
ing precise manoeuvres at high speed with little margin for error. At
the same time, drivers must conform to highly refined, but impre-
cisely specified, sportsmanship rules. Finally, drivers use strategic
thinking when modelling opponents and deciding when and how to
attempt a pass.

'Sony Al, New York, NY, USA. 2Sony Al, Tokyo, Japan. Sony Al, Ziirich, Switzerland. ®e-mail: peterwurman@sony.com
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Fig.1| Training. a, Anexample training configuration. The trainer distributes
training scenarios to rollout workers, each of which controls one PS4 running
aninstance of GT. The agentin the worker runs one copy of the most recent
policy, , to controlup to 20 cars. The agent sends an action, a, for each car it
controls to the game. Asynchronously, the game computes the next frames and
sends each newstate, s, to the agent. When the gamereports that the action has
beenregistered, theagentreportsthestate,action, reward tuple(s, a, r)to the
trainer, which storesitinthe ERB. The trainer samples the ERB to update the
policy, m,and Q-function networks. b, The course representation ahead of the
caronasequence of curves on Maggiore if the car was travellingat 200 km h™.
¢, Thedistribution of the learning curves on Maggiore from15 different
randomseeds. All of the seeds reached superhuman performance. Most
reacheditin10 days oftraining, whereas the longest took 25 days.d, The
distribution of individual players’ best lap times on Maggiore as recorded on

Inthis article, we describe how we used model-free, off-policy deep
RL tobuild achampion-level racing agent, which we call Gran Turismo
Sophy (GT Sophy). GT Sophy was developed to compete with the
world’s best players of the highly realistic PlayStation 4 (PS4) game
Gran Turismo (GT) Sport (https://www.gran-turismo.com/us/), devel-
oped by Polyphony Digital, Inc. We demonstrate GT Sophy by compet-
ing against top human drivers on three car and track combinations
that posed different racing challenges. The car used on thefirst track,
Dragon Trail Seaside (Seaside), was a high-performance road vehicle.
On the second track, Lago Maggiore GP (Maggiore), the vehicle was
equivalent to the Federation Internationale de 'Automobile (FIA) GT3
class of race cars. The third and final race took place on the Circuit
delaSarthe (Sarthe), famous as the home of the 24 Hours of Le Mans.
This race featured the Red Bull X2019 Competition race car, which
can reach speeds in excess of 300 km h™%. Although lacking strategic
savvy, in the process of winning the races against humans, GT Sophy
demonstrated notable advances in the first three of the four skill areas
mentioned above.

Approach

The training configurationis illustrated in Fig. 1a. GT runs only on
PlayStations, which necessitated that the agent runs on a separate
computing device and communicates asynchronously with the game
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Kudos Prime (https://www.kudosprime.com/gts/rankings.php?sec=daily).
Superimposed ondis the number of hours that GT Sophy, using ten
PlayStations with 20 cars each, needed to achieve similar performance.

e, Ahistogram (in orange) of 100 laps from the time-trial policy GT Sophy used
on2July2021compared with the five best human drivers’bestlap times
(circles1-5) in the Kudos Prime data. Similar graphs for the other two tracks are
inthe Supplementary Information; Maggioreis the only one of the three tracks
onwhichthebesthuman performance was closeto GT Sophy.f, The training
scenarios on Sarthe, including five full-track configurations in which the agent
startswith zero, one, two, three or seven nearby opponents and three
specialized scenarios thatare limited to the shaded regions. The actual track
positions, opponents and relative car arrangements are varied to ensure that
thelearned skills are robust.

by means of TCP. Although GT ran only inreal time, each GT Sophy
instance controlled up to 20 carsonits PlayStation, which accelerated
data collection. We typically trained GT Sophy from scratch using 10-20
PlayStations, an equal number of compute instances and a GPU machine
that asynchronously updates the neural networks.

The core actions of the agent were mapped to two continuous-valued
dimensions: changing velocity (accelerating or braking) and steering
(left or right). The effect of the actions was enforced by the game to
be consistent with the physics of the environment; GT Sophy cannot
brake harder than humans butit canlearn more precisely whento brake.
GT Sophy interacted with the game at 10 Hz, which we claim does not
give GT Sophy a particular advantage over professional gamers* or
athletes®.

As is common?*?%, the agent was given a static map defining the
left and right edges and the centre line of the track. We encoded the
approaching course segment as 60 equally spaced 3D pointsalong each
edgeofthetrackandthecentreline (Fig.1b). The span of the pointsin
any given observation was a function of the current velocity, so as to
always represent approximately the next 6 sof travel. The points were
computed fromthe track map and presented to the neural networkin
the egocentric frame of reference of the agent.

Throughan API, GT Sophy observed the positions, velocities, accel-
erations and other relevant state information about itselfand all oppo-
nents. To make opponentinformationamenable to deep learning, GT
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Fig.2|Ablations. a-d, The effect of various settings on Maggiore performance
using the2,048 x 2 time trial network from 2 July 2021. All bars represent the
average across fiveinitial seeds, with the full range of the samples shown as an
errorbar.Inallgraphs, the baseline settings are coloured inadarker shade of
blue.a, GT Sophy would not be faster than the best human on Maggiore without
the QRenhancementto SAC. b, Representing the upcoming track as sequences
of points was advantageous. ¢, Not including the off-course penalty resultsina
slower lap time and (in parentheses) amuch lower percentage of laps without
exceedingthe course boundaries.d, Notably, the 5-step returnused on 2 July
2021was not the best choice; thiswas changed to a7-step return for the
October match. e-h, Evaluation of the 2,048 x 4 networks and configurations
used to train the version of GT Sophy thatraced on210ctober2021.Ineandf,
eachpointrepresents the average of ten 7-lap 4v4 races on Sarthe against
copies of October GT Sophy and comparisonis shown for the trade-offs
betweenteamscore and ‘questionable collisions’ (aroughindication of

Sophy maintained two lists of their state features: one for carsin front
oftheagentand one for cars behind. Both lists were ordered from clos-
est to farthest and limited by a maximum range.

