
DARPA Urban Challenge Technical Report

Austin Robot Technology

Team Leader:
Dave Tuttle {dave@austinrobot.com}

Project Management:
Dave Tuttle

University of Texas at Austin Contact:
Prof. Peter Stone {pstone@cs.utexas.edu}

Tech Report Authors:
Peter Stone

Patrick Beeson {pbeeson@cs.utexas.edu}
Tekin Meriçli {tmericli@cs.utexas.edu}

Ryan Madigan {r_madigan@hotmail.com}
with input from many other team members

6/1/2007

"DISCLAIMER: The information contained in this paper does not represent the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of Defense. DARPA does
not guarantee the accuracy or reliability of the information in this paper."

Executive Summary
Austin Robot Technology's (ART's) entry in the DARPA Urban Challenge has two main goals.
First and foremost, the team aims to create a fully autonomous vehicle that is capable of safely
and robustly meeting all of the criteria laid out in the Technical Evaluation Criteria document [1].
Second, and almost as important, the team aims to produce, educate, and train members of the
next generation of computer science and robotics researchers. This technical report documents
our significant progress towards both of these goals as of May 2007 and presents a concrete plan
to achieve them both fully by the time of the National Qualifying Event (NQE) in October.
Specifically, it presents details of both our complete hardware system and our in-progress
software, including design rationale, preliminary results, and future plans towards meeting the
challenge. In addition, it provides details of the significant undergraduate research component of
our efforts and emphasizes the educational value of the project.

1 Introduction
The starting point for ART's entry in the Urban Challenge is the same vehicle that was designed
and engineered as a part of the 2005 DARPA Grand Challenge. The vehicle qualified for that
year's NQE and continues to meet all of the basic safety requirements that are uncompromisingly
essential for participation in the Urban Challenge, including a purely mechanical E-stop that,
with no software in the loop, is able to bring the car to a safe and quick stop. The main hardware
enhancements since 2005 are 1) an Applanix POS-LV inertial navigation unit1 that provides sub-
meter GPS accuracy, and 2) a Velodyne HDL-64E high-density lidar sensor2 that provides a 360°
high-density point cloud of range data at a frequency of 10 Hz. Other key modifications include
the introduction of the ability to shift into and drive in reverse, the ability to control the turn
signals from software, improved braking controls, and the repositioning of the existing SICK
lidars and visual sensors so as to provide close-range sensing and road marking information that
complements the information provided by the Velodyne. As fully described in Section 3.1, we
believe that the vehicle hardware is already fully capable and robust enough to support
successful completion of the Urban Challenge.

As such, ART's main focus this year has been, and continues to be, on the software required to
interpret the rich and voluminous sensor data and to safely, accurately, and robustly control the
vehicle in an urban environment. This software is being developed in close partnership with The
University of Texas at Austin (UT Austin) as a part of the Freshman Research Initiative (FRI)
within the College of Natural Sciences (CNS). The aim of the FRI is to provide undergraduate
students, including but not limited to freshmen, direct hands-on exposure to science research
during their undergraduate careers. FRI is supported by the National Science Foundation (NSF).
As a part of this program, CNS supported a spring 2007 class taught by Professor Peter Stone
that was devoted entirely towards developing software for ART's Urban Challenge entry.3 The
course included 25 undergraduate students ranging from freshmen to seniors with widely varying
backgrounds. In addition to approving this course as Professor Stone's primary teaching
responsibility for the semester, CNS is supporting a senior graduate research assistant (GRA) –
Patrick Beeson – to help manage and oversee the ongoing undergraduate research. CNS has also
contributed the crucial new Applanix and Velodyne hardware to the vehicle. This deep
institutional commitment has enabled the team to place a heavy focus on education and training

1 Applanix POS LV: http://www.applanix.com/products/poslv_index.php
2 Velodyne HD Lidar: http://www.velodyne.com/lidar/home.html
3 Course website: http://www.cs.utexas.edu/~pstone/Courses/378spring07/

while also moving steadily forward towards the primary goal of meeting the challenge. Indeed,
the control software that drove the car during the autonomous run shown in ART's qualification
video was written by undergraduates as part of this course.

The two main problems we are trying to solve for the Urban Challenge are 1) the interpretation
and integration of high-density sensory data towards a complete, real-time model of the world
that includes an awareness of local terrain and any obstacles or other vehicles in the vicinity and
2) precise, safe control that takes into account this world model, including reaction to observed
and predicted behaviors of other vehicles. In pursuit of these two challenges, the three key
themes that drive our design choices, as well as central lessons in the UT Austin class, are as
follows:

1. Safety first. All software needs be designed in such a way that the worst case scenario is
mission failure. If there is any doubt regarding the safety of a maneuver, then it should not be
undertaken. For example, this criterion indicates that in sensing obstacles, to the extent that
trade-offs are necessary, false positives are preferred to false negatives: the vehicle must
never fail to recognize an obstacle in its vicinity. Sensing "phantom" obstacles may degrade
performance but will not compromise safety. With the maintenance of no false negatives as
an invariant, the incidence of false positives should be reduced as much as possible.

2. Controlled complexity. While it is important to be fully aware of and knowledgeable about
state-of-the-art robotics research, for any given problem the simplest possible solution should
be tried first. Given the current state of the art and the time scale involved, we view the
Urban Challenge as mainly an integration challenge. That is, most of the technologies to
succeed already exist. Thus the research to be done is not in the development of completely
new algorithms and approaches, but rather in tuning and integrating existing algorithms. For
the sake of robustness and transparency, straightforward solutions are highly preferable.

3. Frequent and incremental testing. To succeed in the Urban Challenge it is not sufficient to
successfully navigate an urban environment once. Rather, the car must be able to safely
complete every mission it is given, no matter what the weather conditions or the behaviors of
the other vehicles in the environment. As such, every individual software component must be
tested, first in simulation but also in the real world, in as many possible conditions as
possible, and every change to a component needs to be tested in the context of the complete
system to ensure that it doesn't adversely affect other interacting software components.

Though we do not explicitly refer to it again in this document, this theme is pervasive
throughout our entire design and development process. We regularly test on long straight-
aways and parking lots on the UT Austin Pickle Research Campus (PRC)4, on curvy
roadways at Driveway Austin5 (see Figure 7), and occasionally at the Southwest Research
Institute (SwRI) site visit location6 in San Antonio.

The remainder of this document is organized as follows. Section 2 provides an overview of the
main components of our system and team organization, beginning with the system architecture
and including the team composition and further details about our approach to education and
training. Section 3 presents and analyzes our system design, focusing first on hardware and then
dividing the software into the sensing, modeling, and control components. Section 4 includes our
performance results to date, and Section 5 concludes.

4 PRC satellite photo: http://www.wikimapia.org/maps?ll=30.3866,-97.7269&spn=0.008592,0.005932&t=k
5 Driveway Austin Motorsports Academy and Retreat: http://www.drivewayaustin.com
6 SwRI site visit: http://urban.challenge07.googlepages.com/sitevisitcourse

2 Overview
This section begins with an overview of our system architecture. Full details of its various
components are provided in Section 3. We then present an overview of our team's composition
with emphasis on the key areas of expertise that are needed to succeed in the Urban Challenge,
and elaborate on the ways in which we are achieving our goal of educating and training future
computer scientists.

2.1 System Architecture Overview

An abstract view of the system architecture consists of the following four components, as
illustrated in Figure 1.

