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Outracing champion Gran Turismo drivers 
with deep reinforcement learning
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Kaushik Subramanian3, Thomas J. Walsh1, Roberto Capobianco3, Alisa Devlic3, 
Franziska Eckert3, Florian Fuchs3, Leilani Gilpin1, Piyush Khandelwal1, Varun Kompella1, 
HaoChih Lin3, Patrick MacAlpine1, Declan Oller1, Takuma Seno2, Craig Sherstan1, 
Michael D. Thomure1, Houmehr Aghabozorgi1, Leon Barrett1, Rory Douglas1, Dion Whitehead1, 
Peter Dürr3, Peter Stone1, Michael Spranger2 & Hiroaki Kitano2

Many potential applications of artificial intelligence involve making real-time 
decisions in physical systems while interacting with humans. Automobile racing 
represents an extreme example of these conditions; drivers must execute complex 
tactical manoeuvres to pass or block opponents while operating their vehicles at their 
traction limits1. Racing simulations, such as the PlayStation game Gran Turismo, 
faithfully reproduce the non-linear control challenges of real race cars while also 
encapsulating the complex multi-agent interactions. Here we describe how we trained 
agents for Gran Turismo that can compete with the world’s best e-sports drivers.  
We combine state-of-the-art, model-free, deep reinforcement learning algorithms 
with mixed-scenario training to learn an integrated control policy that combines 
exceptional speed with impressive tactics. In addition, we construct a reward function 
that enables the agent to be competitive while adhering to racing’s important, but 
under-specified, sportsmanship rules. We demonstrate the capabilities of our agent, 
Gran Turismo Sophy, by winning a head-to-head competition against four of the 
world’s best Gran Turismo drivers. By describing how we trained championship-level 
racers, we demonstrate the possibilities and challenges of using these techniques to 
control complex dynamical systems in domains where agents must respect 
imprecisely defined human norms.

Deep reinforcement learning (deep RL) has been a key compo-
nent of impressive recent artificial intelligence (AI) milestones in 
domains such as Atari2, Go3,4, StarCraft5 and Dota6. For deep RL to 
have an influence on robotics and automation, researchers must 
demonstrate success in controlling complex physical systems. In 
addition, many potential applications of robotics require inter-
acting in close proximity to humans while respecting imprecisely 
specified human norms. Automobile racing is a domain that poses 
exactly these challenges; it requires real-time control of vehicles 
with complex, non-linear dynamics while operating within inches 
of opponents. Fortunately, it is also a domain for which highly real-
istic simulations exist, making it amenable to experimentation with 
machine-learning approaches.

Research on autonomous racing has accelerated in recent years, 
leveraging full-sized7–10, scale11–15 and simulated16–25 vehicles. A com-
mon approach pre-computes trajectories26,27 and uses model predic-
tive control to execute those trajectories7,28. However, when driving 
at the absolute limits of friction, small modelling errors can be cata-
strophic. Racing against other drivers puts even greater demands 
on modelling accuracy, introduces complex aerodynamic inter-
actions and further requires engineers to design control schemes 
that continuously predict and adapt to the trajectories of other 

cars. Racing with real driverless vehicles still seems to be several 
years away, as the recent Indy Autonomous Challenge curtailed its 
planned head-to-head competition to time trials and simple obstacle  
avoidance29.

Researchers have explored various ways to use machine learning to 
avoid this modelling complexity, including using supervised learning 
to model vehicle dynamics8,12,30 and using imitation learning31, evolu-
tionary approaches32 or reinforcement learning16,21 to learn driving 
policies. Although some studies achieved super-human performance 
in solo driving24 or progressed to simple passing scenarios16,20,25,33, none 
have tackled racing at the highest levels.

To be successful, racers must become highly skilled in four areas:  
(1) race-car control, (2) racing tactics, (3) racing etiquette and (4) 
racing strategy. To control the car, drivers develop a detailed under-
standing of the dynamics of their vehicle and the idiosyncrasies of the 
track on which they are racing. On this foundation, drivers build the 
tactical skills needed to pass and defend against opponents, execut-
ing precise manoeuvres at high speed with little margin for error. At 
the same time, drivers must conform to highly refined, but impre-
cisely specified, sportsmanship rules. Finally, drivers use strategic 
thinking when modelling opponents and deciding when and how to 
attempt a pass.
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In this article, we describe how we used model-free, off-policy deep 
RL to build a champion-level racing agent, which we call Gran Turismo 
Sophy (GT Sophy). GT Sophy was developed to compete with the 
world’s best players of the highly realistic PlayStation 4 (PS4) game 
Gran Turismo (GT) Sport (https://www.gran-turismo.com/us/), devel-
oped by Polyphony Digital, Inc. We demonstrate GT Sophy by compet-
ing against top human drivers on three car and track combinations 
that posed different racing challenges. The car used on the first track, 
Dragon Trail Seaside (Seaside), was a high-performance road vehicle. 
On the second track, Lago Maggiore GP (Maggiore), the vehicle was 
equivalent to the Federation Internationale de l’Automobile (FIA) GT3 
class of race cars. The third and final race took place on the Circuit 
de la Sarthe (Sarthe), famous as the home of the 24 Hours of Le Mans. 
This race featured the Red Bull X2019 Competition race car, which 
can reach speeds in excess of 300 km h−1. Although lacking strategic 
savvy, in the process of winning the races against humans, GT Sophy 
demonstrated notable advances in the first three of the four skill areas 
mentioned above.

Approach
The training configuration is illustrated in Fig. 1a. GT runs only on 
PlayStations, which necessitated that the agent runs on a separate 
computing device and communicates asynchronously with the game 

by means of TCP. Although GT ran only in real time, each GT Sophy 
instance controlled up to 20 cars on its PlayStation, which accelerated 
data collection. We typically trained GT Sophy from scratch using 10–20 
PlayStations, an equal number of compute instances and a GPU machine 
that asynchronously updates the neural networks.

The core actions of the agent were mapped to two continuous-valued 
dimensions: changing velocity (accelerating or braking) and steering 
(left or right). The effect of the actions was enforced by the game to 
be consistent with the physics of the environment; GT Sophy cannot 
brake harder than humans but it can learn more precisely when to brake. 
GT Sophy interacted with the game at 10 Hz, which we claim does not 
give GT Sophy a particular advantage over professional gamers34 or 
athletes35.

As is common26,27, the agent was given a static map defining the 
left and right edges and the centre line of the track. We encoded the 
approaching course segment as 60 equally spaced 3D points along each 
edge of the track and the centre line (Fig. 1b). The span of the points in 
any given observation was a function of the current velocity, so as to 
always represent approximately the next 6 s of travel. The points were 
computed from the track map and presented to the neural network in 
the egocentric frame of reference of the agent.