Wetrained GT Sophy using anew deep RL algorithm we call quantile
regression soft actor-critic (QR-SAC). This approach learns a policy
(actor) that selects an action on the basis of the agent’s observations
and a value function (critic) that estimates the future rewards of each
possible action. QR-SAC extends the soft actor-critic approach® by
modifyingit to handle N-step returns®® and replacing the expected value
of futurerewards with arepresentation of the probability distributions
of those rewards®. QR-SAC trains the neural networks asynchronously;
it samples data from an experience replay buffer (ERB)*°, while actors
simultaneously practice driving using the most recent policy and con-
tinuously fill the buffer with their new experiences.

The agent was given a progress reward? for the speed with which
itadvanced around the track and penalties if it went out of bounds,
hit awall or lost traction. These shaping rewards allowed the agent to
quickly receive positive feedback for staying on the track and driving
fast. Notably, GT Sophy learned to get around the track in only a few
hours and learned to be faster than 95% of the humans in our reference
dataset (Kudos Prime, https://www.kudosprime.com/gts/rankings.
php?sec=daily) within aday or two. However, as showninFig.1c, it trained
for another nine or more days—accumulating more than 45,000 driv-
ing hours—shaving off tenths of seconds, until its lap times stopped
improving. With thistraining procedure, GT Sophy achieved superhuman
time-trial performance onall three tracks. Figure1d shows the distribu-
tion of the best single lap times for more than 17,700 players all driving
the same car on Maggiore (the track with the smallest gap between GT
Sophy and the humans). Figure 1e shows how consistent GT Sophy’slap
timeswere, withamean lap time about equal to the single best recorded
human lap time.

possible penalties). e, When GT Sophy trained against only the built-in Al it
learned tobe too aggressive, and whenit trained against an aggressive
opponent, itlostits competitive edge. f, As elements of the collision penalties
areremoved from GT Sophy’s reward function, it becomes notably more
aggressive. Thetestdrivers and stewards judged the non-baseline policies to
be muchtoo unsportsmanlike. g, To make theimportance of the features
evaluated clearer, we tested these variations against aslightly less competitive
version of GT Sophy. The results show the importance of the scenario training,
using several ERBs and having a passing reward. h, An ablation of elements of
theslipstream training over arange of epochs sampled during training. They
axis measures the agent’s ability to pass a particular slipstream test. The solid
linesrepresent the performance of one seed in each condition and the dotted
linesrepresent the mean of five seeds over allepochs. Note that the agent’s
ability toapply the skill fluctuates evenin the best (baseline) case because of
the changing characteristics of the replay buffer.

The progress reward alone was not enough to incentivize the
agent to win the race. If the opponent was fast enough, the agent
would learn to follow it and accumulate large rewards without risk-
ing potentially catastrophic collisions. Asin previous work®, adding
rewards specifically for passing helped the agent learn to overtake
other cars. We used a passing reward that was proportional to the
distance by which the agent improved its position relative to each
opponent within the local region. The reward was symmetric; if an
opponent gained ground on the agent, the agent would see a pro-
portional negative reward.

Like many other sports, racing—both physical and virtual—requires
humanjudges. These stewardsimmediately review racing ‘incidents’
and make decisions about which drivers, if any, receive penalties.
A car with a penalty is forced by the game engine to slow down to
100 km h™in certain penalty zones on the track for the penalty dura-
tion. Although a small amount of unintentional car-to-car contact
is fairly common and considered acceptable, racing rules describe
avariety of conditions under which drivers may be penalized. The
rules are ambiguous and stewards’ judgements incorporate a lot of
context, such as the effect the contact has on theimmediate future of
the carsinvolved. The fact that judges’ decisions are subjective and
contextual makes it difficult toencode these rules in away that gives
the agent clear signals from which to learn. Racing etiquette is an
example of the challenges that Al practitioners face when designing
agents thatinteract with humans who expect those agents to conform
tobehavioural norms*.

The observations that the agent receives from the game include a
flag when car contact occurs but does not indicate whether a penalty
was deserved. We experimented with several approaches to encode
etiquette asinstantaneous penalties on the basis of situational analysis
ofthe collisions. However, as we tried to more accurately model blame
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Fig.3|Results.a-c,Howeachrace unfolded on Seaside (a), Maggiore (b) and
Sarthe (c). The distance fromthe leader iscomputed as the time since the lead
car passed the same position onthe track. The legend for each race shows the
final places and, in parentheses, the points for each driver. These charts clearly
show how, once GT Sophy obtained asmalllead, the humandrivers could not
catchit. Thesharp decreasesrepresent eitheradriver losing control or paying
apenalty for either exceeding the course bounds or colliding with another
driver.Sarthe (c) had the mostincidents, with GT Sophy receiving two penalties
for excessive contact and the humans receiving one penalty and two warnings.
Boththe humansand GT Sophy also had several smaller penalties for exceeding
the course boundaries, particularly in the final chicane sequence.d, An

assignment, the resulting policies were judged much too aggressive by
stewards and test drivers. For the final races, we opted for a conserva-
tive approach that penalized the agent for any collision in which it was
involved (regardless of fault), with some extra penalties if the collision
was likely considered unacceptable. Figure 2a-h isolates the effects of
collision penalties and other key design choices made during this project.