1. The vehicle hardware, shown in blue, includes an electro-mechanical E-Stop; actuators for
steering, throttle, shifting, signaling, and braking; computing hardware; and sensing
hardware.

2. The sensing subsystem, shown in purple, takes raw sensor data as input and interprets it into
a form that can be used for world modeling. This module includes coordinate transforms into
a single frame of reference, ground plane removal, and other related pre-processing steps.

3. The world model, shown in orange, merges the fused sensory data into a single, coherent
representation of the state of the vehicle and its environment.

4. The control software, in green, itself takes a common layered approach, being divided into a
pilot that is in charge of low-level actuator commands, a navigator that is in charge of local
obstacle avoidance and lane following, and a commander that is in charge of high-level
planning based on the assigned mission.

Figure 1 - System architecture overview.

Though fairly generic at this level of abstraction, a key feature of this architecture that aligns
with our “safety first” design principle is that the E-stop is completely independent from the
software. That is, no error in the software can affect the E-stop. Further detail on each of the
above four components is presented in detail in Section 3.

2.2 Team Composition

In order to complete an integration project as complex as creating an autonomous vehicle,

expertise in a wide variety of areas is needed. Specifically, every effective team needs deep
expertise in mechanical engineering, electrical engineering, computer science/robotics, software
development, and project management. In this section, we summarize the qualifications of some
of the key personnel on the ART team with specific attention to how they fill the above needs.

Mechanical engineering: A prerequisite for any successful Urban Challenge entry is a vehicle
that has been engineered mechanically to be robust and failsafe. Our base vehicle has been
created largely by Juan Martin-de-Nicolas who brings to the team over 20 years of experience
working with machinery and mechanical systems. For ART’s entry in the October 2005 DARPA
Grand Challenge NQE, Juan was responsible for all mechanical work done to convert a
passenger vehicle into a competitive autonomous robot. Juan continues to maintain the vehicle
hardware and make any necessary modification as new sensory systems become active.

Electrical engineering: As a close counterpart to the vehicle's mechanical systems, its electrical
system also requires significant engineering and maintenance. Our electrical engineering is led
by Don McCauley, who has over 25 years of experience designing hardware systems architecture
and microprocessors for IBM, Intel, and AMD. Don has led the effort to re-engineer all our
vehicle's sensors and actuators for the Urban Challenge. This effort dramatically improved the
reliability and fault tolerance of all onboard systems. Skilled in interfacing analog and digital
systems, Don designed most of the analog and digital filters and custom hardware interfaces
required within our vehicle. Don also designed and integrated the various computer systems,
micro-controllers and networks used within our vehicle.

Computer Science and Robotics: UT Austin contributes world class expertise in computer
science and robotics via the leadership of Professor Peter Stone and GRA Patrick Beeson.
Professor Stone, recent winner of the prestigious IJCAI Computers and Thought Award, brings
with him 13 years of experience in CS robotics, with specific focus on machine learning and
multirobot systems. In the course of developing several championship RoboCup robot soccer
teams, he has contributed novel algorithms for sensor/actuator calibration [2], robot vision [3-5],
localization [6], agent modeling for prediction of other agents' behaviors [7], reasoning under
uncertainty [8], and multiagent reasoning [9], all of which are directly applicable to this project.
At least as significantly as his technical algorithmic contributions, Professor Stone has extensive
experience fielding complete, robust working multirobot systems, as is necessary for successful
participation in international research competitions such as RoboCup and the Trading Agent
Competition [7, 10-14]. This competition expertise will be invaluable as we prepare to field a
complete, robust working system in the Urban Challenge.

Patrick Beeson is working closely with Professor Stone on this project with regards to software
development, sensor calibration, and education of the students involved in the project. Patrick is
within a few months of completing his Ph.D. on topological navigation to facilitate human-robot
interaction.7 His published research contributions are directly relevant to this project [15-21].

Software development: With such a large team of contributors at various levels of expertise, it
is essential that our team use software development best practices in order to succeed. Jack
O'Quin brings to the project 30 years of experience in contributing to development of large,
complex software systems. He worked for IBM and the T.J. Watson Research Center leading
development of, among other things, AIX (IBM's version of UNIX) and the microprocessor
architecture for the PowerPC. Since retirement, he has helped pioneer open-source, real-time
audio applications for Linux. Jack has been a member of ART since 2004, and developed much
of the software for our 2005 DARPA Grand Challenge entry. His contributions include: selecting
7 Patrick is delaying his thesis defense until after the competition so as to be able to participate fully in this project.

and deploying programming tools for build and change control; packaging stable versions of all
external software dependencies, including the Linux operating system; improvements in on-
board serial device error handling; PID control for braking and throttle to achieve requested
vehicle speeds; and much vehicle integration testing and debugging.

Project management: In addition to software development expertise, the size and scope of this
project requires expert project management. Dave Tuttle is a technical and management
consultant based in Austin, team leader of the ART team, and a team member of the UT
Challenge-X hybrid vehicle project. He started Sun Microsystems’ Austin Microprocessor
Design Center from scratch. Over a 5 year period he built one of Sun's most effective CPU
design teams. He was one of the key designers and project leaders of the teams which launched
the IBM Power1, Apple PowerMac, the "Deep Blue" chess playing supercomputer, and two
generations of the world's fastest supercomputers for the ASCI projects.

In addition to the key personnel listed above, the team includes several other past and/or part-
time contributors from ART and dozens of students from UT Austin.

2.3 Education and Training

As noted in Section 1, one of the two central goals of ART's Urban Challenge entry is to produce,
educate, and train members of the next generation of computer science and robotics researchers.
The currently declining enrollments in computer science undergraduate programs across the
country is a potential crisis for the nation's future IT industry, as well as for government research
agencies such as DARPA. Inspiring challenge problems may be essential drivers towards
reversing this enrollment trend. As such, we believe strongly that the long-term impact of
competitions such as the Urban Challenge will be as much in education and training as it will be
in technological innovation.

Acting on this belief, our team has already used the project as a tool for educating 25 UT Austin
undergraduate students about the world of computer science research and continues to work
directly with these students towards successful completion of the Urban Challenge. With full
participation and cooperation from ART members, Professor Stone designed and taught a spring
semester course called "CS 378 -- Autonomous Vehicles: Driving in Traffic."

As a part of the Freshman Research Initiative described in Section 1, Professor Stone structured
the class as a single, unified software development project. Rather than being assigned papers,
the students read and summarized research papers of their own choosing (at least two per week),
chose component subprojects in teams according to their own interests and expertise, and used
class sessions to discuss their progress and brainstorm future directions. In contrast to more
standard courses, they worked collaboratively rather than individually; read and evaluated
cutting edge research rather than reading pre-digested textbook information; worked on a single,
large, open-ended project rather than a series of constrained programming assignments; and
presented their work to the class rather than listening to lectures.

The students were presented with this contrast as representative of the difference between
undergraduate and graduate education with the goal of encouraging them to explore the
possibility of proceeding to graduate school and eventual careers in research. Feedback from
class surveys indicates that indeed several of the class members are newly interested in pursuing
such a path, and one class member used his contribution to the project as the basis for his
undergraduate honor’s thesis. Although the class itself ended at the beginning of May 2007,
almost half of the students are continuing on with the project in some capacity over the summer

and, should we qualify for the NQE, into the fall of 2007.