Through an API, GT Sophy observed the positions, velocities, accel-
erations and other relevant state information about itself and all oppo-
nents. To make opponent information amenable to deep learning, GT 
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Fig. 1 | Training. a, An example training configuration. The trainer distributes 
training scenarios to rollout workers, each of which controls one PS4 running 
an instance of GT. The agent in the worker runs one copy of the most recent 
policy, π, to control up to 20 cars. The agent sends an action, a, for each car it 
controls to the game. Asynchronously, the game computes the next frames and 
sends each new state, s, to the agent. When the game reports that the action has 
been registered, the agent reports the state, action, reward tuple s a r, ,  to the 
trainer, which stores it in the ERB. The trainer samples the ERB to update the 
policy, π, and Q-function networks. b, The course representation ahead of the 
car on a sequence of curves on Maggiore if the car was travelling at 200 km h−1. 
c, The distribution of the learning curves on Maggiore from 15 different 
random seeds. All of the seeds reached superhuman performance. Most 
reached it in 10 days of training, whereas the longest took 25 days. d, The 
distribution of individual players’ best lap times on Maggiore as recorded on 

Kudos Prime (https://www.kudosprime.com/gts/rankings.php?sec=daily). 
Superimposed on d is the number of hours that GT Sophy, using ten 
PlayStations with 20 cars each, needed to achieve similar performance.  
e, A histogram (in orange) of 100 laps from the time-trial policy GT Sophy used 
on 2 July 2021 compared with the five best human drivers’ best lap times  
(circles 1–5) in the Kudos Prime data. Similar graphs for the other two tracks are 
in the Supplementary Information; Maggiore is the only one of the three tracks 
on which the best human performance was close to GT Sophy. f, The training 
scenarios on Sarthe, including five full-track configurations in which the agent 
starts with zero, one, two, three or seven nearby opponents and three 
specialized scenarios that are limited to the shaded regions. The actual track 
positions, opponents and relative car arrangements are varied to ensure that 
the learned skills are robust.

https://www.gran-turismo.com/us/
https://www.kudosprime.com/gts/rankings.php?sec=daily
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Sophy maintained two lists of their state features: one for cars in front 
of the agent and one for cars behind. Both lists were ordered from clos-
est to farthest and limited by a maximum range.

We trained GT Sophy using a new deep RL algorithm we call quantile 
regression soft actor-critic (QR-SAC). This approach learns a policy 
(actor) that selects an action on the basis of the agent’s observations 
and a value function (critic) that estimates the future rewards of each 
possible action. QR-SAC extends the soft actor-critic approach36,37 by 
modifying it to handle N-step returns38 and replacing the expected value 
of future rewards with a representation of the probability distributions 
of those rewards39. QR-SAC trains the neural networks asynchronously; 
it samples data from an experience replay buffer (ERB)40, while actors 
simultaneously practice driving using the most recent policy and con-
tinuously fill the buffer with their new experiences.

The agent was given a progress reward24 for the speed with which 
it advanced around the track and penalties if it went out of bounds, 
hit a wall or lost traction. These shaping rewards allowed the agent to 
quickly receive positive feedback for staying on the track and driving 
fast. Notably, GT Sophy learned to get around the track in only a few 
hours and learned to be faster than 95% of the humans in our reference 
dataset (Kudos Prime, https://www.kudosprime.com/gts/rankings.
php?sec=daily) within a day or two. However, as shown in Fig. 1c, it trained 
for another nine or more days—accumulating more than 45,000 driv-
ing hours—shaving off tenths of seconds, until its lap times stopped 
improving. With this training procedure, GT Sophy achieved superhuman 
time-trial performance on all three tracks. Figure 1d shows the distribu-
tion of the best single lap times for more than 17,700 players all driving 
the same car on Maggiore (the track with the smallest gap between GT 
Sophy and the humans). Figure 1e shows how consistent GT Sophy’s lap 
times were, with a mean lap time about equal to the single best recorded 
human lap time.

The progress reward alone was not enough to incentivize the 
agent to win the race. If the opponent was fast enough, the agent 
would learn to follow it and accumulate large rewards without risk-
ing potentially catastrophic collisions. As in previous work25, adding 
rewards specifically for passing helped the agent learn to overtake 
other cars. We used a passing reward that was proportional to the 
distance by which the agent improved its position relative to each 
opponent within the local region. The reward was symmetric; if an 
opponent gained ground on the agent, the agent would see a pro-
portional negative reward.

Like many other sports, racing—both physical and virtual—requires 
human judges. These stewards immediately review racing ‘incidents’ 
and make decisions about which drivers, if any, receive penalties. 
A car with a penalty is forced by the game engine to slow down to 
100 km h−1 in certain penalty zones on the track for the penalty dura-
tion. Although a small amount of unintentional car-to-car contact 
is fairly common and considered acceptable, racing rules describe 
a variety of conditions under which drivers may be penalized. The 
rules are ambiguous and stewards’ judgements incorporate a lot of 
context, such as the effect the contact has on the immediate future of 
the cars involved. The fact that judges’ decisions are subjective and 
contextual makes it difficult to encode these rules in a way that gives 
the agent clear signals from which to learn. Racing etiquette is an 
example of the challenges that AI practitioners face when designing 
agents that interact with humans who expect those agents to conform 
to behavioural norms41.

The observations that the agent receives from the game include a 
flag when car contact occurs but does not indicate whether a penalty 
was deserved. We experimented with several approaches to encode 
etiquette as instantaneous penalties on the basis of situational analysis 
of the collisions. However, as we tried to more accurately model blame 
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Fig. 2 | Ablations. a–d, The effect of various settings on Maggiore performance 
using the 2,048 × 2 time trial network from 2 July 2021. All bars represent the 
average across five initial seeds, with the full range of the samples shown as an 
error bar. In all graphs, the baseline settings are coloured in a darker shade of 
blue. a, GT Sophy would not be faster than the best human on Maggiore without 
the QR enhancement to SAC. b, Representing the upcoming track as sequences 
of points was advantageous. c, Not including the off-course penalty results in a 
slower lap time and (in parentheses) a much lower percentage of laps without 
exceeding the course boundaries. d, Notably, the 5-step return used on 2 July 
2021 was not the best choice; this was changed to a 7-step return for the 
October match. e–h, Evaluation of the 2,048 × 4 networks and configurations 
used to train the version of GT Sophy that raced on 21 October 2021. In e and f, 
each point represents the average of ten 7-lap 4v4 races on Sarthe against 
copies of October GT Sophy and comparison is shown for the trade-offs 
between team score and ‘questionable collisions’ (a rough indication of 

possible penalties). e, When GT Sophy trained against only the built-in AI, it 
learned to be too aggressive, and when it trained against an aggressive 
opponent, it lost its competitive edge. f, As elements of the collision penalties 
are removed from GT Sophy’s reward function, it becomes notably more 
aggressive. The test drivers and stewards judged the non-baseline policies to 
be much too unsportsmanlike. g, To make the importance of the features 
evaluated clearer, we tested these variations against a slightly less competitive 
version of GT Sophy. The results show the importance of the scenario training, 
using several ERBs and having a passing reward. h, An ablation of elements of 
the slipstream training over a range of epochs sampled during training. The y 
axis measures the agent’s ability to pass a particular slipstream test. The solid 
lines represent the performance of one seed in each condition and the dotted 
lines represent the mean of five seeds over all epochs. Note that the agent’s 
ability to apply the skill fluctuates even in the best (baseline) case because of 
the changing characteristics of the replay buffer.