Although many applications of RL to games use self-play toimprove
performance**, the straightforward application of self-play was inad-
equateinthis setting. For example, as a human enters a difficult corner,
they may brake afraction of asecond earlier than the agent would. Even
a small bump at the wrong moment can cause an opponent to lose
control of their car. By racing against only copies of itself, the agent was
ill-prepared for the imprecision it would see with human opponents.
Ifthe agent following does not anticipate the possibility of the opponent
brakingearly, it will not be able to avoid rear-ending the human driver
and will be assessed a penalty. This feature of racing—that one player’s
suboptimal choice causes the other player to be penalized—is not a
feature of zero-sumgames suchas Go and chess. To alleviate thisissue,
we used a mixed population of opponents, including agents curated
from previous experiments and the game’s (relatively slower) built-in AL
Figure 2e shows the importance of these choices.

Inaddition, the opportunities to learn certain skills are rare. We call
this the exposure problem; certain states of the world are not accessible
tothe agent without the ‘cooperation’ of its opponents. For example, to
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Driver Besttime (s)  GT Sophy (s)
Seaside Emily Jones 107.964 106.417
Maggiore Valerio Gallo 114.466 114.249
Sarthe Igor Fraga 194.888 193.080

example fromthe 2 July 2021 racein which twoinstances of GT Sophy (grey and
green) passed two humans (yellow and blue) on acorner on Maggiore.Asa
reference, the trajectory of the lead GT Sophy car when taking the corner alone
isshowninred. Theexample clearlyillustrates that the trajectory of GT Sophy
through the corner is contextual; even though the humandrivers tried to
protecttheinside goinginto the corner, GT Sophy was able to find two
different, faster trajectories. e, The number of passes that occurred on
different parts of Sarthein 100 4v4 races between two GT Sophy policies,
demonstrating that the agent haslearned to pass on many parts of the track.

f, Results from the time-trial competitioninjuly 2021.

executeaslingshot pass, acarmustbein the slipstream of an opponent
onalongstraightaway, a condition that may occur naturally a few times
ornotatallinanentirerace. Ifthat opponentalwaysdrives only on the
right, the agent will learn to pass only on the left and would be easily
foiled by ahuman who choseto drive onthe left. To address thisissue,
we developed a process that we called mixed-scenario training.
Weworkedwitharetired competitive GT drivertoidentifyasmallnumber
of race situations that were probably pivotal on each track. We then
configured scenarios that presented the agent with noisy variations
of those critical situations. In slipstream passing scenarios, we used
simple PID controllers to ensure that the opponents followed certain
trajectories, such asdriving on the left, that we wanted our agent to be
prepared for. Figure 1f shows the full-track and specialized scenarios
for Sarthe. Notably, all scenarios were present throughout the train-
ing regime; no sequential curriculum was needed. We used a form of
stratified sampling*® to ensure that situational diversity was present
throughout training. Figure 2h shows that this technique resulted in
more robust skills being learned.

Evaluation

Toevaluate GT Sophy, we raced the agent in two events against top GT
drivers. Thefirst event was on 2 July 2021 and involved both time-trial
and head-to-head races. Inthe time-trial race, three of the world’s top



drivers were asked to try to beat the lap times of GT Sophy. Although
the human drivers were allowed to see a ‘ghost’ of GT Sophy as they
drove around the track, GT Sophy won all three matches. The results
are shownin Fig. 3f.

The head-to-head race was held at the headquarters of Polyphony
Digital and, although limited to top Japanese players due to pandemic
travel restrictions, included four of the world’s best GT drivers. These
drivers formed ateam to compete against four instances of GT Sophy.
Points were awarded to the team on the basis of the final positions
(10, 8,6,5,4,3,2and 1, from first to last), with Sarthe, the final and
most challenging race, counting double. Each team started in either
the odd or the even positions on the basis of their best qualifying
time. The human drivers won the team event on 2 July 2021 by a score
of 86-70.

After examining GT Sophy’s 2 July 2021 performance, we improved
thetraining regime, increased the network size, made small modifica-
tions to some features and rewards and improved the population of
opponents. GT Sophy handily won the rematch held on 21 October
2021by an overall team score 0f 104-52. Starting in the odd positions,
team GT Sophy improved four spots on Seaside and Maggiore and two
onSarthe. Figure 3a-c shows the relative positions of the cars through
eachrace and the points earned by each individual.

One of the advantages of using deep RL to develop a racing agent
is that it eliminates the need for engineers to program how and when
to execute the skills needed to win the race—as longas it is exposed to
theright conditions, the agent learns to do the right thing by trial and
error. We observed that GT Sophy was able to perform several types
of corner passing, use the slipstream effectively, disrupt the draft of a
following car, block, and execute emergency manoeuvres. Figure 3d
shows particularly compelling evidence of GT Sophy’s generalized
tactical competence. The diagramillustrates a situation fromthe 2 July
2021eventin which two GT Sophy cars both pass two human carsona
single corner on Maggiore. This kind of tactical competence was not
limited to any particular part of the course. Figure 3e shows the number
of passes that occurred on different sections of Sarthe from 100 4v4
races between two different GT Sophy policies. Although slipstream
passing on the straightaways was most common, the results show that
GT Sophy was able to take advantage of passing opportunities on many
different sections of Sarthe.

Although GT Sophy demonstrated enough tactical skill to beat
expert humans in head-to-head racing, there are many areas for
improvement, particularly in strategic decision-making. For exam-
ple, GT Sophy takes the first opportunity to pass on a straightaway,
sometimes leaving enough room on the same stretch of track for the
opponent to use the slipstream to pass back. GT Sophy also aggres-
sively tries to pass an opponent with alooming penalty, whereas a
strategic human driver may wait and make the easy pass when the
opponent is forced to slow down.

