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Abstract. In business-related interactions such as the on-going high-
stakes FCC spectrum auctions, explicit communication among partici-
pants is regarded as collusion, and is therefore illegal. In this paper, we
consider the possibility of autonomous agents engaging in implicit nego-
tiation via their tacit interactions. In repeated general-sum games, our
testbed for studying this type of interaction, an agent using a \best re-
sponse" strategy maximizes its own payo� assuming its behavior has no
e�ect on its opponent. This notion of best response requires some degree
of learning to determine the �xed opponent behavior. Against an un-
changing opponent, the best-response agent performs optimally, and can
be thought of as a \follower," since it adapts to its opponent. However,
pairing two best-response agents in a repeated game can result in sub-
optimal behavior. We demonstrate this suboptimality in several di�er-
ent games using variants of Q-learning as an example of a best-response
strategy. We then examine two \leader" strategies that induce better per-
formance from opponent followers via stubbornness and threats. These
tactics are forms of implicit negotiation in that they aim to achieve a mu-
tually bene�cial outcome without using explicit communication outside
of the game.

1 Introduction

In high-stakes, simultaneous, multicommodity auctions such as the ongoing FCC
spectrum auctions (Weber 1997)1, human bidders have been shown to bid strate-
gically so as to threaten opponent bidders with retaliation in one market should
the opponent compete in a di�erent market. These strategic bids can be seen as
implicit negotiation in a domain in which explicit communication is considered
collusion, and is therefore illegal.

For such threats to work, the threatening agent must (i) communicate the
intended retaliation it intends should the receiving agent not comply and (ii)

1 The US Federal Communications Commission (FCC) holds spectrum auctions to
sell radio bandwidth to telecommunications companies. Licenses entitle their owners
to use a speci�ed radio spectrum band within a speci�ed geographical area, or mar-

ket. Typically several licenses are auctioned o� simultaneously with bidders placing
independent bids for each license. The most recent auction, number 35, completed
in January 2001 and brought in over $16 billion dollars.



convince the receiving agent that it is willing to execute the threat. Furthermore,
the receiving agent must be able to understand that allowing the threat to be
executed is not in its best interest. In FCC spectrum auctions, these threats
and responses can be used to coordinate \strategic demand reduction," which
can lead to substantial bene�ts to all participants. Weber (1997) described the
importance of threats in these auctions as follows:

What can sustain a tacit agreement among bidders concerning an allo-
cation of licenses, when no binding agreements are legal? The force of
threats can serve to stabilize an agreement. If two bidders have ceded
licenses to one another, a subsequent attempt by one to violate the agree-
ment can be immediately met with a response by the other, raising the
prices of licenses held by the violator. (Weber 1997)

In this paper, we consider agents that negotiate by issuing and responding to
threats in the context of repeated, bimatrix games (two-player, general-sum). In
spite of their simplicity of form, bimatrix games present diÆcult challenges for
agent learning and planning. Unlike in zero-sum games, where agents' objectives
are diametrically opposed, agents participating in general-sum games can make
concessions to their opponents and ultimately improve their own payo�s as a
result. Thus, the behavior of the other agent becomes important, not just because
of the damage it could cause, but for the bene�ts it can confer as an ally.

A standard approach to learning in games is to apply a \best response"
strategy like Q-learning (e.g., Mundhe and Sen 2000). Q-learning has the bene�t
of being simple and providing the guarantee of an optimal response against a
�xed opponent (Watkins and Dayan 1992). In a sense, best-response strategies
like Q-learning are followers in that they attempt to maximize their own payo�s
assuming their behavior has no e�ect on their opponents.

Against an unchanging opponent, the best-response agent learns to perform
optimally. However, pairing two such followers in a repeated game can result
in suboptimal behavior. In this paper, we explore simple strategies that act as
leaders in that they behave in a way that maximizes their payo� factoring in the
responsive behavior of the opposing agent. These leaders can be seen as engaging
in implicit negotiation in the sense that they attempt to achieve a mutually
bene�cial outcome without the use of explicit communication outside of the
game. To achieve this goal, a leader depends on the follower to collaborate, and
it encourages such collaboration by making it in the follower's best interest. In
the context of the Weber quote, the leaders are issuing threats and the followers
are reacting to them.