https://www.kudosprime.com/gts/rankings.php?sec=daily
https://www.kudosprime.com/gts/rankings.php?sec=daily
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assignment, the resulting policies were judged much too aggressive by 
stewards and test drivers. For the final races, we opted for a conserva-
tive approach that penalized the agent for any collision in which it was 
involved (regardless of fault), with some extra penalties if the collision 
was likely considered unacceptable. Figure 2a–h isolates the effects of 
collision penalties and other key design choices made during this project.

Although many applications of RL to games use self-play to improve 
performance3,42, the straightforward application of self-play was inad-
equate in this setting. For example, as a human enters a difficult corner, 
they may brake a fraction of a second earlier than the agent would. Even 
a small bump at the wrong moment can cause an opponent to lose 
control of their car. By racing against only copies of itself, the agent was 
ill-prepared for the imprecision it would see with human opponents.  
If the agent following does not anticipate the possibility of the opponent 
braking early, it will not be able to avoid rear-ending the human driver 
and will be assessed a penalty. This feature of racing—that one player’s 
suboptimal choice causes the other player to be penalized—is not a 
feature of zero-sum games such as Go and chess. To alleviate this issue, 
we used a mixed population of opponents, including agents curated 
from previous experiments and the game’s (relatively slower) built-in AI.  
Figure 2e shows the importance of these choices.

In addition, the opportunities to learn certain skills are rare. We call 
this the exposure problem; certain states of the world are not accessible 
to the agent without the ‘cooperation’ of its opponents. For example, to 

execute a slingshot pass, a car must be in the slipstream of an opponent 
on a long straightaway, a condition that may occur naturally a few times 
or not at all in an entire race. If that opponent always drives only on the 
right, the agent will learn to pass only on the left and would be easily 
foiled by a human who chose to drive on the left. To address this issue, 
we developed a process that we called mixed-scenario training.  
We worked with a retired competitive GT driver to identify a small number 
 of race situations that were probably pivotal on each track. We then 
configured scenarios that presented the agent with noisy variations 
of those critical situations. In slipstream passing scenarios, we used 
simple PID controllers to ensure that the opponents followed certain 
trajectories, such as driving on the left, that we wanted our agent to be 
prepared for. Figure 1f shows the full-track and specialized scenarios 
for Sarthe. Notably, all scenarios were present throughout the train-
ing regime; no sequential curriculum was needed. We used a form of 
stratified sampling43 to ensure that situational diversity was present 
throughout training. Figure 2h shows that this technique resulted in 
more robust skills being learned.

Evaluation
To evaluate GT Sophy, we raced the agent in two events against top GT 
drivers. The first event was on 2 July 2021 and involved both time-trial 
and head-to-head races. In the time-trial race, three of the world’s top 
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Fig. 3 | Results. a–c, How each race unfolded on Seaside (a), Maggiore (b) and 
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car passed the same position on the track. The legend for each race shows the 
final places and, in parentheses, the points for each driver. These charts clearly 
show how, once GT Sophy obtained a small lead, the human drivers could not 
catch it. The sharp decreases represent either a driver losing control or paying 
a penalty for either exceeding the course bounds or colliding with another 
driver. Sarthe (c) had the most incidents, with GT Sophy receiving two penalties 
for excessive contact and the humans receiving one penalty and two warnings. 
Both the humans and GT Sophy also had several smaller penalties for exceeding 
the course boundaries, particularly in the final chicane sequence. d, An 

example from the 2 July 2021 race in which two instances of GT Sophy (grey and 
green) passed two humans (yellow and blue) on a corner on Maggiore. As a 
reference, the trajectory of the lead GT Sophy car when taking the corner alone 
is shown in red. The example clearly illustrates that the trajectory of GT Sophy 
through the corner is contextual; even though the human drivers tried to 
protect the inside going into the corner, GT Sophy was able to find two 
different, faster trajectories. e, The number of passes that occurred on 
different parts of Sarthe in 100 4v4 races between two GT Sophy policies, 
demonstrating that the agent has learned to pass on many parts of the track.  
f, Results from the time-trial competition in July 2021.
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drivers were asked to try to beat the lap times of GT Sophy. Although 
the human drivers were allowed to see a ‘ghost’ of GT Sophy as they 
drove around the track, GT Sophy won all three matches. The results 
are shown in Fig. 3f.

The head-to-head race was held at the headquarters of Polyphony 
Digital and, although limited to top Japanese players due to pandemic 
travel restrictions, included four of the world’s best GT drivers. These 
drivers formed a team to compete against four instances of GT Sophy. 
Points were awarded to the team on the basis of the final positions  
(10, 8, 6, 5, 4, 3, 2 and 1, from first to last), with Sarthe, the final and 
most challenging race, counting double. Each team started in either 
the odd or the even positions on the basis of their best qualifying 
time. The human drivers won the team event on 2 July 2021 by a score  
of 86–70.

After examining GT Sophy’s 2 July 2021 performance, we improved 
the training regime, increased the network size, made small modifica-
tions to some features and rewards and improved the population of 
opponents. GT Sophy handily won the rematch held on 21 October 
2021 by an overall team score of 104–52. Starting in the odd positions, 
team GT Sophy improved four spots on Seaside and Maggiore and two 
on Sarthe. Figure 3a–c shows the relative positions of the cars through 
each race and the points earned by each individual.

One of the advantages of using deep RL to develop a racing agent 
is that it eliminates the need for engineers to program how and when 
to execute the skills needed to win the race—as long as it is exposed to 
the right conditions, the agent learns to do the right thing by trial and 
error. We observed that GT Sophy was able to perform several types 
of corner passing, use the slipstream effectively, disrupt the draft of a 
following car, block, and execute emergency manoeuvres. Figure 3d 
shows particularly compelling evidence of GT Sophy’s generalized 
tactical competence. The diagram illustrates a situation from the 2 July 
2021 event in which two GT Sophy cars both pass two human cars on a 
single corner on Maggiore. This kind of tactical competence was not 
limited to any particular part of the course. Figure 3e shows the number 
of passes that occurred on different sections of Sarthe from 100 4v4 
races between two different GT Sophy policies. Although slipstream 
passing on the straightaways was most common, the results show that 
GT Sophy was able to take advantage of passing opportunities on many 
different sections of Sarthe.