Conclusions

Simulated automobile racing is a domain that requires real-time, con-
tinuous controlinan environment with highly realistic, complex physics.
The success of GT Sophy in this environment shows, for the first time,
that itis possible to train Al agents that are better than the top human
racers across a range of car and track types. This result can be seen as
another important step in the continuing progression of competitive
tasks that computers canbeat the very best people at, such as chess, Go,
Jeopardy, poker and StarCraft. In the context of previous landmarks of
thiskind, GT Sophy is the first that deals with head-to-head, competitive,
high-speed racing, which requires advanced tactics and subtle sports-
manship considerations. Agents such as GT Sophy have the potential
to make racing games more enjoyable, provide realistic, high-level
competition for training professional drivers and discover new racing
techniques. The success of deep RL in this environment suggests that

these techniques may soon have an effect on real-world systems such
as collaborative robotics, aerial drones or autonomous vehicles.

All references to Gran Turismo, PlayStation and other Sony proper-
ties are made with permission of the respective rights owners. Gran
Turismo Sport: © 2019 Sony Interactive Entertainment Inc. Developed
by Polyphony Digital Inc. Manufacturers, cars, names, brands and associ-
atedimageryfeaturedinthisgameinsome casesinclude trademarksand/
or copyrighted materials of their respective owners. All rights reserved.
Any depiction orrecreation of real world locations, entities, businesses, or
organizationsis notintended tobe orimply any sponsorship orendorse-
ment of this game by such party or parties. “Gran Turismo” and “Gran
Turismo Sophy” logos are registered trademarks or trademarks of Sony
Interactive Entertainment Inc.
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Methods

Game environment

Since its debut in 1997, the GT franchise has sold more than 80 mil-
lion units. The most recent release, Gran Turismo Sport, is known for
precise vehicle dynamics simulation and racing realism, earning it the
distinction of being sanctioned by the FIA and selected as a platform
for the first Virtual Olympics (https://olympics.com/en/sport-events/
olympic-virtual-motorsport-event/). GT Sport runs only on PS4s and
ata 60-Hz-dynamics simulation cycle. A maximum of 20 cars can be
inarace.

Our agentranasynchronously on aseparate computer and communi-
cated with the game by means of HTTP over wired Ethernet. The agent
requested the latest observation and made decisions at 10 Hz (every
100 ms). We tested action frequencies from 5 Hz to 60 Hz and found
no substantial performance gains from acting more frequently than
10 Hz. The agent had to be robust to the infrequent, but real, network-
ing delays. The agent’s action was treated the same asahuman’s game
controllerinput, but only asubset of action capabilities were supported
inthe GT API. For example, the API did not allow the agent to control
gear shifting, the traction control system or the brake balance, all of
which can be adjusted in-game by human players.

Computing environment
Each experiment used a single trainer on a compute node with either
one NVIDIA V100 or half of an NVIDIA A100 coupled with around eight
vCPUs and 55 GiB of memory.Some of these trainers were run in PlaySta-
tion Now data centres and othersin AWS EC2 using p3.2xlarge instances.
Each experiment also used a number of rollout workers, where
each rollout worker consisted of a compute node controlling a PS4.
In this set-up, the PS4 ran the game and the compute node managed
the rollouts by performing tasks such as computing actions, send-
ing them to the game, sending experience streams to the trainer and
receiving revised policies from the trainer (see Fig.1a). The compute
node used around two vCPUs and 3.3 GB of memory. In the time-trial
experiments, tenrollout workers (and therefore ten PS4s) were used
for about 8 days. To train policies that could drive in traffic, 21 rollout
workers were used for between 7 and 12 days. In both cases, one worker
was primarily evaluating intermediate policies, rather than generating
new training data.

Actions
The GT APlenabled control of threeindependent continuous actions:
throttle, brake and steering. Because the throttle and brake are rarely
engaged at the same time, the agent was presented control over the
throttle and brake as one continuous action dimension. The combined
dimension was scaled to [-1, 1]. Positive values engaged the throttle
(with maximum throttle at +1), whereas negative values engaged the
brake (with maximum braking at —1); the value zero engaged neither
the throttle nor the brake. The steering dimension was also scaled to
[-1,1], where the extreme values corresponded to the maximum steer-
ing angle possiblein either direction for the vehicle being controlled.
The policy network selected actions by outputting a squashed
normal distribution with a learned mean and diagonal covariance
matrix over these two dimensions. The squashed normal distribution
enforced sampled actions to always be within the [-1,1] action bounds®.
The diagonal covariance matrix values were constrained to lie in the
range (e, e*), allowing for nearly deterministic or nearly uniform
random action selection policies to be learned.

Features

A variety of state features were input to the neural networks. These
features were either directly available from the game state or processed
into more convenient forms and concatenated before being input to
the models.

Time-trial features. To learn competent time-trial performance, the
agent needed features that allowed it to learn how the vehicle behaved
and what the upcoming course looked like. The list of vehicle features
included the car’s 3D velocity, 3D angular velocity, 3D acceleration,
load on each tyre and tyre-slip angles. Information about the environ-
ment was converted into features including the scalar progress of the
car along the track represented as sine and cosine components, the
local course surface inclination, the car’s orientation with respect to
the course centre line and the (left, centre and right) course points
describing the course ahead onthe basis of the car’s velocity. The agent
alsoreceivedindicatorsifit contacted afixed barrier or was considered
off course by the game and it received real-valued feedback for the
game’s view of the car’s most recent steering angle, throttle intensity
andbrakeintensity. We relied on the game engine to determine whether
the agent was off course (defined as when three or more tyres are out
of bounds) because the out-of-bounds regions are not exactly defined
by the course edges; kerbs and other tarmac areas outside the track
edges are often considered in bounds.

Racing features. When training the agent to race against other cars, the
list of features alsoincluded a car contact flag to detect collisionsand a
slipstream scalar thatindicates ifthe agent was experiencing the slip-
stream effect fromthe carsin front of it. To represent the nearby cars,
the agent used a fixed forward and rear distance bound to determine
which carstoencode. The cars were ordered by their relative distance
totheagent and were represented using their relative centre-of-mass
position, velocity and acceleration. The combination of features pro-
vided the information required for the agent to drive fastand learn to
overtake cars while avoiding collisions.