In the next sections, we describe bimatrix games and Q-learning. Following
that, we describe two leader strategies and then present experimental results
in a number of simple games that show how leaders can improve payo�s for
themselves and their followers.



2 Bimatrix Games

A bimatrix game is de�ned by a pair of matrices M1 and M2 of the same size
(same number of rows and same number of columns). At each stage, the players
choose actions, a row i for the row player and a column j for the column player.
The row player receives payo� M1[i; j] and the column player receives payo�
M2[i; j]. The objective for the players is to maximize their average or discounted
total payo� over an unbounded number of stages. For example, consider the
following 2� 2 game.

M1 =

�
a b
c d

�
;M2 =

�
e f
g h

�
:

If the row player selects action 0 and the column player selects action 1, then
the row player receives payo� b and the column player receives payo� f .

To understand the intuitive connection between auctions and repeated games,
imagine the following scenario. Each day two players engage in a simultaneous
auction for two items, A and B. The bidding starts at $1 and can go as high as
$3. Once a player drops out of the bidding for a particular item, it cannot place
a later bid. Each player values each item at $4. If a player bids for an item and
the other does not, then the bidder will get it for $1, leading to a net payo� of
$3. If both players continue bidding for the same item, the price will go up to
$3 and it is awarded randomly, leading to an expected payo� for each player of
$0.5. For this example, imagine that the row player can bid on item A or both
items, while the column player can bid on item B or both items (allowing all
combinations of bids does not change the example in a substantial way). Also
imagine that the players are obstinate in that once deciding to bid for an item
on a given day, they will continue bidding until their bid is declared a winner
or the $3 limit is reached (removing this assumption also does not change the
example in a substantial way).

This scenario leads to the following payo�s where action 0 (top row or left
column) represents bidding on just one item and action 1 represents bidding on
both:

M1 =

�
$3:0 $0:5
$3:5 $1

�
;M2 =

�
$3:0 $3:5
$0:5 $1

�
:

If the other player bids for just one item, bidding for both items leads to the
best possible payo� of $3.5: $3 from the uncontested item and $0.5 from the
contested item. However, if both bid for both items, they each expect only a $1
payo�, whereas if they somehow coordinate their demand and each bid for one
item (known as \demand reduction" in the auction literature), they can achieve
a payo� of $3 each. Alert readers will recognize this as a version of the game of
the prisoner's dilemma.

A behavior or strategy in a bimatrix game speci�es a method for choosing an
action. In its most general form, a behavior speci�es a probability distribution
over action choices conditioned on the full history of past actions taken both by
itself and by other agents.



One justi�able choice of behavior in a bimatrix game is for a player to max-
imize its payo� assuming the opponent will make this maximum as small as
possible. This strategy can be called a minimax or security-level strategy. The
security level is the expected payo� a player can guarantee itself using a min-
imax strategy. This strategy can be computed using linear programming (von
Neumann and Morgenstern 1947).

In a Nash equilibrium, each player adopts a strategy that is a best response
to the other|there is no incentive for unilateral deviation (Nash 1951). One
shortcoming of two players adopting minimax strategies is that they need not be
in Nash equilibrium. For example, consider the following game (called \chicken"):

M1 =

�
3:0 1:5
3:5 1:0

�
;M2 =

�
3:0 3:5
1:5 1:0

�
: (1)

The minimax strategy is to always take action 0, since the agent can then get no
worse than 1.5. However, both agents taking action 0 is not a Nash equilibrium,
since either agent could improve by changing to action 1. (Either agent taking
action 0 and the other taking action 1 is a Nash equilibrium in this game.)

In a pareto-optimal behavior pair, no player can improve its payo� without
hurting the opponent. Another shortcoming of both players adopting the min-
imax strategy is that the result is not necessarily pareto-optimal: There might
be other strategy pairs that are more bene�cial to both parties. For example,
consider the classic prisoner's dilemma:

M1 =

�
3 0
5 1

�
;M2 =

�
3 5
0 1

�
: (2)

Here, the minimax strategy is to always take action 1. However, if both agents
do so, their payo� will be 1. On the other hand, they can both do better if they
somehow agree to both take action 0.