From the perspective of education, our project has already been a great success. Students in the
course have directly contributed to many aspects of the autonomous vehicle. They have helped
make hardware modifications such as enabling software control of the turn signals. They have
made needed extensions to the Stage simulator for more realistic offline testing. They have
developed low-level software control devices for braking and speed control. They have
developed prototype vision algorithms for stop-line and lane detection. They have developed
parsers and visualization tools for RNDF and MDF files. They have developed capabilities to
generate and follow smooth curves for path-planning. They have developed drivers for the
Velodyne and our other sensors. And they have developed the complete high-level planner for
vehicle control and obstacle avoidance that controlled the car during the autonomous run shown
in ART's qualification video. This last development achieved the explicit goal of the course,
which was to collaboratively create software with the capability of passing the video
qualification and to thereby make significant progress towards the capabilities needed for the site
visit.

Nonetheless, the project is still very much a work in progress and the students are eager to see it
through to completion. As noted above, several of them are continuing to contribute to the
project, many on their own time, and plan to continue through the site visit. In fact, we plan to
allow students from the class to handle most of the duties during the actual June site visit.
Should we qualify for the NQE, they will be energized to continue their work through October
and will get to experience the ultimate satisfaction of creating a complete working autonomous
vehicle. As such, qualifying for the NQE would dramatically increase the educational impact of
the project.

3 Analysis and Design
This section expands in detail on the four system components presented in Section 2.1, namely
the hardware, sensing, world modeling, and control, in more detail. As appropriate, we sketch
the reasoning behind the design decisions and analyze their effectiveness. More detailed testing
and evaluation of some of the key system components is presented in Section 4.

3.1 Hardware

Our base is the same vehicle that participated at the National Qualifying Event of the 2005
DARPA Grand Challenge. Figure 2 includes a recent picture of our vehicle, a 1999 Isuzu
VehiCROSS “Ironman” edition which is described in detail in our 2005 technical paper.8 Our
complete hardware system upgrades our 2005 entry to handle urban environments, which require
higher precision and more robustness. Most significantly, we have augmented the vehicle to
include a high precision inertial navigation system that provides sub-meter localization accuracy
and a high-density lidar that provides 3D range data at a frequency of 10 Hz. Both of these
sensor additions are described in detail below after a brief overview of our existing E-stop
system and computing hardware. The overall hardware system is illustrated in Figure 2.

3.1.1 Actuators Hardware and E-Stop

Our actuators control the vehicle’s steering, throttle, shifting, signaling, and braking. Steering,
throttle, and braking all were in place and performed well during the 2005 Grand Challenge
8 ART’s 2005 Tech Report: http://www.darpa.mil/grandchallenge05/TechPapers/Austin_Robot_Technology.pdf

NQE. Since then, we have installed a custom shift-by-wire system to control forward, park, and
reverse, and we have installed relays to do signaling. By monitoring the vehicle brake pressure,
we now have a much more precise braking system than in 2005. All actuators have performed
extremely reliably throughout the spring semester, creating a stable platform for the
undergraduate class to test their software.

Our highly reliable electro-mechanic reactive E-Stop system is connected to the brake and the
throttle, providing instant response to a disable signal with no software in the loop so that it
works even if our vehicle loses power. The disable signal cuts current to a relay, which in turn
activates the brake in full, disengages the throttle, and simultaneously interrupts the ignition
circuit. The main idea behind the braking component is that a brake cable is connected to an
engaged electromagnet pulling against tension coils. When the circuit to the electromagnet is
broken, the tension coils pull the brake cable, causing the brake to engage fully.

Figure 2 - Hardware overview.

3.1.2 Computing Hardware

Our computing hardware is a mobile TeraFLOPS supercomputer. It consists of a pair of
computers to be used for vision and a third computer used for sensor fusion, world modeling,
navigation, and planning. Each of the computer systems uses two shock-mounted SATA hard
disk drives. The computers are connected with dual Gbps Ethernet links. The vision computers
connect to the cameras with dual IEEE-1394a PCI cards and the other computers use multi-port
RS-232 PCI cards to connect other sensors and actuators with RS-232, RS-422, RS-485, and
USB 2.0 connections. These computer systems were designed for redundancy and high
reliability. Parts — and even entire systems — can be swapped, if necessary.

Though our current system does not rely heavily on vision, we expect to focus on improving and
extending vision capabilities towards the semifinals and finals, as described in Section 3.3.3.
Thus the vision system is configured for maximum speed and reliability. Each vision system

includes two low-power dual-core AMD Opteron 64-bit microprocessors (4 cores total) and two
16-lane PCI-Express based NVIDIA 7900 GT Graphics Processing Units (GPUs) running stereo
vision software. Each of the other computers includes two single-core Opteron processors (2
cores total) with the same GPUs for visual display and debugging. Each of the NVIDIA GPUs is
capable of approximately 250 GFlops. Combining 8 GPUs with 12 Opteron cores gives our
vehicle well in excess of 2 TeraFLOPS of processing power.

3.1.3 Sensor Hardware

For navigation and maneuvering, two of the most crucial pieces of information needed by the
vehicle are its current location and velocity. We use the POS LV system from Applanix, a high
quality inertial navigation system (INS) coupled with GPS [22], to provide reliable location,
heading, and speed information even during GPS outages. To improve our dead-reckoning ability
and provide redundancy for the INS, our vehicle is fitted with a Sauer-Danfoss Hall effect rotary
position sensor (RPS), which provides a very accurate independent confirmation of the steering
angle and the wheel rotations.

For local sensing of obstacles and other vehicles, we rely most heavily on lidar sensors due to
their reliability, precision, and the fact that they are not greatly affected by lighting conditions.
However, we see vision as a necessary component of the system for its ability to recognize road
markings that cannot be picked up by lidars. To the extent that vision is also able to provide
information about obstacles and other vehicles, we will use it as a redundant information source
to verify and calibrate information from lidar.

Because we believe high-density sensors will be vital to winning the 2007 DARPA Urban
Challenge, we have invested in a Velodyne HDL-64E rotating high-density lidar, which gives a
360° real-time view of the environment around the vehicle, and thus is a perfect choice for this
purpose. We also use low-facing SICK brand lidars to cover blind spots of the Velodyne lidar, to
provide reactive collision avoidance for immediate threats, and to look for curbs and other
geometric lane boundaries visible to lidars. As detailed in Section 3.3.2.2, bringing the Velodyne
sensor online has been an extensive focus of our efforts during the spring of 2007. It is now
operational and will provide the bulk of our local sensory information during the site visit.

At this writing, our vision hardware, along with prototyped software, is in place, but we do not
use vision yet for vehicle control. Our vision system consists of a set of four stereo cameras and
additional short-range color cameras. The housings for the left two cameras of our four-camera
stereo rig are visible in Figure 2. These high resolution (1280x960) cameras from Sony deliver
quality images through a Firewire (IEEE-1394) interface to our multi-processor computing
systems, where dedicated GPUs process the data in real time and output depth information
similar to the data from lidars. The stereo cameras are black/white and front-facing. We will
mount multiple short-range low-quality color cameras around the vehicle to fill gaps in close-
range information. They will be used to recognize road markings and other vehicles’ signals and
to cover blind spots of the stereo cameras.

3.2 Robot Control Interface

We utilize the Player robot server9 as our hardware control interface. In doing so, we get well-
defined interfaces of commonly used robot data types, a distributed object system, message
passing, thread handling, and seamless integration with the Stage 2D simulation backend. All
9 Player project: http://playerstage.sourceforge.net/

software modules, except for the Commander module, are written as Player drivers, which allow
for clients written in several languages to connect to the drivers for testing. This platform has
been invaluable for allowing students to make progress in the class, as they can focus almost
entirely on the problems of programming the vehicle, while issues like threading and message
passing are mostly handled “behind the scene” by Player.