Although GT Sophy demonstrated enough tactical skill to beat 
expert humans in head-to-head racing, there are many areas for 
improvement, particularly in strategic decision-making. For exam-
ple, GT Sophy takes the first opportunity to pass on a straightaway, 
sometimes leaving enough room on the same stretch of track for the 
opponent to use the slipstream to pass back. GT Sophy also aggres-
sively tries to pass an opponent with a looming penalty, whereas a 
strategic human driver may wait and make the easy pass when the 
opponent is forced to slow down.

Conclusions
Simulated automobile racing is a domain that requires real-time, con-
tinuous control in an environment with highly realistic, complex physics. 
The success of GT Sophy in this environment shows, for the first time, 
that it is possible to train AI agents that are better than the top human 
racers across a range of car and track types. This result can be seen as 
another important step in the continuing progression of competitive 
tasks that computers can beat the very best people at, such as chess, Go, 
Jeopardy, poker and StarCraft. In the context of previous landmarks of 
this kind, GT Sophy is the first that deals with head-to-head, competitive, 
high-speed racing, which requires advanced tactics and subtle sports-
manship considerations. Agents such as GT Sophy have the potential 
to make racing games more enjoyable, provide realistic, high-level 
competition for training professional drivers and discover new racing 
techniques. The success of deep RL in this environment suggests that 

these techniques may soon have an effect on real-world systems such 
as collaborative robotics, aerial drones or autonomous vehicles.

All references to Gran Turismo, PlayStation and other Sony proper-
ties are made with permission of the respective rights owners. Gran 
Turismo Sport: © 2019 Sony Interactive Entertainment Inc. Developed 
by Polyphony Digital Inc. Manufacturers, cars, names, brands and associ-
ated imagery featured in this game in some cases include trademarks and/
or copyrighted materials of their respective owners. All rights reserved. 
Any depiction or recreation of real world locations, entities, businesses, or 
organizations is not intended to be or imply any sponsorship or endorse-
ment of this game by such party or parties. “Gran Turismo” and “Gran 
Turismo Sophy” logos are registered trademarks or trademarks of Sony 
Interactive Entertainment Inc.
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Methods

Game environment
Since its debut in 1997, the GT franchise has sold more than 80 mil-
lion units. The most recent release, Gran Turismo Sport, is known for 
precise vehicle dynamics simulation and racing realism, earning it the 
distinction of being sanctioned by the FIA and selected as a platform 
for the first Virtual Olympics (https://olympics.com/en/sport-events/
olympic-virtual-motorsport-event/). GT Sport runs only on PS4s and 
at a 60-Hz-dynamics simulation cycle. A maximum of 20 cars can be 
in a race.

Our agent ran asynchronously on a separate computer and communi-
cated with the game by means of HTTP over wired Ethernet. The agent 
requested the latest observation and made decisions at 10 Hz (every 
100 ms). We tested action frequencies from 5 Hz to 60 Hz and found 
no substantial performance gains from acting more frequently than 
10 Hz. The agent had to be robust to the infrequent, but real, network-
ing delays. The agent’s action was treated the same as a human’s game 
controller input, but only a subset of action capabilities were supported 
in the GT API. For example, the API did not allow the agent to control 
gear shifting, the traction control system or the brake balance, all of 
which can be adjusted in-game by human players.

Computing environment
Each experiment used a single trainer on a compute node with either 
one NVIDIA V100 or half of an NVIDIA A100 coupled with around eight 
vCPUs and 55 GiB of memory. Some of these trainers were run in PlaySta-
tion Now data centres and others in AWS EC2 using p3.2xlarge instances.

Each experiment also used a number of rollout workers, where 
each rollout worker consisted of a compute node controlling a PS4. 
In this set-up, the PS4 ran the game and the compute node managed 
the rollouts by performing tasks such as computing actions, send-
ing them to the game, sending experience streams to the trainer and 
receiving revised policies from the trainer (see Fig. 1a). The compute 
node used around two vCPUs and 3.3 GB of memory. In the time-trial 
experiments, ten rollout workers (and therefore ten PS4s) were used 
for about 8 days. To train policies that could drive in traffic, 21 rollout 
workers were used for between 7 and 12 days. In both cases, one worker 
was primarily evaluating intermediate policies, rather than generating 
new training data.

Actions
The GT API enabled control of three independent continuous actions: 
throttle, brake and steering. Because the throttle and brake are rarely 
engaged at the same time, the agent was presented control over the 
throttle and brake as one continuous action dimension. The combined 
dimension was scaled to [−1, 1]. Positive values engaged the throttle 
(with maximum throttle at +1), whereas negative values engaged the 
brake (with maximum braking at −1); the value zero engaged neither 
the throttle nor the brake. The steering dimension was also scaled to 
[−1, 1], where the extreme values corresponded to the maximum steer-
ing angle possible in either direction for the vehicle being controlled.

The policy network selected actions by outputting a squashed 
normal distribution with a learned mean and diagonal covariance 
matrix over these two dimensions. The squashed normal distribution 
enforced sampled actions to always be within the [−1, 1] action bounds36.  
The diagonal covariance matrix values were constrained to lie in the 
range (e−40, e4), allowing for nearly deterministic or nearly uniform 
random action selection policies to be learned.

Features
A variety of state features were input to the neural networks. These 
features were either directly available from the game state or processed 
into more convenient forms and concatenated before being input to 
the models.

Time-trial features. To learn competent time-trial performance, the 
agent needed features that allowed it to learn how the vehicle behaved 
and what the upcoming course looked like. The list of vehicle features 
included the car’s 3D velocity, 3D angular velocity, 3D acceleration, 
load on each tyre and tyre-slip angles. Information about the environ-
ment was converted into features including the scalar progress of the 
car along the track represented as sine and cosine components, the 
local course surface inclination, the car’s orientation with respect to 
the course centre line and the (left, centre and right) course points 
describing the course ahead on the basis of the car’s velocity. The agent 
also received indicators if it contacted a fixed barrier or was considered 
off course by the game and it received real-valued feedback for the 
game’s view of the car’s most recent steering angle, throttle intensity 
and brake intensity. We relied on the game engine to determine whether 
the agent was off course (defined as when three or more tyres are out 
of bounds) because the out-of-bounds regions are not exactly defined 
by the course edges; kerbs and other tarmac areas outside the track 
edges are often considered in bounds.

Racing features. When training the agent to race against other cars, the 
list of features also included a car contact flag to detect collisions and a 
slipstream scalar that indicates if the agent was experiencing the slip-
stream effect from the cars in front of it. To represent the nearby cars, 
the agent used a fixed forward and rear distance bound to determine 
which cars to encode. The cars were ordered by their relative distance 
to the agent and were represented using their relative centre-of-mass 
position, velocity and acceleration. The combination of features pro-
vided the information required for the agent to drive fast and learn to 
overtake cars while avoiding collisions.