In this paper, we show that agents that can issue and respond to threats can,
in e�ect, agree to play mutually bene�cial strategies.

3 Q-learning

Q-learning is a reinforcement learning algorithm that is best justi�ed for use
in stationary, single-agent, fully observable environments (Markov decision pro-
cesses or MDPs). However, it often performs well in environments that violate
these assumptions. In its general form, a Q-learning agent can be in any state
x of a �nite set of states and can choose an action i from a �nite set. It keeps a
data structure Q(x; i) that represents its expected payo� for starting in state x,
taking action i, then behaving in a payo�-maximizing manner ever after. Each
time the agent makes a transition from a state x to a state y via action i and
receives payo� r, the Q table is updated according to

Q(x; i) = �(r + 
max
i0

Q(y; i0)) + (1� �)Q(x; i):



The parameters � and 
 are both in the range 0 to 1. When the learning
rate parameter � is close to 1, the Q table changes rapidly in response to new
experience. When the discount rate 
 is close to 1, future interactions play a
substantial role in de�ning total payo� values.

In the repeated game context, there is a choice of what to use for the state-
space of the learner. We studied two choices. The Q0 approach uses just a single
state (no state transitions). The Q1 approach uses its action choice from the
previous stage as its state.

Both agents choose actions according to the �-greedy policy: In state x, choose

{ a random action with probability �
{ argmaxi Q(x; i) otherwise.

The random actions are exploration actions that give the learner an oppor-
tunity to �nd out if an action that looks less good may actually be better than
its current preferred action choice.

Provided that its state space is expressive enough, Q-learning can learn a
multi-step best response (best response against an agent can select actions con-
ditioned on recent choices), since the multi-step best response problem is an
MDP (Papadimitriou 1992).

4 Leader Strategies

This section describes two strategies|Bully and Godfather|that make action
choices assuming that their opponents will be using a best response strategy
such as one learned with Q-learning. They are general strategies that apply in
all repeated bimatrix games and are based on concepts that generalize naturally
to many competitive scenarios.

4.1 Bully

Bully is a deterministic, state-free policy that consistently plays action i� de�ned
by

i� = argmax
i

M1(i; j
�

i )

where j�i = argmaxj M2(i; j). Here, M1 is the leader's payo� matrix and M2 is
the follower's2.

For example, in the game of chicken (Equation 1), the Bully behavior is to
always choose action 1, since the opponent's best response to such a behavior
is to always choose action 0, resulting in a payo� of 3.5 for Bully. Bully is an
example of a Stackleberg leader (Fudenberg and Levine 1998).

The result of playing Bully against a follower is Nash-like: the follower is
optimizing its payo�s assuming Bully stays �xed, and Bully has chosen to behave
in the way that optimizes its payo�s assuming the other agent is a follower.
2 If multiple values of j�i are possible due to ties in the matrix M2, the safest thing is
to assume the choice that leads to the smallest value of M1(i; j

�

i )



In a zero-sum game (M1 + M2 = 0), Bully is essentially a deterministic
minimax strategy.

4.2 Godfather

Godfather is a �nite-state strategy that makes its opponent an o�er it can't
refuse. Call a pair of deterministic policies a targetable pair if playing them
results in each player receiving more than its security level. Godfather chooses a
targetable pair (if there is one) and plays its half (i.e., its action in the targetable
pair) in the �rst stage. From then on, if the opponent plays its half of the
targetable pair in one stage, Godfather plays its half in the next stage. Otherwise,
it plays the policy that forces its opponent to achieve its security level. Thus,
Godfather issues the threat: \Play your half of the targetable pair, or I'll force
you to get no more than your security level no matter what you do."

Godfather is a generalization of tit-for-tat of prisoner's dilemma fame (Ax-
elrod 1984). Note however that unlike in prisoner's dilemma, Godfather does
not always select the best response to the opponent's defection. In games such
as chicken, Godfather's punishment is chosen so as to minimize the opponent's
payo� regardless even if it must settle for a low payo� itself. It is also a mem-
ber of a more general class of �nite-state strategies that uses the threat of a
security-level outcome to maintain a mutually bene�cial outcome. In a separate
line of work, we have shown how to �nd Nash equilibria strategies of this form
in polynomial time (Littman and Stone 2001). This result is in contrast to Nash
equilibria in single stage bimatrix games, which are not known to be computable
in polynomial time.