Figure 3 illustrates the current robot architecture as Player drivers. This is a more detailed
explanation of the overall software design that combines elements of Figures 1 and 2.

3.3 Sensing Modules

The sensing subsystem interfaces individual sensors. The sensing modules correspond to the
three main types of sensing on our vehicle – global positioning (localization), lidar, and vision.

Figure 3 - Detailed system architecture, as Player drivers/clients. Note the left side of the figure denotes sensor
fusion, while the right side lays out safe control.

3.3.1 Odometry

The Applanix POS LV sensor provides continuous position, heading, and speed information for
navigation and control. The Applanix sensor provides this sub-meter position and orientation in
the Lat/Long coordinate system used by the RNDF. For ease of development, the odometry
module transforms this data from Lat/Long coordinates to a Cartesian (x,y,θ) coordinate system
whose origin is centered on the vehicle’s rear axle at the start of a mission. This Cartesian
coordinate system is used by the lidar fusion module (Section 3.4.1) and the map lanes module
(Section 3.4.2) to produce a world model.

The odometry module is also responsible for converting the Applanix velocities (in a Lat/Long
coordinate system) into translational and rotational velocities (m/s). This information is used by
both Navigator and Pilot (see Section 3.5) for reactive speed control.

3.3.2 Lidars

3.3.2.1 SICK Lidars

Our use of the SICK lidar units is relatively straightforward. We have mounted our units upside
down to reduce sunlight interference by keeping the rotating mirror inside the unit angled away
from the sky. We have had problems with the front SICK frequently overheating due to the Texas
climate combined with the heat coming off the engine block. We have ordered thermal coolers
that, once installed, will keep the lidar below 100° Fahrenheit. Our sickfast player driver
improves on the standard Player driver by supporting the SICK S14 FAST and by setting the
device to run in "high availability mode", which eliminates most laser shutdown conditions.

3.3.2.2 Velodyne Lidar

The Velodyne lidar, which is newer technology that arose from Team DAD’s 2005 Grand
Challenge entry,10 has been more challenging to use effectively. Figure 6(left) illustrates the 3D
point cloud provided by the Velodyne unit, which provides information between +2° and -25°
from the horizontal plane. Much work was needed to obtain these high quality results.
Specifically, our unit arrived lacking calibration and returned drastically incorrect distances,
adding 2.6 cm to every meter of real world distance, so that an object 40 meters away would
show up as 41.04 meters away (not including the additive distance errors discussed below).

Unfortunately, this small distance-dependent error was not the only source of error in the unit.
The device itself contains 64 individual lasers, each of which has a large constant error that is
initially unknown and apparently unique to each unit. Calibrating these was straightforward once
the distance-dependent error discussed above was discovered and solved for. To calibrate the
unit, we first took several indoor data sets and focused on the few lasers that have pitch near 0°.
Given that our data sets had unique obstacles that were a known distance away (e.g. a piece of
plywood held vertically in a long corridor), we found the offsets to subtract from each of these
near horizontal lasers in order to obtain the correct distance information.

Once we had several lasers calibrated, we then took several sets of data logs with the unit
mounted at +45° and aimed at tall, flat buildings on the UT Austin campus. By using the few
calibrated lasers to determine the ground truth distances of these buildings, we were able to find
the distance offsets needed for the rest of the 64 lasers. Most of these constant distance errors are
between .3 and .5 meters - quite a significant distance from the perspective of world modeling.

To take advantage of the calibrated Velodyne sensor and following our design principle of trying
the simplest algorithms first, we use “height-difference” maps to identify vertical surfaces in the
environment without the need for cutting-edge algorithms for 3D, real-time modeling [23-24].
We take the 3D Velodyne data, and at each cycle (i.e. every complete set of 360° data), we create
a 2½D “height-difference” map. Our solution can be thought of as a “slimmed down,” thus
computationally efficient, version of the terrain labeling method performed by the 2005 Grand
Challenge by the Stanley team [25].

10 Team DAD’s 2005 tech report: http://www.darpa.mil/grandchallenge05/TechPapers/TeamDAD.pdf

In our solution, we have a Cartesian grid (similar to the occupancy grid in Section 3.4.1) that is
populated, analyzed, and then cleared at each processing cycle. Instead of each cell modeling the
probability of occupancy as in our laser fusion module, each cell tracks the max and min Z value
(height) of lidar scans that fall into the cell for the current set of 360° range data. After all range
data for a revolution is added to the occupancy grid, a simulated lidar scan (described in detail in
Section 3.4.1) is produced from the grid –- the algorithm casts rays from the Velodyne origin,
and an obstacle is “detected” whenever the difference between the max and min Z values is
above a threshold. The result is a 360° 2D simulated lidar scan, which looks very similar to the
data output by the SICK lidar devices. However, this lidar only returns the distances to the
closest obstacles that have some predetermined vertical extent.

This simplified approach lends itself to speedy operation, allowing us to efficiently process the
two million points per second produced by the Velodyne. Each of these points is transferred from
the device in a UDP packet. The act of capturing and processing these packets, for reasons
described in Section 4.2, is split into two modules. The 'reading' module serves only to capture
data packets from the Velodyne, while the 'processing' module performs the actions necessary to
transform the Velodyne output into useful information.

3.3.3 Vision

Figure 3 omits any reference to vision because we currently do not use vision information in the
vehicle’s navigation. Instead we rely on lidars and on the implied lane boundaries extracted from
the RNDF waypoints (see Section 3.4.2 for details). Upon completion of the vision modules
explained below, the World Model module (Section 3.4) will subscribe to the visual sensors and
incorporate visual data, along with RNDF, lidar, and odometry, to improve our current model of
the vehicle’s local surroundings.

The Stereo Vision module has been in development since the 2005 Grand Challenge NQE. Once
operational, it will complement the Velodyne lidar output by providing texture information (such
as road markings) in addition to range data. Using GPUs to process stereo vision faster than
using CPUs, the output of vision is an orthographic projection of the road ahead of the vehicle,
viewed from overhead. Lane markings, obstacles, and vehicles appear in a Euclidean
reconstruction that preserves relative distances. The stereo vision outputs depth information,
similar to that from lidar, to ease fusing of sensing data. Figure 4 shows an example of the stereo
vision: the left image is obtained by superimposing left and right camera data; the right image
shows a recovered bird’s-eye view of the scene. Note that the computed positions of double
lines, the traffic cones, and the trash can correspond to their real-world positions.

The Short-Range Color Vision module is a new addition to the system, intended to recognize
road markings and other vehicles in traffic. For the Urban Challenge, the vehicle needs to be
careful to recognize and stop at stop lines and to stay in its lane. It is also important that the
vehicle be able to recognize other vehicles in traffic as well as their intentions, including from
their past trajectories and from their signals (braking, backing up, and turning) when available.
Unlike the stereo vision, this module uses color cues for these purposes. Distance information for
objects of known dimensions is recovered based on sizes of monochromatic colored objects. This
module is designed with special-purpose shape and color heuristics specialized to recognize each
expected type of road mark or signal. Such a design requires low computation overhead and is
appropriate for the auxiliary roles played by these sensors. This work was initiated as a class
project. Preliminary results for color-based road detection are shown in Figure 5.

 Figure 4 - Stereo Vision. Figure 5 - Color-based road surface detection.