Tokeep the features described hereinareasonable numerical range
when training neural networks, we standardized the inputs on the basis
of the knowledge of the range of each feature scalar. We assumed that
the samples were drawn froma uniform distribution given the range and
computed the expected mean and standard deviation. These were used
to compute the z-score for each scalar before being input to the models.

Rewards

The reward function was a hand-tuned linear combination of reward
components computed on the transition between the previous state
sand current state s’. The reward components were: course progress
(Rp),off-coursepenalty (R, 0rR,.), wallpenalty (R,), tyre-slippenalty (R,,),
passing bonus (R,,), any-collision penalty (R.), rear-end penalty (R,)
and unsporting-collision penalty (R,.). The reward weightings for the
three tracks are shown in Extended Data Table 1.

Owing to the high speeds on Sarthe, training for that track used a
slightly different off-course penalty, included the unsporting-collision
penalty and excluded the tyre-slip penalty. Note that, to reduce vari-
anceintime-sensitive rewards, such as course progress and off-course
penalty, we filtered transitions when network delays were encountered.
The components are described in detail below.

Course progress (R,,). Following previous work®, the primary reward
componentrewarded theamount of progress made along the track since
the last observation. To measure progress, we made use of the state
variable [that measured the length (in metres) along the centreline from
thestart of thetrack. The agent’s centreline distance /was estimated by
first projectingits current position to the closest point on the centreline.
The progress reward was the difference in / between the previous and
the currentstate: R (s, s’) ", - 5. To reduce the incentive to cut cor-
ners, this reward was masked when the agent was driving off course.

Off-course penalty (R, or R,..). The off-course reward penalty was
proportional to the squared speed the agent was travelling at to further
discourage corner cutting that may result in a very large gain in
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position: Ry, .(s,s") £ = (s’ ~ so)(s’kph)z, wheres, is the cumulative time
off course and s, is the speed in kilometres per hour. To avoid an ex-
plosioninvalues at Sarthe where driving speeds were markedly faster
and corners particularly easy to cut, we used a penalty that was pro-
portional to the speed (not squared): Ry,.(s, s") £ = (5", = 5,)8"ph, and
the penalty was doubled for the difficult first and final chicanes.

Wall penalty (R,). To assist the agent in learning to avoid walls, a
wall-contact penalty was included. This penalty was proportional to
the squared speed of the car and the amount of time in contact with
thewallsince the last observation: R, (s, s") 2 - (s’,, = S,,) (s’kph)z,where
s, is the cumulative time that the agent was in contact with awall.

Tyre-slip penalty (R,;). Tyre slip makes it more difficult to control the
car. To assist learning, we included a penalty when the tyres were
slipping in a different direction from where they were pointing:
R (s,s)) &~ Z,f‘ min(|s’c; ;|, 1.0)I8” s ;, Where s, ;isthe tyre-slip ratio for
the ith tyre and s, is the angle of the slip from the forward direction
oftheithtyre.

Passing bonus (R,,). As in previous work®, to incentivize passing op-
ponents, we included aterm that positively rewarded gaining ground
and overtaking opponents, and negatively rewarded losing ground to
an opponent. The negative reward ensured that there were no
positive-cycle reward loops to exploit and encouraged defensive play
when an opponent was trying to overtake the agent. This reward was
definedasRy (s, s") £ %, (s, "L )max(, s (s.), Lp £(5') Where s is
the projected centreline signed distance (in metres) fromthe agent to
opponentiand1(x) isanindicator function for when an opponent
is no more than b metres behind nor fmetres in front of the agent.
Weused b =20 andf=40totrain GT Sophy. The max operator ensures
that the reward is provided when the agent was within bounds in the
previous state or in the current state. In the particularly complex first
and final chicanes of Sarthe, we masked this passing bonus to strongly
discourage the agent from cutting corners to gain a passing reward.

Any-collision penalty (R_). To discourage collisions and pushing cars
offthe road, we included a reward penalty whenever the agent was
involved in any collision. This was defined as a negative indicator
whenever the agent collided withanother car: R (s, s") £ - max;cyS’c ;s
wheres,_;is1when the agent collided with opponentiand O otherwise,
and Nis the number of opponents.

Rear-end penalty (R,). Rear-ending an opponent was one of the more
common ways to cause an opponent to lose control and for the agent
to be penalized by stewards. To discourage bumping from behind,
weincludedthepenaltyR (s, s)£-3;s". ;- 1.o(s", ;=57 - lls’, = S’v,,-lli,
where s, ;is abinary indicator for whether the agent was in a collision
withopponenti,1. (s, ;- s)isanindicator for whether opponentiwas
in front of the agent, s, is the velocity vector of the agent and s, ; is the
velocity vector of opponent i. The penalty was dependent on speed to
more strongly discourage higher speed collisions.

Unsporting-collision penalty (R,.). Owing to the high speed of cars
and the technical difficulty of Sarthe, training the agent to avoid colli-
sionswas particularly challenging. Merely increasing the any-collision
penalty resulted in very timid agent behaviour. To discourage being
involved in collisions without causing the agent to be too timid, we
included an extra collision penalty for Sarthe. Like the any-collision
penalty, this penalty was a negative Boolean indicator. Unlike the
any-collision penalty, it only fired when the agent rear-ended or
sideswiped an opponent on a straightaway or was in a collisionin a
curve that was not caused by an opponent rear-ending them:
R,.(s,5”) £ - max;cyu(s’, i), where u(s’, i) indicates an unsporting col-
lision as defined above.