5 Experiments

To illustrate the importance of leader strategies, we compared Bully, Godfa-
ther, Q0, and Q1 in several di�erent repeated games. Q0 and Q1 are used as
representative best response strategies.

In our experiments, strategies Q0 and Q1 used the parameters 
 = 0:9,
� = 0:1, and � = 0:1. Each experiment ran 30,000 stages, with the average payo�
computed over the �nal 5,000 stages. Reported results re
ect the mean and
standard deviation over 100 experiments under identical conditions. Variance
between experiments is due to stochastic strategies as well as random exploration
in the strategies (�).

All the games reported below are 2 � 2 bimatrix games with the diagonal
payo�s of 3 (upper left) and 1 (lower right). We call action 0 \cooperate" and
action 1 \defect". This makes \3" the mutual cooperation payo� and \1" the
mutual defection payo�, in analogy with the prisoner's dilemma (Equation 2). In
addition, MT

1
=M2, so both players have the same payo� structure. By varying

the o�-diagonal payo�s, games with very di�erent dynamics can be created.
The names of these games are in common usage in the game-theory commu-

nity.



5.1 Deadlock: An Obvious Choice

Deadlock is a straightforward game in which, regardless of the opponent's choice,
each player is better o� cooperating:

M1 =

�
3 2
0 1

�
;M2 =

�
3 0
2 1

�
:

Bully chooses to cooperate in this game, and Godfather cooperates and uses
defect as a threat.

The average payo�s (and standard deviations) for each strategy against Q0

and Q1 are:

Q0 Q1 Bully Godfather

Q0 2.804 (0.008) 2.805 (0.009) 2.950 (0.003) 2.808 (0.011)
Q1 2.805 (0.009) 2.803 (0.010) 2.950 (0.003) 2.805 (0.012)

Basically, all players cooperate and receive payo�s very close to that of mutual
cooperation (3). Because of exploration, average payo�s are slightly lower.

5.2 Assurance: Suboptimal Preference

In the assurance game, it is more important to match the other player's choice
than it is to cooperate:

M1 =

�
3 0
2 1

�
;M2 =

�
3 2
0 1

�
:

Thus, if the chance that the opponent will defect is more than 50%, it is better
to defect. It is also better to defect from a minimax perspective, making it the
\safest" alternative.

In this game, two Q learners will typically coordinate their choices, but with
no particular bias as to which coordination point is chosen. As a result, the
expected score is less than (1+3)=2 = 2 with a high variance. Thus, a pair of Q
learners perform suboptimally in this game:

Q0 Q1 Bully Godfather

Q0 1.431 (0.760) 1.537 (0.813) 2.850 (0.009) 1.387 (0.683)
Q1 1.927 (0.886) 1.662 (0.846) 2.850 (0.009) 2.805 (0.010)

Bully, by steadfastly choosing to cooperate, invites the learners to cooperate
and achieves the maximum score. Similarly, Godfather, by threatening defec-
tion each time its opponent defects, teaches Q1 that mutual cooperation is its
best response. Godfather is not able to teach Q0 this lesson, since Q0 cannot
remember its previous action|the one being rewarded or punished.



It is worth noting that changing the value \2" in the payo� matrices changes
the probability that a pair of Q learners will cooperate. As the value decreases,
the mutual cooperation equilibrium becomes easier to �nd for Q learners, in part
because the expected payo� for defecting against a random opponent decreases.
On the other hand, as the value increases, �nding the mutual cooperation equi-
librium becomes harder. Indeed, if the value exceeds the mutual cooperation
payo� (3), the game changes into the prisoner's dilemma, described next.

5.3 Prisoner's Dilemma: Incentive to Defect

Regardless of the opponent's choice, a player in the prisoner's dilemma is better
o� defecting:

M1 =

�
3 0
5 1

�
;M2 =

�
3 5
0 1

�
:

As in \deadlock", Q learners are sensitive to the dominance of one choice over
the other and quickly converge. In this case, however, the payo� is suboptimal.