3.4 World Model

As introduced in Section 1, we believe that one of the two fundamental problems to be solved as
a part of the Urban Challenge is the interpretation and integration of high-density sensory data
towards a complete, real-time model of the world that includes an awareness of local terrain and
any obstacles or other vehicles in the vicinity. Our current software does this using a combination
of lidar fusion that provides distances to the closest obstacles seen by any lidar in the recent past,
map lanes that provides a predictive representation of lane locations generated from the input
RNDF, and object recognition that fits obstacles that fall into lanes to rectangular models and
tracks each distinct object over time.

3.4.1 Lidar Fusion

The lidar fusion module is responsible for integrating information from the Velodyne and the
SICK lidars. Currently, this is done as an extension to the commonly-used occupancy grid
structure [26-27] that allows noise to be handled by accruing evidence of obstacles over time and
allows blind spots to be handled by remembering information in portions of the environment not
immediately visible to the vehicle. Figure 6(right) illustrates a short-term occupancy grid created
using the raw Velodyne lidar illustrated by Figure 6(left).

To produce its output, this module pretends that a lidar unit is located at the origin of the vehicle
(center of the rear axle), and it then projects a simulated laser ray from the vehicle into the grid
for each degree of rotation around the vehicle's location. This simulated lidar works like a real
360° laser range finder, returning the distance to the nearest obstacle; however, because the grid
is created by multiple lidar devices, the output of this simulated lidar scan is a single
representation that returns the closest obstacles seen by any of the physical lasers in the recent
past.

Figure 6 - Left: Velodyne lidar snapshot at SW corner of SwRI track. Right: Lidar fusion grid from Velodyne lidar
information.

As a result, a nearby obstacle detected by the front SICK lidar, even if not detected by the
Velodyne, is nevertheless included in the simulated range scan, while obstacles behind (in the
same direction, within ±0.5°) are not represented. We have introduced logic to prevent the “free”
evidence of one lidar unit from overwriting the “occupied” evidence of another lidar since, as
mentioned in Section 1, we prefer false positives to false negatives for safety reasons.

In addition to filtering noise and keeping around state, we plan to extend our current
implementation to also provide height estimates of the obstacles by utilizing the 3D information
provided by the Velodyne lidar unit. With this information we can estimate both the location and
height of obstacles, potentially allowing us to tell the difference between cones (small obstacles)
and the concrete posts (large obstacles), both present at the SwRI track.

3.4.2 Map Lanes

Initially conceived as a temporary substitute for visual lane recognition and stop line detection,
the Map Lanes module has become an important piece of our current software infrastructure.
Map Lanes is designed to parse an RNDF and to create a lane map in the Cartesian coordinate
system that the odometry provides (Figure 7). Its purposes are both to create a path for the car to
follow in the absence of visual lane detection and to distinguish areas in the environment where
objects detected by the sensors are relevant (within the lanes of the road where the car intends to
drive) from those areas where objects should be ignored (trees or buildings outside of the lanes),
no matter how close they are to the vehicle.

For relatively straight segments, this is simple line fitting with the lane widths defined by the
RNDF. Map Lanes estimates the locations of lane boundaries along curves by interpolation of the
location and heading. If RNDF waypoints are located exactly at the beginning and ends of the
curves, these hypothesized lanes line up with the real world lanes; however, in some scenarios,
particularly when the lanes swerve irregularly, these curves can vary slightly from the real world
lane markings.

Though Map Lanes is only a heuristic of where the lanes may be, it is quite useful for filtering
out the large amounts of lidar data coming into the World Model. However, it is important to
note that if the vehicle ignores an obstacle deemed by Map Lanes to be outside the lanes, our
reactive obstacle avoidance routines will nevertheless prevent collision with the obstacle, should
it in fact be in the roadway (see Section 3.5.2).

As our vision-based lane detection improves, we will incorporate visual lane detection into the
World Model using the same interfaces currently defined for Map Lanes. In this case, we plan to
use Map Lanes as a failsafe for when visual data is unreliable (illumination changes, rain) or
unavailable (unforeseen hardware failures).

3.4.3 Object Modeling

Using locations of obstacles from the lidar fusion grid, filtered through lane boundaries as given
by Map Lanes, is useful for reactive, local controllers like Navigator. However, for high-level
planning, we want to have object models to be able to make intelligent decisions. At the
Commander level of control, the robot should know that the lane is blocked by orange cones (re-
planning is necessary), a moving vehicle (queue up behind the vehicle), a stalled vehicle (go
around), or even people (stop completely if within a safety radius).

Using the simulated lidar scan from the lidar fusion module, we are currently producing and

testing code to build dynamic models of the obstacles nearest to the vehicle. We do this by first
filtering out points that do not fall within lane boundaries as defined by Map Lanes. Next, we
leverage the assumption that most obstacles are vehicles in order to cluster points to fit
rectangles. With these rectangles, we then have estimates of the size of obstacles, and what lane
(or lanes) these obstacles occupy. We are currently implementing the code to track these
rectangles over time which will allow us to complete the intersection precedence portion of the
Urban Challenge criteria. Figure 8 illustrates our progress.

Figure 7 - Map Lanes representation of an RNDF

created at a “Grand Prix” style racetrack in Austin.

Figure 8 - This figure shows our current progress in
object modeling – clustering lidar data and fitting

rectangles to clusters that may be vehicles.

3.5 Control

At the highest level of reasoning – taking input from the world model – exists our software
control system consisting of three primary modules: Pilot, Navigator, and Commander as
illustrated in Figures 1 and 3. The modules are defined by their relative level of reasoning about
the world and the position of the vehicle in it.

3.5.1 Pilot

The Pilot is the closest module to the physical hardware of the vehicle. It is responsible for
converting a desired speed and heading into appropriate throttle, brake, and steering corrections
through adjustments of the actuators of the vehicle. As such, Pilot essentially acts as a single
interface between our software controllers and our hardware.

The Pilot uses a physical model of the vehicle to control its speed and heading. The model
includes safe operating limits for the braking, acceleration, and steering controls. Using these
limits, a safety check filters the speed and heading requirements from the Navigator before
sending them to the PID controller which drives the physical actuators.

3.5.2 Navigator

The Navigator fills a crucial middle ground between high-level reasoning and low-level control.
It accepts orders from Commander and combines this with local sensory understanding of the
surroundings of the vehicle - the world model information along with raw range readings from
the front and rear SICK lidars - to decide on an appropriate speed and heading for a given
situation.

Navigator implements a collection of behaviors such as ‘Follow Lane’, ‘Stop at Intersection’,
and ‘Pass Left’ from which Commander selects when sending orders. For instance, if
Commander gives a general “Follow Lane” instruction, Navigator uses information from the
world model to maintain the current lane of travel while simultaneously performing any minor

obstacle avoidance within the current lane. Alternatively, if the vehicle detects that the lane is
blocked ahead, Navigator reduces its speed appropriately, eventually coming to a complete stop
when necessary. Commander then solves the problem of how to handle this blockage at a higher
level and issues updated orders to Navigator.

3.5.3 Commander

The Commander module operates at the highest level of reasoning. Navigator and Pilot, then, act
as implementers of the plan generated by Commander, which includes determining an optimal
route from the current location of the vehicle to the desired goal, maintaining an awareness of the
current state of the vehicle, and sending the resulting desired short-term behaviors to Navigator
as instructions. In this section, we give an overview of three key Commander functions – large-
scale path planning, behavior selection, and speed control – as well as an example of a higher
level functionality, namely intersection precedence.