Training algorithm

To train our agent, we used an extension of the soft actor-critic algo-
rithm?® that we refer to as QR-SAC. To give the agent more capacity to
predict the variationin the environment during a race, we make use of
a QR Q-function®* modified to accept continuous actions as inputs.
QR-SAC is similar to distributional SAC* but uses a different formula-
tion of the value backup and target functions. We used M = 32 quantiles
and modified the loss function of the QR Q-function with an N-step
temporal difference backup. The target function, y, for the ith quantile,
t,consists of terms for theimmediate reward, R, = Y~ , y''r,,.,, the esti-
mated quantile value at the Nth future state, Z;, and the SAC entropy
term. Like existing work using N-step backups®®, we do not correct for
the off-policy nature of N-step returns stored in the replay buffer.
Toavoid the computational cost of forwarding the policy for interme-
diate steps of the N-step backup, we only include the entropy reward
bonus that SAC adds for encouraging exploration in the final step of
the N-step backup. Despite this lack of off-policy correctionand limited
use of the entropy reward bonus, we found that using N-step backups
greatly improved performance compared with a standard one-step
backup, asshownin Fig.2d. To avoid overestimation bias, the Nth state
quantiles are taken from the Q-function with the smallest Nth state
mean value®, indexed by k

k=arg min Q(s;,n, @160’ )
m=1,2 (1)
V=R +Z(spn, @'16) — alog m(d’ls,, y, P)

where 8and ¢ are parameters of the Q-functions and the policy, respec-
tively. Using this target value, y,, the loss function of the Q-function is
defined as follows

6,j=), —Zij(st, a,l6)

1 2
L(6)= a2 z z IE:’s,,at,R{,s[,pD,a’~np(5i‘j) @
M= 5 7

where D represents data from the ERB and p is a quantile Huber
loss function®. Finally, the objective function for the policy is as
follows:

J(@®) =Eq_p,a_nsm [a logmlals, $) -minQ(s, al6)] (3)

The Q-functions and policy models used in the October race con-
sist of four hidden layers with 2,048 units each and a rectified linear
unit activation function. To achieve robust control, dropout*® with
a0.1drop probability is applied to the policy function*. The param-
eters are optimized using an Adam optimizer*® with learning rates
of 5.0 x 107 and 2.5 x 10~ for the Q-function and policy, respectively.
The discount factor y was 0.9896 and the SAC entropy temperature
value a was set to 0.01. The mixing parameter when updating the
target model parameters after every algorithm step was set to 0.005.
The off-course penalty and rear-end-speed penalty can produce
large penalty values due to the squared speed term, which makes the
Q-function training unstable due to large loss values. To mitigate this
issue, the gradients of the Q-function are clipped by the global norm
of the of 10.

Therollout workers send state-transition tuples (s, a, r)collected in
an episode (of length 150 s) to the trainer to store the data in an ERB
implemented using the Reverb Python library*. The buffer had capac-
ity of 10’ N-step transitions. The trainer began the training loop once
40,000 transitions had been collected and uses a mini-batch of size
1,024 to update the Q-function and policy. A training epoch consists
of 6,000 gradient steps. After each epoch, the trainer sent the latest
model parameters to the rollout workers.



Training scenarios

Learning to race requires mastering a gamut of skills: surviving a
crowded start, making tactical open-road passes and precisely running
the track alone. To encourage basic racing skills, we placed the agent
in scenarios with zero, one, two, three or seven opponents launched
nearby (1v0, 1v1, 1v2, 1v3 and 1v7, respectively). To create variety, we
randomized track positions, start speeds, spacing between cars and
opponent policies. We leveraged the fact that the game supports 20
cars at a time to maximize PlayStation usage by launching more than
onegroup on the track. All base scenarios ran for 150 s. In addition, to
ensure that the agent was exposed to situations that would allow it to
learn the skills highlighted by our expert advisor, we used time-limited
or distance-limited scenarios on specific course sections. Figure 1f
illustrates the skill scenarios used at Sarthe: eight-car grid starts, 1v1
slipstream passing and mastering the final chicane in light traffic.
Extended Data Figure 1shows the specialized scenarios used to pre-
paretheagenttorace onSeaside (f) and Maggiore (g). Tolearn how to
avoid catastrophic outcomes at the high-speed Sarthe track, we also
incorporated mistake learning’. During policy evaluations, ifan agent
lost control of the car, the state shortly before the event was recorded
and used as a launch point for more training scenarios.

Unlike curriculum training where early skills are supplanted by later
onesor in which skills build on top of one another inahierarchical fash-
ion, our training scenarios are complementary and were trained intoa
single control policy for racing. During training, the trainer assigned
new scenarios to each rollout worker by selecting from the set config-
ured for that track on the basis of hand-tuned ratios designed to provide
sufficient skill coverage. See Extended Data Fig. 1e for an example ERB
atSarthe. However, even with this relative execution balance, random
sampling fluctuations from the buffer often led to skills being unlearned
between successive training epochs, as shown in Fig. 2h. Therefore,
we implemented multi-table stratified sampling to explicitly enforce
proportions of each scenarioin each training mini-batch, notably sta-
bilizing skill retention (Fig. 2g).