Bully's strategy in this game is to defect. The Godfather strategy is tit-for-
tat: cooperate if the opponent cooperates and defect otherwise. Here, we get the
following results:

Q0 Q1 Bully Godfather

Q0 1.179 (0.115) 1.156 (0.028) 1.202 (0.011) 1.383 (0.324)
Q1 1.169 (0.038) 1.204 (0.085) 1.198 (0.010) 2.947 (0.004)

The combination of Godfather and Q1 is the only pair that achieves the
mutual cooperation payo� in this game. Interestingly, Godfather appears to be
able to sometimes (high variance) lure Q0 to the higher paying policy.

5.4 Chicken: Incentive to Exploit

In chicken, each player is better o� choosing the opposite action of its opponent:

M1 =

�
3:0 1:5
3:5 1:0

�
;M2 =

�
3:0 3:5
1:5 1:0

�
:

The game is suggestive of the \game" of highway chicken, in which two cars
approach each other at high speed. At the last moment, the drivers must decide
whether to veer away (cooperate) or keep going straight (defect). If one driver
veers and the other doesn't, the \chicken" is given a low payo� and the other
player gets a high payo� for bravery. However, if neither player chickens out, the
result is an extremely low score for both.

Chicken can be a trickier game to reason about than the prisoner's dilemma.
From a minimax perspective, the best strategy is to cooperate. However, if a
player notices that its opponent consistently cooperates, it has an incentive to
exploit this fact by defecting. Once one of the players defect, the result is stable.



In chicken, there is an incentive to act stupid|if you can convince your
opponent that you will defect, no matter what, your opponent will eventually
back down and cooperate, maximizing your score. Two smart opponents will
each try to convince the other that it won't back down, resulting in a kind
of meta-game of chicken (hold o� learning until the last possible moment). In
addition, whereas one could argue that, in prisoner's dilemma, tit-for-tat is the
best either player can reasonably expect to score (there is no way to imagine
inducing an opponent to repeatedly accept the 0 \sucker" payo�), tit-for-tat in
chicken is marginally less attractive than the stable option of defecting against
the opponent's cooperation.

Our results illustrate the complexity of the game:

Q0 Q1 Bully Godfather

Q0 2.452 (0.703) 2.535 (0.527) 3.375 (0.007) 2.849 (0.010)
Q1 2.391 (0.443) 2.868 (0.015) 3.374 (0.007) 2.948 (0.004)

The most successful strategy in this game is Bully, which repeatedly defects
and waits for the learner to cooperate in response. Once again, the Godfather{
Q1 combination is able to �nd the mutual cooperation payo�. Not surprisingly,
most combinations of follower vs. follower result in a payo� of approximately
(1:5 + 3:5)=2 = 2:5 with high variance as the learners randomly choose one of
the two asymmetric equilibria.

Two surprises are the results for the combinations of Q1{Q1 and of Q0{
Godfather. The low variance and the high score suggests that these combina-
tions consistently settle on mutual cooperation. This cooperation is surprising
since Q1 cannot represent the threatening strategy and Q0 cannot respond to it.
In fact, mutual cooperation is not completely stable for these players. Prelimi-
nary investigation indicates that the Q-learning agents are learning to cooperate
temporarily, but then periodically exploring the result of defection since they
are unable to remember the negative e�ect of doing so. Each time they defect,
it works out well at �rst. But eventually, as the opponent re-adapts or punishes
the defecting agent, the agent \remembers" why it is better to cooperate and
switches back to cooperation for a period of time before forgetting and exploring
once again. This cycle repeats on the order of every few dozen stages.

6 Related Work

There is a huge literature on repeated games, equilibria and learning; intro-
ductory textbooks on game theory (Osborne and Rubinstein 1994) serve as an
entryway to this set of ideas. The most relevant research to our current work is
on \Folk Theorems." To a �rst approximation, folk theorems show that there
are strategies, like Godfather, that support mutually desirable outcomes, like our
targetable pairs, in a Nash equilibrium sense. Our focus is on the use of these
strategies as counterparts to more direct best response strategies in computa-
tional experiments.