To keep the features described here in a reasonable numerical range 
when training neural networks, we standardized the inputs on the basis 
of the knowledge of the range of each feature scalar. We assumed that 
the samples were drawn from a uniform distribution given the range and 
computed the expected mean and standard deviation. These were used 
to compute the z-score for each scalar before being input to the models.

Rewards
The reward function was a hand-tuned linear combination of reward 
components computed on the transition between the previous state 
s and current state s′. The reward components were: course progress 
(Rcp), off-course penalty (Rsoc or Rloc), wall penalty (Rw), tyre-slip penalty (Rts),  
passing bonus (Rps), any-collision penalty (Rc), rear-end penalty (Rr) 
and unsporting-collision penalty (Ruc). The reward weightings for the 
three tracks are shown in Extended Data Table 1.

Owing to the high speeds on Sarthe, training for that track used a 
slightly different off-course penalty, included the unsporting-collision 
penalty and excluded the tyre-slip penalty. Note that, to reduce vari-
ance in time-sensitive rewards, such as course progress and off-course 
penalty, we filtered transitions when network delays were encountered. 
The components are described in detail below.

Course progress (Rcp). Following previous work24, the primary reward 
component rewarded the amount of progress made along the track since 
the last observation. To measure progress, we made use of the state 
variable l that measured the length (in metres) along the centreline from 
the start of the track. The agent’s centreline distance l was estimated by 
first projecting its current position to the closest point on the centreline. 
The progress reward was the difference in l between the previous and 
the current state: R s s s s( , ′) ′ − .l lcp ≜  To reduce the incentive to cut cor-
ners, this reward was masked when the agent was driving off course.

Off-course penalty (Rsoc or Rloc). The off-course reward penalty was 
proportional to the squared speed the agent was travelling at to further 
discourage corner cutting that may result in a very large gain in 
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position: R s s s s s( , ′) − ( ′ − )( ′ )soc o o kph

2≜ , where so is the cumulative time 
off course and skph is the speed in kilometres per hour. To avoid an ex-
plosion in values at Sarthe where driving speeds were markedly faster 
and corners particularly easy to cut, we used a penalty that was pro-
portional to the speed (not squared): ≜R s s s s s( , ′) − ( ′ − ) ′loc o o kph, and 
the penalty was doubled for the difficult first and final chicanes.

Wall penalty (Rw). To assist the agent in learning to avoid walls, a 
wall-contact penalty was included. This penalty was proportional to 
the squared speed of the car and the amount of time in contact with 
the wall since the last observation: ≜R s s s s s( , ′) − ( ′ − )( ′ ) ,w w w kph

2 where 
sw is the cumulative time that the agent was in contact with a wall.

Tyre-slip penalty (Rts). Tyre slip makes it more difficult to control the 
car. To assist learning, we included a penalty when the tyres were  
slipping in a different direction from where they were pointing: 

≜R s s s s( , ′) − ∑ min(| ′ |, 1.0)| ′ |,i i θ its
4

tsr, ts ,  where stsr,i is the tyre-slip ratio for 
the ith tyre and stsθ,i is the angle of the slip from the forward direction 
of the ith tyre.

Passing bonus (Rps). As in previous work25, to incentivize passing op-
ponents, we included a term that positively rewarded gaining ground 
and overtaking opponents, and negatively rewarded losing ground to 
an opponent. The negative reward ensured that there were no 
positive-cycle reward loops to exploit and encouraged defensive play 
when an opponent was trying to overtake the agent. This reward was 
defined as R s s s s s s11 11( , ′) ∑ ( − ′ )max( ( ), ( ′ )),i b f b fps L L ( , ) L ( , ) Li i i i

≜  where sLi
 is 

the projected centreline signed distance (in metres) from the agent to 
opponent i and 1(b,f )(x) is an indicator function for when an opponent 
is no more than b metres behind nor f metres in front of the agent.  
We used b = 20 and f = 40 to train GT Sophy. The max operator ensures 
that the reward is provided when the agent was within bounds in the 
previous state or in the current state. In the particularly complex first 
and final chicanes of Sarthe, we masked this passing bonus to strongly 
discourage the agent from cutting corners to gain a passing reward.

Any-collision penalty (Rc). To discourage collisions and pushing cars 
off the road, we included a reward penalty whenever the agent was 
involved in any collision. This was defined as a negative indicator  
whenever the agent collided with another car: R s s s( , ′) − max ′ ,i N ic ∈ c,≜  
where sc,i is 1 when the agent collided with opponent i and 0 otherwise, 
and N is the number of opponents.

Rear-end penalty (Rr). Rear-ending an opponent was one of the more 
common ways to cause an opponent to lose control and for the agent 
to be penalized by stewards. To discourage bumping from behind,  
we included the penalty R s s s s s s s11( , ′) − ∑ ′ ⋅ ( ′ − ′ ) ⋅ ‖ ′ − ′ ‖ ,i i l i l ir c, >0 , v v, 2

2≜  
where sc,i is a binary indicator for whether the agent was in a collision 
with opponent i, s s11 ( − )l i l>0 ,  is an indicator for whether opponent i was 
in front of the agent, sv is the velocity vector of the agent and sv,i is the 
velocity vector of opponent i. The penalty was dependent on speed to 
more strongly discourage higher speed collisions.

Unsporting-collision penalty (Ruc). Owing to the high speed of cars 
and the technical difficulty of Sarthe, training the agent to avoid colli-
sions was particularly challenging. Merely increasing the any-collision 
penalty resulted in very timid agent behaviour. To discourage being 
involved in collisions without causing the agent to be too timid, we 
included an extra collision penalty for Sarthe. Like the any-collision 
penalty, this penalty was a negative Boolean indicator. Unlike the 
any-collision penalty, it only fired when the agent rear-ended or  
sideswiped an opponent on a straightaway or was in a collision in a 
curve that was not caused by an opponent rear-ending them: 

≜R s s u s i( , ′) − max ( ′, ),i Nuc ∈  where u(s′, i) indicates an unsporting col-
lision as defined above.