Policy selection
Inmachinelearning, convergence means that further training will not
improve performance. In RL, due to the continuing exploration and
random sampling of experiences, the performance of the policy will
often continue to vary after convergence (Fig. 2h). Therefore, even
with the stabilizing techniques described above, continuing training
after convergence produced policies that differed in small ways in
their ability to execute the desired racing skills. A subsequent policy,
forinstance, may become marginally better at the slipstream pass and
marginally worse at the chicane. Choosing which policy to race against
humans became a complex, multi-objective optimization problem.
Extended Data Figure 3illustrates the policy-selection process. Agent
policies were saved at regular intervals during training. Each saved
policy then competed inasingle-race scenario against other Alagents,
and various metrics, such as lap times and car collisions, were gathered
and used tofilter the saved policies to asmaller set of candidates. These
candidates were then run through an n-athlon—aset of pre-specified
evaluationscenarios—testing their lap speed and performance in certain
tacticallyimportant scenarios, such as starting and using the slipstream.
The performance on each scenario was scored and the results of each
policy oneachscenariowere combinedinasingle ranked spreadsheet.
This spreadsheet, along with various plots and videos, was then reviewed
by ahuman committee to select a small set of policies that seemed the
most competitive and the best behaved. From this set, each pair of poli-
cies competed in a multi-race, round-robin, policy-versus-policy tour-
nament. These competitions were scored using the same team scoring
asthatintheexhibition event and evaluated on collision metrics. From
these results, the committee chose policies that seemed to have the
best chance of winning against the human drivers while minimizing

penalties. These final candidate policies were then raced against test
drivers at Polyphony Digital and the subjective reports of test drivers
were factored into the final decision.

The start of Sarthe posed a particularly challenging problem for
policy selection. Because the final chicaneis so close to thestartingline,
the race was configured with a stationary grid start. From that standing
start, all eight cars quickly accelerated and entered the first chicane.
Although a group of eight GT Sophy agents might get through the
chicane fairly smoothly, against human drivers, the start was invariably
chaotic and a fair amount of bumping occurred. We tried many varia-
tions of our reward functions to find a combination that was deemed
anacceptable starter by our test drivers while not giving up too many
positions. In the October 2021 Sarthe race, we configured GT Sophy
to use a policy that started well, and—after 2,100 metres—switch to a
slightly more competitive policy for the rest of the race. Despite the
specialized starter, the instance of GT Sophy that began the race in
pole position wasinvolvedinacollisionwithahumandriverin thefirst
chicane, slid offthe course and fell to last place. Despite that setback,
it managed to come back and win the race.

Immediately after the official race, we ran afriendly rematch against
the same drivers but used the starter policy for the whole track.
The results were similar to the official race.

Fairness versus humans

Competitions between humans and Al systems cannot be made entirely
fair; computers and humans think in different ways and with different
hardware. Our objective was to make the competition fair enough,
while using technical approaches that were consistent with how such
anagent could beadded to the game. The following list compares some
ofthe dimensions along which GT Sophy differs from human players:

First, perception. GT Sophy had amap ofthe course with precise x, y
and zinformationabout the points that defined the track boundaries.
Humans perceived this information less precisely by means of vision.
However, the course map did not have all of the information about the
track and humans have an advantage in that they could see the kerbs
and surface material outside the boundaries, whereas GT Sophy could
only sense these by driving on them.

Second, opponents. GT Sophy had precise information about the loca-
tion, velocity and acceleration of the nearby vehicles. However, it repre-
sented these vehicles as single points, whereas humans could perceive
the whole vehicle. GT Sophy has a distinct advantage in that it can see
vehicles behind it as clearly as it can see those in front, whereas humans
have to use the mirrors or the controller to look to the sides and behind
them. GT Sophy never practiced against opponents that didn’t have full
visibility, so it didn’t intentionally take advantage of human blind spots.

Third, vehicle state. GT Sophy had precise information about the load
on each tyre, slip angle of each tyre and other vehicle state. Humans
learn how to control the car with less precise information about these
state variables.

Fourth, vehicle controls. There are certain vehicle controls that the
humandrivers had access tothat GT Sophy did not. In particular, expert
humandrivers often use the traction control systemin grid startsand
use the transmission controls to change gears.

Fifth, action frequency. GT Sophy took actions at 10 Hz, which was
sufficient to control the car but much less frequent than humanactions
inGT. Competitive GT drivers use steering and pedal systems that give
them 60 Hz control. Whereas a human can’t take 60 distinct actions
per second, they cansmoothly turn asteering wheel or press onabrake
pedal. Extended Data Figure 2b, c contrasts GT Sophy’s 10-Hz control
patternto Igor Fraga’s much smoother actions in a corner of Sarthe.

Sixth, reactiontime. GT Sophy’s asynchronous communication and
inference takes around 23-30 ms, depending on the size of the net-
work. Although evaluating performance in professional athletes and
gamersis a complex field***, an oft-quoted metric is that professional
athletes have areaction time of 200-250 ms. To understand how the
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performance of GT Sophy would be affected if its reaction time were
slowed down, we ran experiments in which we introduced artificial
delays toits perception pipeline. We retrained our agent with delays
0f100 ms, 200 msand 250 msin the Maggiore time-trial setting, using
thesame model architecture and algorithm as our time-trial baseline.
Allthree of these tests achieved a superhuman lap time.

Tests versus top GT drivers

The following competitive GT drivers participated in the time-trial

evaluations:

* EmilyJones: 2020 FIA Gran Turismo Manufacturers Series, Team Audi.

« Valerio Gallo: 2nd place 2020 FIA Gran Turismo Nations Cup; winner
2021 Olympic Virtual Series Motor Sport Event; winner 2021 FIA Gran
Turismo Nations Cup.

« Igor Fraga: winner 2018 FIA Gran Turismo Nations Cup; winner 2019
Manufacturer Series championship; winner 2020 Toyota Racing Series
(realracing).

GT Sophywon all of the time-trial evaluations as shownin Fig. 3fand
was reliably superhuman on all three tracks, as shownin Fig.1d, e and
Extended DataFig.1a-d. Notably, the only human witha time within the
range of GT Sophy’s 100 lap times on any of the tracks was Valerio Gallo
onMaggiore.Itisworth noting that the datain Fig.1d, e was captured by
Polyphony Digital after the time-trial eventinJuly 2021. Valerio was the
only participant represented in the data that had seen the trajectories
of GT Sophy on Maggiore, and—between those two events—Valerio’s
best timeimproved from 114.466 to 114.181 s.