3.5.3.1 Large-scale Path Planning

Commander’s first priority is to plan a distance-optimal route from the robot’s current position to
the goal position. This is implemented as an A* search in which every waypoint in the RNDF
acts as a node and the exits between them act as edges. The start position for the search is
defined as the last waypoint that the vehicle was near and the goal position is defined as the next
checkpoint specified in the MDF. The search heuristic is Euclidean distance between the current
position and the goal position. For efficiency, the route is only re-planned when the vehicle has
visited one of the nodes along the planned path or when the vehicle’s situation has changed.
Situation changes occur when a new behavior is necessary, such as the realization that the
vehicle’s lane is blocked ahead by a stalled vehicle.

3.5.3.2 Behavior Selection

Another of Commander’s responsibilities is the selection of a behavior for Navigator to follow.
Example behaviors include ‘Follow Lane’, ‘Turn Around’, ‘Stop At Line’, and ‘Park’. A more
complete list of behaviors is presented in Figure 9.

The behavior selected is a function of Commander’s state and the high-level situation of the
vehicle. Commander’s states currently include the following:

1) Road – Normal operation. Road following.

2) Lane Blocked – Our current travel lane is blocked ahead.

3) Dodging Blocked Lane – We are in the process of avoiding a blocked lane.

4) Road Blocked – The entire road is blocked.

The number of states will continue to increase as functionality is added to the vehicle.

Figure 9 - Commander’s interface to Navigator.

As an example, let us suppose there is a stalled car blocking the vehicle’s lane of travel. Upon
recognizing the lane blockage, Commander changes its own state to Lane Blocked and begins
issuing orders with the ‘Stop Now’ behavior to stop the vehicle as fast as possible. Once the
vehicle has stopped for an appropriate amount of time, Commander changes its own state to
Dodging Blocked Lane and plans an alternate route through another available lane. Commander
then begins issuing orders with the ‘Pass Left’ behavior and specifying high-level waypoints in
the alternate lane to seed Navigator’s behavior. Once Commander determines that the obstacle
blocking our original lane is safely behind (Road state), it plans a new route through the original
lane of travel and orders the ‘Follow Road’ behavior, or perhaps a ‘Merge Right’ behavior if a
right hand turn must be made soon. Once our vehicle has returned to its original lane of travel,
Commander resets its own state back to Road and continues on.

This finite state machine approach to a high-level control module has advantages and
disadvantages. Advantages include high predictability and reliability, as well as high
performance since state transitions are well defined and generally easy to compute. The primary
disadvantage is an inability to handle situations that were not defined as part of the state
machine. For the Urban Challenge, our state machine approach follows our “controlled
complexity” theme while still allowing the vehicle to complete its mission.

3.5.3.3 Speed Control

The final responsibility of Commander is to provide Navigator with parameters controlling
minimum and maximum speeds. In typical lane-following situations, Commander passes along
the values defined explicitly in the MDF for the current Segment or Zone. For some situations,
however, Commander lowers the maximum speed limit to ensure reliable control during higher-
precision maneuvers. For example, when the vehicle is performing a maneuver to dodge a stalled
vehicle blocking our lane, Commander ensures that we are not moving faster than 5 mph.

3.5.3.4 Intersection Precedence

At the time of this writing, Commander is capable of performing all basic navigation behaviors
from the technical evaluation criteria. Our main focus leading up to the site visit is on the basic

traffic functions of queuing at intersections and intersection precedence. Some of the advanced
navigation and advanced traffic capabilities, such as dynamic re-planning by Commander in
response to blocked roads, are already in place. However most will be the ongoing focus of our
efforts leading towards the semifinals in October.

For intersection precedence, the key information is whether there is a car in each lane at the
moment that we arrive at the stop line (i.e. with no more cars in front of us). Knowing that, the
precedence algorithm is straightforward: we need to let exactly one car go from each occupied
lane, and then it is our turn. It doesn't matter if there are any cars left in the other lanes, since
they will have arrived after we have. This will be straightforward to implement once we
complete our dynamic object modeling (see Section 3.4.3) so that we can recognize vehicles
stopped at the intersection when we arrive and track them as they traverse the intersection.

4 Results and Performance
Because our system is under continual development with a view towards being complete by the
NQE in October 2007, performance evaluation is ongoing. In this section we summarize
performance tests done to date of some of the key modules in our system, including analysis of
their strengths and currently needed directions for improvement. Specifically, we analyze the
performance of the vehicle hardware, the Velodyne lidar, the Applanix, Map Lanes, and
Commander.

4.1 Vehicle Evaluation

Our core vehicle hardware has logged hundreds of hours of testing over the spring of 2007
without major problems. Steering, shifting, and throttle have had no electrical or mechanical
malfunctions. The braking system has had periodic difficulties that were diagnosed as a bad
electric motor. It has worked as designed since the motor was replaced. The computers
underwent a recent OS change – from Fedora Core 3 Linux to Ubuntu Dapper Linux (with a
custom built kernel that includes a faster clock cycle) – with no adverse effects to the overall
system.

4.2 Velodyne Evaluation

As discussed in Section 3.3.2.2, in order to integrate the Velodyne into our system in time for the
site visit and to run it at its full 10Hz capacity, we use it to contribute to the 2D lidar fusion grid
described in Section 3.4.1. In this section, we evaluate both the speed of our Velodyne sensor
processing loop and the effectiveness of our integration of the Velodyne data into our occupancy
grid representation.

4.2.1 Velodyne Read

Achieving 10Hz processing with the Velodyne was not as straightforward as expected.
Specifically, our initial attempt at consuming data from the various lasers revealed that any delay
in reading the UDP packets sent by the Velodyne quickly caused an overflow of the read buffer
and thus packet-loss. As a result, the range data actually processed appeared to be arriving out of
order. For example, if an Ethernet packet representing the range-reading at 30 degrees (base
orientation) was received, the next packet might have a base orientation of 35 degrees, when
information regarding range at 31 degrees would be expected. Figure 10(left) illustrates this
problem by showing the base orientation of processed packets (in radians) plotted as a function

of time when an eight-microsecond sleep is inserted between each packet read. Even such a brief
pause quickly causes data to be lost.

The solution was to separate the processing of Velodyne data from the input reading.
Figure 10(right) illustrates the result of allocating a separate thread for packet input. In this case,
we package the 255 packets which compose a full Velodyne revolution as one message, and send
the resulting information to a processing module. Using this approach, we are able to process all
Velodyne input at the full 10Hz.

Figure 10 - Left: Graph of the base orientation (radians) of packet data as a function of time. Notice that packets
are being lost before .5 seconds have past. Right: The same thing (circles replaced by dots for easier viewing) but

with the processing done in a separate thread, packets are no longer lost.

4.2.2 Velodyne Process

Rather than creating a 3D (X,Y,Z) mesh or voxel-based model and rather than dealing with
ground-plane removal, which may not easily generalize to hills or uneven roads that may be
present in future competitions, instead we take the 3D Velodyne data and, at each cycle (i.e.
every complete set of 360° data), we create a 2½D “height-difference” map, described in Section
3.3.2.2.

Results are shown in Figure 11 using one of the data sets used to calibrate the lidar. Notice the
piece of plywood, in the office hallway. From our “height-difference” map, we get a 2D lidar
scan that sees only the walls, the vertical plywood, and some carts in the hallway, while ignoring
the ground and all other non-vertical objects.

Figure 11 - Simulated lidar scan (right) created by ray casting in a “height-difference” map, where only vertical
objects above a predetermined height are considered objects.