Training algorithm
To train our agent, we used an extension of the soft actor-critic algo-
rithm36 that we refer to as QR-SAC. To give the agent more capacity to 
predict the variation in the environment during a race, we make use of 
a QR Q-function39 modified to accept continuous actions as inputs. 
QR-SAC is similar to distributional SAC44 but uses a different formula-
tion of the value backup and target functions. We used M = 32 quantiles 
and modified the loss function of the QR Q-function with an N-step 
temporal difference backup. The target function, yi, for the ith quantile, 
τ̂ ,i  consists of terms for the immediate reward, R γ r= ∑ ,t i

N i
t i=1

−1
+  the esti-

mated quantile value at the Nth future state, Z ,τ̂i  and the SAC entropy 
term. Like existing work using N-step backups38, we do not correct for 
the off-policy nature of N-step returns stored in the replay buffer.  
To avoid the computational cost of forwarding the policy for interme-
diate steps of the N-step backup, we only include the entropy reward 
bonus that SAC adds for encouraging exploration in the final step of 
the N-step backup. Despite this lack of off-policy correction and limited 
use of the entropy reward bonus, we found that using N-step backups 
greatly improved performance compared with a standard one-step 
backup, as shown in Fig. 2d. To avoid overestimation bias, the Nth state 
quantiles are taken from the Q-function with the smallest Nth state 
mean value45, indexed by k

k Q s a θ

y R Z s a θ α π a s ϕ

= arg min ( , ′| ′ )

= + ( , ′| ) − log ( ′| , )
(1)m

t N m

i t τ t N k t N

=1,2
+

^ + +i

where θ and ϕ are parameters of the Q-functions and the policy, respec-
tively. Using this target value, yi, the loss function of the Q-function is 
defined as follows

∼ ∼E∑ ∑

δ y Z s a θ

L θ
M

ρ δ

= − ( , | )

( ) =
1

( )
(2)

′

i j i τ t t

i j
s a R s D a π i j

, ^

2 , , , , ,

j

t t t t+1

where D represents data from the ERB and ρ is a quantile Huber 
loss function39. Finally, the objective function for the policy is as  
follows:

EJ ϕ α π a s ϕ Q s a θ( ) = ~ ~ [ log ( | , ) − min ( , | )] (3)s D a π a s π
i

i, ( | , )
=1,2

The Q-functions and policy models used in the October race con-
sist of four hidden layers with 2,048 units each and a rectified linear 
unit activation function. To achieve robust control, dropout46 with 
a 0.1 drop probability is applied to the policy function47. The param-
eters are optimized using an Adam optimizer48 with learning rates 
of 5.0 × 10−5 and 2.5 × 10−5 for the Q-function and policy, respectively.  
The discount factor γ was 0.9896 and the SAC entropy temperature 
value α was set to 0.01. The mixing parameter when updating the  
target model parameters after every algorithm step was set to 0.005.  
The off-course penalty and rear-end-speed penalty can produce 
large penalty values due to the squared speed term, which makes the 
Q-function training unstable due to large loss values. To mitigate this 
issue, the gradients of the Q-function are clipped by the global norm 
of the of 10.

The rollout workers send state-transition tuples s a r, ,  collected in 
an episode (of length 150 s) to the trainer to store the data in an ERB 
implemented using the Reverb Python library49. The buffer had capac-
ity of 107 N-step transitions. The trainer began the training loop once 
40,000 transitions had been collected and uses a mini-batch of size 
1,024 to update the Q-function and policy. A training epoch consists 
of 6,000 gradient steps. After each epoch, the trainer sent the latest 
model parameters to the rollout workers.



Training scenarios
Learning to race requires mastering a gamut of skills: surviving a 
crowded start, making tactical open-road passes and precisely running 
the track alone. To encourage basic racing skills, we placed the agent 
in scenarios with zero, one, two, three or seven opponents launched 
nearby (1v0, 1v1, 1v2, 1v3 and 1v7, respectively). To create variety, we 
randomized track positions, start speeds, spacing between cars and 
opponent policies. We leveraged the fact that the game supports 20 
cars at a time to maximize PlayStation usage by launching more than 
one group on the track. All base scenarios ran for 150 s. In addition, to 
ensure that the agent was exposed to situations that would allow it to 
learn the skills highlighted by our expert advisor, we used time-limited 
or distance-limited scenarios on specific course sections. Figure 1f 
illustrates the skill scenarios used at Sarthe: eight-car grid starts, 1v1 
slipstream passing and mastering the final chicane in light traffic. 
Extended Data Figure 1 shows the specialized scenarios used to pre-
pare the agent to race on Seaside (f) and Maggiore (g). To learn how to 
avoid catastrophic outcomes at the high-speed Sarthe track, we also 
incorporated mistake learning50. During policy evaluations, if an agent 
lost control of the car, the state shortly before the event was recorded 
and used as a launch point for more training scenarios.

Unlike curriculum training where early skills are supplanted by later 
ones or in which skills build on top of one another in a hierarchical fash-
ion, our training scenarios are complementary and were trained into a 
single control policy for racing. During training, the trainer assigned 
new scenarios to each rollout worker by selecting from the set config-
ured for that track on the basis of hand-tuned ratios designed to provide 
sufficient skill coverage. See Extended Data Fig. 1e for an example ERB 
at Sarthe. However, even with this relative execution balance, random 
sampling fluctuations from the buffer often led to skills being unlearned 
between successive training epochs, as shown in Fig. 2h. Therefore, 
we implemented multi-table stratified sampling to explicitly enforce 
proportions of each scenario in each training mini-batch, notably sta-
bilizing skill retention (Fig. 2g).

Policy selection
In machine learning, convergence means that further training will not 
improve performance. In RL, due to the continuing exploration and 
random sampling of experiences, the performance of the policy will 
often continue to vary after convergence (Fig. 2h). Therefore, even 
with the stabilizing techniques described above, continuing training 
after convergence produced policies that differed in small ways in 
their ability to execute the desired racing skills. A subsequent policy, 
for instance, may become marginally better at the slipstream pass and 
marginally worse at the chicane. Choosing which policy to race against 
humans became a complex, multi-objective optimization problem.

Extended Data Figure 3 illustrates the policy-selection process. Agent 
policies were saved at regular intervals during training. Each saved 
policy then competed in a single-race scenario against other AI agents, 
and various metrics, such as lap times and car collisions, were gathered 
and used to filter the saved policies to a smaller set of candidates. These 
candidates were then run through an n-athlon—a set of pre-specified 
evaluation scenarios—testing their lap speed and performance in certain 
tactically important scenarios, such as starting and using the slipstream. 
The performance on each scenario was scored and the results of each 
policy on each scenario were combined in a single ranked spreadsheet. 
This spreadsheet, along with various plots and videos, was then reviewed 
by a human committee to select a small set of policies that seemed the 
most competitive and the best behaved. From this set, each pair of poli-
cies competed in a multi-race, round-robin, policy-versus-policy tour-
nament. These competitions were scored using the same team scoring 
as that in the exhibition event and evaluated on collision metrics. From 
these results, the committee chose policies that seemed to have the 
best chance of winning against the human drivers while minimizing 

penalties. These final candidate policies were then raced against test 
drivers at Polyphony Digital and the subjective reports of test drivers 
were factored into the final decision.