Our work grows out of recent attempts to use game theory as an under-
pinning for multiagent reinforcement learning. Unlike Hu and Wellman (1998)
and Littman (2001), our work examines learning in general-sum games that
may include neither adversarial nor coordination equilibria. Unlike Greenwald
et al. (2001), Jafari et al. (2001), Claus and Boutilier (1998), and others, we
looked at combining best response strategies with \leader" strategies. Note that
the strategies we explored need not be Nash in the strict sense. This is because
it is very diÆcult to compute a best response to an opponent whose strategy is
the Q-learning algorithm. For example, in the Prisoner's dilemma, there might
be a strategy that performs better than tit-for-tat against Q0 by �rst \teaching"
Q0 to cooperate, then exploiting it for several steps before returning to coop-
eration mode. Constructing such a strategy requires detailed knowledge of the
parameters used in the learning algorithm and the precise update rule used.

With regards to inter-agent negotiation, traditional methods rely on commu-
nication among participating agents (e.g., Sandholm and Lesser 1995, Zlotkin
and Rosenschein 1996). Coordination without communication generally relies
upon common knowledge or preferences that is either pre-programmed into
the agents or assumed to exist a priori (e.g., Fenster et al. 1995, Stone and
Veloso 1999). In contrast, this work examines the possibility of coordination via
repeated interactions.

7 Conclusions

This paper illustrates the importance of strategies that can lead best-response
agents in repeated games. We showed that the combination of two basic Q-
learners (Q0{Q0) results in suboptimal payo�s in 3 out of the 4 games studied.
We described a simple stationary leading strategy, Bully, and a more complex 2-
state strategy, Godfather. Both Bully and Godfather are general strategies that
apply across a range of games. Godfather attempts to stabilize a mutually ben-
e�cial payo� by punishing its opponent whenever it deviates from its assigned
action. We showed that a 2-state Q-learner (Q1) that remembers its immedi-
ately previous action learns to respond consistently to Godfather's threats. We
conclude that (a) agents need to go beyond straight best response to succeed in
a broad range of scenarios, and (b) it is not necessary to resort to complicated
strategies to do so.

In our experiments, the combination of Godfather{Q1 was the only one that
settled on mutual cooperation in every game. This combination led to the highest
score attained in all games except chicken, in which Bully was able to overpower
the learning agents to achieve a higher score. However, even in chicken, Godfa-
ther might be a safer strategy, since Godfather{Godfather would achieve mutual
cooperation, whereas Bully{Bully would result in mutual defection.

Indeed, although we have not presented results of our leader strategies playing
against themselves, it is the case that it can result in suboptimal performance due
to the fact that they assume that their opponents can adapt to their strategies.



Rather, the most successful pairings, as explored in this paper, are between a
leader and a follower.

Faced with an unknown opponent, it is not clear which role an agent should
adopt. A natural approach would be to mix leader-like qualities and follower-
type qualities as a function of the opponent's behavior. Human agents in high-
stakes multicommodity auctions, for example, have been shown to both issue
and respond to threats as the need arises (Cramton and Schwartz 2000).

In any case, the results presented in this paper suggest that when an agent is
interacting with other agents in a competitive game-like environment, it should
consider whether the other agents are using a best response strategy. If so, the
agent should look for ways to apply the Bully and/or Godfather strategy. Mean-
while, if credible, there is a potential advantage in some situations to convincing
a leader that the agent is not capable of recognizing the e�ects of its actions
suÆciently to be worth threatening.

Our on-going research agenda involves creating agents that can implicitly
negotiate by issuing and responding to threats in a detailed simulator of the
FCC spectrum auctions (Csirik et al. 2001, Reitsma et al. 2002). It is clear that
an agent can e�ectively threaten opponents provided that that the opponents
are able to understand the threats. However, it is not so clear what mechanism
underlies the opponents' response to these threats. Nonetheless, human bidders
clearly show behaviors of both issuing and responding to threats. In this work,
we have taken a �rst step toward understanding how to implement agents that
can perform this important type of negotiation.
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