To test our calibration, and to verify Velodyne’s claims of 5cm accuracy, we performed analysis
of distances to various known obstacles. The plywood in Figure 11 was measured by hand to be
exactly 16.22m from the center of the lidar unit. Figure 12 shows the range readings (after
distances have been calculated from raw ranges) returned by the 6 lasers that have pitch angles
within one degree of horizontal. We can see that though the readings do underestimate the
overall location of the object, it is generally within the 5cm error claimed by Velodyne.

Laser
ID

Pitch Mean
range

Median Max Min Std.
deviation

34 0.32° 16.16m 16.16 16.18 16.14 0.01

35 0.66° 16.19m 16.2 16.25 16.01 0.052

56 1.0° 16.15m 16.15 16.18 16.12 0.014

9 -0.7° 16.19m 16.19 16.20 16.17 0.009

62 -0.36° 16.13m 16.13 16.14 16.12 0.007

63 -0.02° 16.25m 16.25 16.29 16.22 0.014

Figure 12 – After calibration using large building at distances above 30m, out unit tends to underestimate closer
objects; however the error is well within acceptable limits. Left: Recorded distance to obstacle 16.22m away from 6

near horizontal lasers. Right: Histogram of the distances calculated from these 6 lasers.

Though in keeping with our principle of “controlled complexity”, reducing the 3D Velodyne
information to a 2D representation prevents us from making full use of the 3D information
provided by the lidar at this time. Expanding our use of the 3D information, for instance to
detect obstacles that are behind other obstacles, while still maintaining a 10Hz processing loop is
to be a main focus of our efforts between the site visit and the NQE.

4.3 Applanix Evaluation

Along with the Velodyne sensor, the Applanix POS LV is one of the most significant hardware

Plywood

improvements to our vehicle since the 2005 Grand Challenge. When utilizing D-GPS from 6
satellites, the Applanix returns positions with sub-meter accuracy, and we have observed up to
0.02° angular accuracy.

To test the performance without the GPS signals, we covered both GPS antennas with aluminum
foil, and verified that we had no signal. We then drove the vehicle in both forward and reverse,
circled around traffic circles, and performed U-turns and three-point turns. The position was
estimated with inertial and wheel odometry only (dead reckoning) for 3 minutes before returning
to the exact starting position. The reported position was off by only 1 meter.

In contrast, before installation of the Applanix unit, localization accuracy was significantly
worse. In particular, we observed very noisy angular pose information – heading swings of ±5°
when accelerating or stopping were not uncommon. Loss or re-acquisition of GPS satellites
resulted in lateral position discontinuities of several meters and driving under trees or an
underpass always resulted in position discontinuities. Vertical errors of several thousand feet
were also observed under these conditions! Thus, the Applanix POS LV was an essential
upgrade to our vehicle for the Urban Challenge.

4.4 Map Lanes Evaluation

As described in Section 3.4.2, Map Lanes was originally conceived as a temporary placeholder
for visual lane detection. However, its effectiveness at providing Navigator and Commander
with useful lane information has been such that we plan to use it as the default lane modeling
module. Vision information, when available and highly reliable, can then be used to fine tune the
details.

As an informal evaluation of Map Lanes' effectiveness, we present Figure 13, which overlays its
output on top of an aerial view of our site visit test course at Southwest Research Institute
(SwRI). Note that even though its input is a sparse RNDF representation that does not precisely
model the curves at the corners of the track, the resulting lane markings line up quite closely with
the actual lanes.

4.5 Commander Timing Evaluation

In order to react in real time to incoming sensor data, it is important that none of the modules in
the control loop takes longer than the sensor cycle time. The undergraduate thesis that focused
on the creation of our Commander module includes an evaluation of Commander's speed, both
on average and in the worst case.

Commander's fast execution is a result of its underlying finite state machine implementation.
State transitions are triggered by simple Boolean expressions representing situations encountered
by the vehicle. The route adjustment itself is inexpensive computationally since it only requires
small modifications to the RNDF structure and an execution of the A* path planner. A
performance graph of Commander's execution time is presented in Figure 14.

Analyzing Figure 14, we can confirm several required evaluation criteria. In the graph, the dark
blue and yellow lines (bottom two lines in the plot) represent the execution time of Commander
for two consecutive test runs of our vehicle. The turquoise and pink lines (top two lines in the
plot) represent the execution time of Navigator for the same two test runs. Observe that
Commander operates very quickly under the common case, with most control cycles completing
in less than 1 ms.

Figure 13 - An example of our Map Lanes algorithm
run on the SwRI version 2.2 RNDF. Lane markings

are overlaid onto an aerial view of the course.

Figure 14 - Performance graph comparing
Commander to Navigator.

More specifically, we have two main evaluation criteria with regards to Commander timing.
First, we want to ensure that Commander executes faster than Navigator so that Navigator is
always operating with up-to-date situational information from Commander. Each test run
contains just one time step for which the Commander execution time shoots above the
corresponding Navigator execution time, probably due to random processor scheduling. Given
its rare and temporary nature, this overshoot does not present a significant problem with regards
to this evaluation criterion. Second, Commander should not spike its execution time above 50 ms
(the cycle rate of our sensors) so that it can keep up with incoming environmental data.
Evaluation of this graph shows that even the most extreme spike in execution time was below
18 ms.

5 Conclusion
As documented throughout, our team has made significant progress towards the Urban Challenge
goals. Table 1 addresses the status of our work towards each of the technical evaluation criteria,
including target completion date and the high-level approach for tasks that are in progress or
completed. We aim to have all tasks completed by September 1st at the latest in order to leave a
month and a half for only bug fixes and an emphasis on enabling hundreds of miles of failure-
free driving leading up to the NQE.

In summary, Austin Robot Technology is well along the way towards achieving both of its goals,
namely 1) successfully meeting the Urban Challenge technical evaluation criteria and
2) educating new young Computer Science researchers. With regards to our second goal, we
have already succeeded significantly by inspiring a class of students to work productively on the
project and to become involved in the world of academic research. With regards to our first, and
primary, goal, our hardware is in place and we have made significant strides in our software
development. Following the design principles of safety first, controlled complexity, and
frequent, incremental testing, we are well-positioned to complete the site visit tasks and are eager
to continue towards the final Urban Challenge.

Task Status Timeline
Basic navigation
Preparation for run Mission/Path Planning reads in RNDF and MDF, plans routes

between checkpoints.
Completed

Mission start World model determines the position and heading, proceeds to
the first checkpoint.

Completed

Checkpoints World model determines the position and heading; Commander
ensures that a checkpoint can be traversed.

Completed

Stay in lane Using Map Lanes / Using vision Completed / July 1st
Speed limits Commander determines the speed; Pilot enforces the speed limit. Completed
Excess delay Commander maintains timer. Completed
Collisions Lidar detects close obstacles; Pilot avoids immediate collisions;

Object detection predicts trajectories of self and other vehicles to
avoid predicted collisions.

Completed

July 15th

Stop line World model determines presence at stop line; Color vision
verifies.

Completed
July 1st

Vehicle separation Commander issues immediate stop in response to obstacle
detected in lane.

June 15th

Leaving lane to pass Commander plots extra waypoints to pass. Completed
Returning to lane after pass Commander plots extra waypoints to return. Completed
U-turn Commander plans for and navigator executes

3-point turns as needed for mission.
Completed.

Basic traffic
Basic navigation See above.
Intersection precedence Object modeling determines presence of other vehicles at

intersection upon arrival. World model tracks their passage
through intersection.