The start of Sarthe posed a particularly challenging problem for 
policy selection. Because the final chicane is so close to the starting line, 
the race was configured with a stationary grid start. From that standing 
start, all eight cars quickly accelerated and entered the first chicane. 
Although a group of eight GT Sophy agents might get through the 
chicane fairly smoothly, against human drivers, the start was invariably 
chaotic and a fair amount of bumping occurred. We tried many varia-
tions of our reward functions to find a combination that was deemed 
an acceptable starter by our test drivers while not giving up too many 
positions. In the October 2021 Sarthe race, we configured GT Sophy 
to use a policy that started well, and—after 2,100 metres—switch to a 
slightly more competitive policy for the rest of the race. Despite the 
specialized starter, the instance of GT Sophy that began the race in 
pole position was involved in a collision with a human driver in the first 
chicane, slid off the course and fell to last place. Despite that setback, 
it managed to come back and win the race.

Immediately after the official race, we ran a friendly rematch against 
the same drivers but used the starter policy for the whole track.  
The results were similar to the official race.

Fairness versus humans
Competitions between humans and AI systems cannot be made entirely 
fair; computers and humans think in different ways and with different 
hardware. Our objective was to make the competition fair enough, 
while using technical approaches that were consistent with how such 
an agent could be added to the game. The following list compares some 
of the dimensions along which GT Sophy differs from human players:

First, perception. GT Sophy had a map of the course with precise x, y 
and z information about the points that defined the track boundaries. 
Humans perceived this information less precisely by means of vision. 
However, the course map did not have all of the information about the 
track and humans have an advantage in that they could see the kerbs 
and surface material outside the boundaries, whereas GT Sophy could 
only sense these by driving on them.

Second, opponents. GT Sophy had precise information about the loca-
tion, velocity and acceleration of the nearby vehicles. However, it repre-
sented these vehicles as single points, whereas humans could perceive 
the whole vehicle. GT Sophy has a distinct advantage in that it can see 
vehicles behind it as clearly as it can see those in front, whereas humans 
have to use the mirrors or the controller to look to the sides and behind 
them. GT Sophy never practiced against opponents that didn’t have full 
visibility, so it didn’t intentionally take advantage of human blind spots.

Third, vehicle state. GT Sophy had precise information about the load 
on each tyre, slip angle of each tyre and other vehicle state. Humans 
learn how to control the car with less precise information about these 
state variables.

Fourth, vehicle controls. There are certain vehicle controls that the 
human drivers had access to that GT Sophy did not. In particular, expert 
human drivers often use the traction control system in grid starts and 
use the transmission controls to change gears.

Fifth, action frequency. GT Sophy took actions at 10 Hz, which was 
sufficient to control the car but much less frequent than human actions 
in GT. Competitive GT drivers use steering and pedal systems that give 
them 60 Hz control. Whereas a human can’t take 60 distinct actions 
per second, they can smoothly turn a steering wheel or press on a brake 
pedal. Extended Data Figure 2b, c contrasts GT Sophy’s 10-Hz control 
pattern to Igor Fraga’s much smoother actions in a corner of Sarthe.

Sixth, reaction time. GT Sophy’s asynchronous communication and 
inference takes around 23–30 ms, depending on the size of the net-
work. Although evaluating performance in professional athletes and 
gamers is a complex field34,35, an oft-quoted metric is that professional 
athletes have a reaction time of 200–250 ms. To understand how the 
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performance of GT Sophy would be affected if its reaction time were 
slowed down, we ran experiments in which we introduced artificial 
delays to its perception pipeline. We retrained our agent with delays 
of 100 ms, 200 ms and 250 ms in the Maggiore time-trial setting, using 
the same model architecture and algorithm as our time-trial baseline. 
All three of these tests achieved a superhuman lap time.

Tests versus top GT drivers
The following competitive GT drivers participated in the time-trial 
evaluations:
•	Emily Jones: 2020 FIA Gran Turismo Manufacturers Series, Team Audi.
•	Valerio Gallo: 2nd place 2020 FIA Gran Turismo Nations Cup; winner 

2021 Olympic Virtual Series Motor Sport Event; winner 2021 FIA Gran 
Turismo Nations Cup.

•	 Igor Fraga: winner 2018 FIA Gran Turismo Nations Cup; winner 2019 
Manufacturer Series championship; winner 2020 Toyota Racing Series 
(real racing).
GT Sophy won all of the time-trial evaluations as shown in Fig. 3f and 

was reliably superhuman on all three tracks, as shown in Fig. 1d, e and 
Extended Data Fig. 1a–d. Notably, the only human with a time within the 
range of GT Sophy’s 100 lap times on any of the tracks was Valerio Gallo 
on Maggiore. It is worth noting that the data in Fig. 1d, e was captured by 
Polyphony Digital after the time-trial event in July 2021. Valerio was the 
only participant represented in the data that had seen the trajectories 
of GT Sophy on Maggiore, and—between those two events—Valerio’s 
best time improved from 114.466 to 114.181 s.

It is also interesting to examine what behaviours give GT Sophy such 
an advantage in time trials. Extended Data Figure 2a shows an analysis 
of Igor’s attempt to match GT Sophy on Sarthe, showing the places on 
the course where he fell farther behind. Not surprisingly, the hardest 
chicanes and corners are the places where GT Sophy has the biggest 
performance gains. In most of these corners, Igor seems to catch up a 
little bit by braking later, but is then unable to take the corner itself as 
fast, resulting in him losing ground overall.

The following competitive GT drivers participated in the team rac-
ing event:
•	Takuma Miyazono: winner 2020 FIA Gran Turismo Nations Cup; win-

ner 2020 FIA Gran Turismo Manufacturer Series; winner 2020 GR 
Supra GT Cup.

•	Tomoaki Yamanaka: winner 2019, 2021 Manufacturer Series.
•	Ryota Kokubun: winner 2019 FIA Gran Turismo Nations Cup, Round 

5, Tokyo; 3rd place 2020 FIA Gran Turismo Nations Cup.
•	Shotaro Ryu: 2nd place Japan National Inter-prefectural Esports 

Championship (National Athletic Meet) 2019 Gran Turismo Divi-
sion (Youth).