Itisalsointeresting to examine what behaviours give GT Sophy such
anadvantageintimetrials. Extended Data Figure 2ashows an analysis
oflgor’s attempt to match GT Sophy on Sarthe, showing the places on
the course where he fell farther behind. Not surprisingly, the hardest
chicanes and corners are the places where GT Sophy has the biggest
performance gains. In most of these corners, Igor seems to catchup a
little bit by braking later, but is then unable to take the corner itself as
fast, resulting in him losing ground overall.

The following competitive GT drivers participated in the team rac-
ingevent:

« TakumaMiyazono: winner 2020 FIA Gran Turismo Nations Cup; win-
ner 2020 FIA Gran Turismo Manufacturer Series; winner 2020 GR
SupraGT Cup.

» Tomoaki Yamanaka: winner 2019, 2021 Manufacturer Series.

« Ryota Kokubun: winner 2019 FIA Gran Turismo Nations Cup, Round
5, Tokyo; 3rd place 2020 FIA Gran Turismo Nations Cup.

« Shotaro Ryu: 2nd place Japan National Inter-prefectural Esports
Championship (National Athletic Meet) 2019 Gran Turismo Divi-
sion (Youth).

Driver testimonials
The following quotes were captured after the July 2021 events:

“Ithink the Alwasveryfast turninginto the corner. How they approach
intoit, as well as not losing speed on the exit. We tend to sacrifice a little
bit the entry to make the car be in a better position for the exit, but the
Al seems to be able to carry more speed into the corner but still be able
to have the same kind of exit, or even a faster exit. The Al can create this
typeoflinealotquickerthanus,... itwas not a possibility before because
we never realized it. But the Al was able to find it for us.” — Igor Fraga

‘It wasreally interesting seeing the lines where the Al would go, there
were certain corners where  was going out wide and then cutting back
in, andtheAlwasgoinginalltheway around, sollearned alot about the
lines. And also knowing what to prioritize. Going into turn 1 forexample,
lwas braking later than the Al, but the Al would get a much better exit

thanme and beat meto the nextcorner.ldidn’t notice thatuntill saw the
Al and was like ‘Okay, I should do that instead.”— Emily Jones

“Theghostis always areference. Even whenItrainlalways use someone
else’s ghost to improve. And in this case with such a very fast ghost,...
eventhoughlwasn’tgetting closeto it, | wasgetting closer to my limits.”
— Valerio Gallo

“lhope we can race together more, aslfelt a kind of friendly rivalry with
[GT Sophy].” (translated from Japanese) — Takuma Miyazono

“Thereis a lot to learn from [GT Sophy], and by that | can improve
myself. [GT Sophy] does something original to make the car go faster,
and we will know it’s reasonable once we see it.” (translated from Japa-
nese) — Tomoaki Yamanaka
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Extended DataFig.1|Seaside and Sarthe training. Kudos Prime data from
global time-trial challenges on Seaside (aand b) and Sarthe (c and d), with the
cars used inthe competition. Note that these histograms represent the single
bestlap time for more than12,000 individual players on Seaside and almost
9,000 0nSarthe.Inboth cases, the secondary diagrams compare the top five
humantimes to a histogram of 100 laps by the 2 July 2021 time-trial version of

GT Sophy.Inboth cases, the datashow that GT Sophy was reliably superhuman,

withall100 laps better than the best human laps. Not surprisingly, it takes
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longer for the agent to train on the much longer Sarthe course, taking48 hto
reachthe 99th percentile of human performance. e, Histogram of asnapshot of
the ERB during training on Sarthe on the basis of the scenario breakdown in
Fig.1f. Thexaxisis the course position and the stacked colours represent the
number of samples that were collected in that region fromeach scenario.Ina
more condensed format than Fig. 1f, fand g show the sections of Seaside and
Maggiore that were used for skill training.
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Extended DataFig.2| Timetrial onSarthe. Ananalysisof Igor Fraga’sbestlap ~ and comesout of the corner slower. Igor’s steering controls (b) and Igor’s

inthe time-trial test compared with GT Sophy’s lap. a, Areas of the track where throttle and braking (c) compared with GT Sophy on corner 20. Through the
Igor lost time with respect to GT Sophy. Corner 20, highlighted inyellow,shows  steeringwheel and brake pedal, Igor is able to give smooth, 60-Hz signals
aninteresting effect commonto the other cornersinthatlgorseemsto catch compared with GT Sophy’s10-Hz action rate.

upalittle by brakinglater, but thenloses time because he has to brake longer
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Extended DataFig. 3 |Policy selection. Anillustration of the process by which
policies wereselected torunin the final race. Starting on the left side of the
diagram, thousands of policies were generated and saved during the
experiments. They were first filtered in the experiment to select the subset on
the Pareto frontier of asimple evaluation criteria trading offlap time versus
off-course and collision metrics. The selected policies were run through a
series of tests evaluating their overall racing performance againstacommon
setof opponents and their performance onavariety of hand-crafted skill tests.

Theresults were ranked and human judgement was applied to select asmall
number of candidate policies. These policies were matched up inround-robin,
policy-versus-policy competitions. The results were again analysed by the
human committee for overall team scores and collision metrics. The best
candidate policieswereruninshortraces against test drivers at Polyphony
Digital. Their subjective evaluations were included in the final decisions on
which policiestoruninthe October2021event.
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Extended Data Table 1| Reward weights

Course Reo  Rsoc  Rioc Rw Rs Rps Re R Rue
Seaside 1 0.01 0 001 025 05 5 0.1 0
Maggiore 1 0.01 0 001 025 05 4 0.1 0
Sarthe 1 0 5 0.01 0 0.5 5 041 5

Reward weights for each track.
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