June 8th

Minimum following distance Navigator dynamically adjusts speed to maintain following 2-3 s
following distance.

June 15th

Queuing Happens based on vehicle separation and minimum following
distance.

June 15th

Advanced navigation
Basic traffic See above.
Obstacle field Path Planning determines a route through the field; Immediate

Collision avoids collisions
Completed.

Parking lot Not started. August 1st
Dynamic re-planning Word model recognizes road blocks; Commander re-plans. July 15th

Road following Using Map Lanes / Using vision Completed / July 1st
GPS outage Applanix POS LV maintains localization Completed
Advanced traffic
Advanced navigation See above.
Merge Not started. August 15th
Vehicle separation during merge Not started. August 15th
Left turn Not Started. August 1st
Lane changes Commander issues lane change command; navigator plots

course.
Completed

Vehicle separation during left turn Not started. August 1st
Passing moving vehicles Not started. September 1st

Zones Not started. September 1st
Emergency braking World model recognizes the need to brake; Pilot performs safe

emergency braking using the E-stop hardware.
Completed

Defensive driving Not started. August 1st
Traffic jam Not started. September 1st

Table 1

References
[1] DARPA Urban Challenge Technical Evaluation Criteria Document.
http://www.darpa.mil/GRANDCHALLENGE/docs/Technical_Evaluation_Criteria_031607.pdf

[2] D. Stronger and P. Stone. Towards Autonomous Sensor and Actuator Model Induction on a Mobile Robot.
Connection Science, 18(2):97–119, 2006.

[3] M. Sridharan and P. Stone. Autonomous Planned Color Learning on a Mobile Robot Without Labeled Data. In
Proceedings of the International Conference on Control, Automation, Robotics and Vision, 2006.

[4] M. Sridharan and P. Stone. Autonomous Color Learning on a Mobile Robot. In Proceedings of the National
Conference on Artificial Intelligence, 2005.

[5] M. Sridharan and P. Stone. Real-Time Vision on a Mobile Robot Platform. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

[6] M. Sridharan, G. Kuhlmann, and P. Stone. Practical Vision-Based Monte Carlo Localization on a Legged Robot.
In Proceedings of the IEEE International Conference on Robotics and Automation, 2005.

[7] G. Kuhlmann, W.B. Knox, and P. Stone. Know Thine Enemy: A Champion RoboCup Coach Agent. In
Proceedings of the National Conference on Artificial Intelligence, 2006.

[8] P. Stone, M. Sridharan, D. Stronger, G. Kuhlmann, N. Kohl, P. Fidelman, and N.K. Jong. From Pixels to Multi-
Robot Decision-Making: A Study in Uncertainty. Robotics and Autonomous Systems, 54(11):933–43, November
2006. Special issue on Planning Under Uncertainty in Robotics.

[9] M.L. Littman and P. Stone. A Polynomial-time Nash Equilibrium Algorithm for Repeated Games. Decision
Support Systems, 39:55–66, 2005.

[10] P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT Press, 2000.

[11] M. Veloso, M. Bowling, and P. Stone. The CMUnited-98 champion small-robot team. In Advanced Robotics,
vol. 13, no. 8, pp. 753-766, 2000.

[12] P. Stone, M.L. Littman, S. Singh, and M. Kearns. ATTac-2000: An Adaptive Autonomous Bidding Agent.
Journal of Artificial Intelligence Research, 15:189–206, June 2001.

[13] P. Stone, R.E. Schapire, M.L. Littman, J.A. Csirik, and D. McAllester. Decision-Theoretic Bidding Based on
Learned Density Models in Simultaneous, Interacting Auctions. Journal of Artificial Intelligence Research, 19:209–
242, 2003.

[14] D. Pardoe and P. Stone. TacTex-2005: A Champion Supply Chain Management Agent. In Proceedings of the
National Conference on Artificial Intelligence, 2006.

[15] B. Kuipers and P. Beeson. Bootstrap learning for place recognition. In Proceedings of the National Conference
on Artificial Intelligence, 2002.

[16] P. Beeson, M. MacMahon, J. Modayil, J. Provost, F. Savelli, and B. Kuipers. Exploiting local perceptual models
for topological map-building. In Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics,
2003.

[17] J. Modayil, P. Beeson, and B. Kupiers. Using the topological skeleton for scalable global metrical map-
building. In Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.

[18] P. Beeson, N.K. Jong, and B. Kuipers. Towards autonomous topological place detection using the Extended
Voronoi Graph. In Proceedings of the IEEE International Conference on Robotics and Automation. 2005.

[19] P. Beeson, A. Murarka, and B. Kuipers. Adapting proposal distributions for accurate, efficient mobile robot
localization.In Proceedings of the IEEE International Conference on Robotics and Automation, 2006.

[20] B. Kuipers, P. Beeson, J. Modayil, and J. Provost. Bootstrap learning of foundational representations.
Connection Science, 18(2), June 2006, pages 145-158.

[21] P. Beeson, M. MacMahon, J. Modayil, A. Murarka, B. Kuipers, and B. Stankiewicz. Integrating multiple
representations of spatial knowledge for mapping, navigation, and communication. AAAI Spring Symposium
Series, Interaction Challenges for Intelligent Assistants, Stanford, CA. AAAI Technical Report SS-07-04, 2007.

[22] W. Whittaker and L. Nastro. Utilization of Position and Orientation Data for Pre-planning and Real Time
Autonomous Vehicle Navigation. In Proceedings of IEEE/ION Position Location and Navigation Symposium, 2006.

[23] M. Yguel, C. Tay M. Keat, C. Braillon, C. Laugier, and O. Aycard. Dense Mapping for telemetric sensors:
efficient algorithms and sparse representation. In Proceedings of Robotics: Science and Systems Conference, 2007.

[24] D. Wolf, A. Howard, G.S. Sukhatme. Towards geometric 3D mapping of outdoor environments using mobile
robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.

[25] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Stanley, the robot that won the DARPA Grand Challenge.
Journal of Field Robotics, 23(9), pp. 661–692, 2006.

[26] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and Navigation. PhD Dissertation,
Carnegie Mellon University, 1989.

[27] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. Artificial Intelligence. Summer, 1988.

http://robots.stanford.edu/papers/thrun.stanley05.html

	Executive Summary
	1 Introduction
	2 Overview
	2.1 System Architecture Overview
	2.2 Team Composition
	2.3 Education and Training

	3 Analysis and Design
	3.1 Hardware
	3.1.1 Actuators Hardware and E-Stop
	3.1.2 Computing Hardware
	3.1.3 Sensor Hardware

	3.2 Robot Control Interface
	3.3 Sensing Modules
	3.3.1 Odometry
	3.3.2 Lidars
	3.3.2.1 SICK Lidars
	3.3.2.2 Velodyne Lidar
	3.3.3 Vision

	3.4 World Model
	3.4.1 Lidar Fusion
	3.4.2 Map Lanes
	3.4.3 Object Modeling

	3.5 Control
	3.5.1 Pilot
	3.5.2 Navigator
	3.5.3 Commander
	3.5.3.1 Large-scale Path Planning
	3.5.3.2 Behavior Selection
	3.5.3.3 Speed Control
	3.5.3.4 Intersection Precedence

	4 Results and Performance
	4.1 Vehicle Evaluation
	4.2 Velodyne Evaluation
	4.2.1 Velodyne Read
	4.2.2 Velodyne Process

	4.3 Applanix Evaluation
	4.4 Map Lanes Evaluation
	4.5 Commander Timing Evaluation

	5 Conclusion