Driver testimonials
The following quotes were captured after the July 2021 events:

“I think the AI was very fast turning into the corner. How they approach 
into it, as well as not losing speed on the exit. We tend to sacrifice a little 
bit the entry to make the car be in a better position for the exit, but the 
AI seems to be able to carry more speed into the corner but still be able 
to have the same kind of exit, or even a faster exit. The AI can create this 
type of line a lot quicker than us,… it was not a possibility before because 
we never realized it. But the AI was able to find it for us.” — Igor Fraga

“It was really interesting seeing the lines where the AI would go, there 
were certain corners where I was going out wide and then cutting back 
in, and the AI was going in all the way around, so I learned a lot about the 
lines. And also knowing what to prioritize. Going into turn 1 for example, 
I was braking later than the AI, but the AI would get a much better exit 

than me and beat me to the next corner. I didn’t notice that until I saw the 
AI and was like ‘Okay, I should do that instead’.” — Emily Jones

“The ghost is always a reference. Even when I train I always use someone 
else’s ghost to improve. And in this case with such a very fast ghost,… 
even though I wasn’t getting close to it, I was getting closer to my limits.” 
— Valerio Gallo

“I hope we can race together more, as I felt a kind of friendly rivalry with 
[GT Sophy].” (translated from Japanese) — Takuma Miyazono

“There is a lot to learn from [GT Sophy], and by that I can improve 
myself. [GT Sophy] does something original to make the car go faster, 
and we will know it’s reasonable once we see it.” (translated from Japa-
nese) — Tomoaki Yamanaka

Data availability
There are no static data associated with this project. All data are gener-
ated from scratch by the agent each time it learns. Videos of the races 
are available at https://sonyai.github.io/gt_sophy_public.

Code availability
Pseudocode detailing the training process and algorithms used is avail-
able as a supplement to this article. The agent interface in GT is not ena-
bled in commercial versions of the game; however, Polyphony Digital has 
provided a small number of universities and research facilities outside 
Sony access to the API and is considering working with other groups.

44. Xia, L., Zhou, Z., Yang, J. & Zhao, Q. DSAC: distributional soft actor critic for risk-sensitive 
reinforcement learning. Preprint at https://arxiv.org/abs/2004.14547 (2020).

45. Fujimoto, S., van Hoof, H. & Meger, D. In Proc. 35th International Conference on Machine 
Learning 1587–1596 (PMLR, 2018).

46. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a 
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,  
1929–1958 (2014).

47. Liu, Z., Li, X., Kang, B. & Darrell, T. In International Conference on Learning Representations 
(ICLR, 2021).

48. Kingma, D. P. & Ba, J. In International Conference on Learning Representations (ICLR, 2015).
49. Cassirer, A. et al. Reverb: a framework for experience replay. Preprint at https://arxiv.org/

abs/2102.04736 (2021).
50. Narvekar, S., Sinapov, J., Leonetti, M. & Stone, P. In Proc. 15th International Conference on 

Autonomous Agents and Multiagent Systems (AAMAS 2016) (2016).

Acknowledgements We thank K. Yamauchi, S. Takano, A. Hayashi, C. Ferreira, N. Nozawa,  
T. Teramoto, M. Hakim, K. Yamada, S. Sakamoto, T. Ueda, A. Yago, J. Nakata and H. Imanishi at 
Polyphony Digital for making the Gran Turismo franchise, providing support throughout the 
project and organizing the Race Together events on 2 July 2021 and 21 October 2021. We also 
thank U. Gallizzi, J. Beltran, G. Albowicz, R. Abdul-ahad and the staff at CGEI for access to their 
PlayStation Now network to train agents and their help building the infrastructure for our 
experiments. We benefited from the advice of T. Grossenbacher, a retired competitive GT 
driver. Finally, we thank E. Kato Marcus and E. Ohshima of Sony AI, who managed the 
partnership activities with Polyphony Digital and Sony Interactive Entertainment.

Author contributions P.R.W. managed the project. S.B., K.K., P.K., J.M., K.S. and T.J.W. led the 
research and development efforts. R.C., A.D., F.E., F.F., L.G., V.K., H.L., P.M., D.O., C.S., T.S. and 
M.D.T. participated in the research and the development of GT Sophy and the AI libraries. H.A., 
L.B., R.D. and D.W. built the research platform that connected to CGEI’s PlayStation network. 
P.S. provided executive support and technical and research advice and P.D. provided executive 
support and technical advice. H.K. and M.S. conceived and set up the project, provided 
executive support, resources and technical advice and managed stakeholders.

Competing interests  P.R.W. and other team members have submitted US provisional patent 
application 63/267,136 covering aspects of the scenario training techniques described in this 
paper.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-04357-7.
Correspondence and requests for materials should be addressed to Peter R. Wurman.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://sonyai.github.io/gt_sophy_public
https://arxiv.org/abs/2004.14547
https://arxiv.org/abs/2102.04736
https://arxiv.org/abs/2102.04736
https://doi.org/10.1038/s41586-021-04357-7
http://www.nature.com/reprints


Extended Data Fig. 1 | Seaside and Sarthe training. Kudos Prime data from 
global time-trial challenges on Seaside (a and b) and Sarthe (c and d), with the 
cars used in the competition. Note that these histograms represent the single 
best lap time for more than 12,000 individual players on Seaside and almost 
9,000 on Sarthe. In both cases, the secondary diagrams compare the top five 
human times to a histogram of 100 laps by the 2 July 2021 time-trial version of 
GT Sophy. In both cases, the data show that GT Sophy was reliably superhuman, 
with all 100 laps better than the best human laps. Not surprisingly, it takes 

longer for the agent to train on the much longer Sarthe course, taking 48 h to 
reach the 99th percentile of human performance. e, Histogram of a snapshot of 
the ERB during training on Sarthe on the basis of the scenario breakdown in 
Fig. 1f. The x axis is the course position and the stacked colours represent the 
number of samples that were collected in that region from each scenario. In a 
more condensed format than Fig. 1f, f and g show the sections of Seaside and 
Maggiore that were used for skill training.
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Extended Data Fig. 2 | Time trial on Sarthe. An analysis of Igor Fraga’s best lap 
in the time-trial test compared with GT Sophy’s lap. a, Areas of the track where 
Igor lost time with respect to GT Sophy. Corner 20, highlighted in yellow, shows 
an interesting effect common to the other corners in that Igor seems to catch 
up a little by braking later, but then loses time because he has to brake longer 

and comes out of the corner slower. Igor’s steering controls (b) and Igor’s 
throttle and braking (c) compared with GT Sophy on corner 20. Through the 
steering wheel and brake pedal, Igor is able to give smooth, 60-Hz signals 
compared with GT Sophy’s 10-Hz action rate.



Extended Data Fig. 3 | Policy selection. An illustration of the process by which 
policies were selected to run in the final race. Starting on the left side of the 
diagram, thousands of policies were generated and saved during the 
experiments. They were first filtered in the experiment to select the subset on 
the Pareto frontier of a simple evaluation criteria trading off lap time versus 
off-course and collision metrics. The selected policies were run through a 
series of tests evaluating their overall racing performance against a common 
set of opponents and their performance on a variety of hand-crafted skill tests. 

The results were ranked and human judgement was applied to select a small 
number of candidate policies. These policies were matched up in round-robin, 
policy-versus-policy competitions. The results were again analysed by the 
human committee for overall team scores and collision metrics. The best 
candidate policies were run in short races against test drivers at Polyphony 
Digital. Their subjective evaluations were included in the final decisions on 
which policies to run in the October 2021 event.
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Extended Data Table 1 | Reward weights

Reward weights for each track.
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