# Learning in Dynamic Environments: Decision Trees for Data Streams Physiological Data Contest

João Gama, Pedro Rodrigues
LIACC
University of Porto

#### **Motivation**

- The physiological data contest:
  - Large amounts of sequential data
  - Sensor fusion
  - Hidden variables
- Our approach
  - Online Learn a predictive model from the data stream

# Design Criteria for Learning from Data Streams

- Data-streams
  - Open-ended data flow
  - Continuous flow of data
- Data Mining on Data streams:
  - Processing each example
    - Small constant time
    - Fixed amount of main memory
  - Single scan of the data
    - Processing examples at the speed they arrive
  - Classifiers at *anytime* 
    - Ideally, produce a model equivalent to the one that would be obtained by a batch data-mining algorithm
  - The data-generating phenomenon could change over time
    - Concept drift

#### Related Work

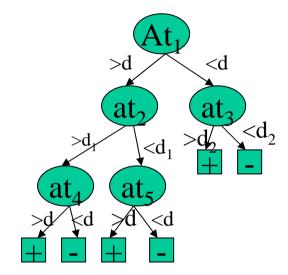
- Incremental Trees
  - Decision Trees for Data streams
    - ➤ Very Fast Decision Trees for Mining High-Speed Data Streams (P. Domingos, et al., KDD 2000)
      - When should a leaf become a decision node?
        - » Hoeffding Bound
      - Nominal Attributes
  - VFDTc (Gama, R.Rocha, P.Medas, KDD03)
    - Numerical attributes
    - Functional leaves
- Non-Incremental Trees
  - Functional Leaves
    - Perceptron Trees (P.Utgoff, 1988)
    - Nbtree (R. Kohavi, KDD 96)
  - Splitting Criteria
    - Split Selection Methods For Classification Tress (W. Loh, Y. Shih, 1997)
      - Two-class problems

#### **Ultra-Fast Forest of Trees**

- Main characteristics:
  - Incremental, works online
  - Continuous attributes
  - Single scan over the training data
    - Processing each example in constant time
  - Forest of Trees
    - A *n* class-problem is decomposed into n\*(n-1)/2 two-classes problem
    - For each binary problem generate a decision tree
  - Functional Leaves
    - Whenever a test example reach a leaf, it is classified using
      - The majority class of the training examples that fall at this leaf.
      - A naïve Bayes built using the training examples that fall at this leaf.
      - A IDBD classifier built using the training examples that fall at this leaf.
    - Anytime classifier

#### Binary decision trees for data streams

- Growing a single tree
  - Start with an empty leaf
  - While TRUE
    - Read next example
    - Propagate the example through the tree
      - From the root till a leaf
    - For each attribute
      - Update sufficient statistics
        - » Statistics to compute *mean* and *standard deviation*
        - » Nx, Sx, Sx2
    - Estimate the gain of splitting
      - For each attribute
        - » Compute the cut-point given by quadratic discriminant analysis
        - » Estimate the information gain
      - If the Hoeffding bound between the two best attributes is verified
        - » The leaf becomes a decision node with two descendent leaves

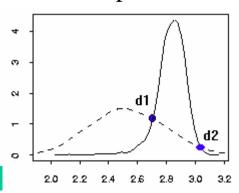


# The splitting criteria

- The case of two classes.
- All candidate splits will have the form of Attribute<sub>i</sub> <= value<sub>j</sub>
  - For each attribute, quadratic discriminant analysis defines the cut-point.
  - Assume that for each class the attribute-values follows a *univariate* normal distribution
    - N(mean, standard deviation).
    - Where p(i) is the probability that an example that fall at leaf t is from classe I
    - The best cut-point is the solution of:  $p(+)N(\overline{x}_+, \sigma_+) = p(-)N(\overline{x}_-, \sigma_-)$ 
      - A quadratic equation with at most two solutions: d1, d2
    - The solutions of the equation split the X-axis into three intervals:

$$(-\infty; d1); (d1, d2); (d2; +\infty)$$

- We choose between d1 or d2, the one that is closer to the sample means.



# Estimating the gain of a cut-point

- For each Attribute
  - The cut point defines a contingency table.
  - The information gain is:

| $G(Att_i) = info(p^+, p^-) - \sum_i (p_j * info(p_j^+, p_j^-))$ |
|-----------------------------------------------------------------|
| where                                                           |
| $\inf(p^+, p^-) = -p^+ \log_2 p^+ - p^- \log_2 p^-$             |

- The attributes are sorted by information gain.
  - $G(X_a) > G(X_b) > ... > G(X_c)$
- When should we transform a leaf into a decision node?
  - When there is a high probability that the selected attribute is the wright one!

|         | $Att_i <= d$                          | Att <sub>i</sub> >d |
|---------|---------------------------------------|---------------------|
| Class+  | $\mathbf{p_1}^{\scriptscriptstyle +}$ | $\mathbf{P_2}^+$    |
| Class - | $\mathbf{p_1}$                        | $P_2$               |

#### The Hoeffding bound

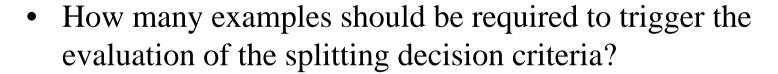
- Suppose we have made **n** independent observations of a random variable **r** whose range is **R**.
- The Hoeffding bound states that:
  - With probability 1- $\delta$
  - With probability 1-0

     The true mean of **r** is at least  $\bar{r} \pm \varepsilon$  where  $\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$
  - Independent of the probability distribution generating the examples.
- The heuristic used to choose test attributes is the information gain G(.)
  - Select the attribute that maximizes the information gain.
  - The range of information gain is log (#classes)
- Suppose that after seeing **n** examples,  $G(X_a) > G(X_b) > ... > G(X_c)$
- Given a desired  $\delta$ , the Hoeffding bound ensures that Xa is the correct choice if G(Xa)- $G(Xb) > \varepsilon$ .
  - with probability 1-  $\delta$

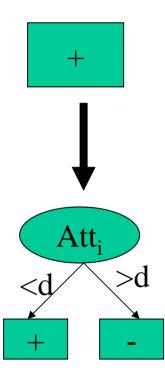
#### From a leaf to a decision node

- The tree is expanded:
  - When the difference of gains between the two best attributes satisfies the Hoeffding bound,
    - A splitting test based on the best attribute is installed in the leaf
    - The leaf becomes a decision node with two descendent branches
  - When two or more attributes have very similar gains
    - Even given a large number of examples, and
    - The Hoeffding bound declares a *tie*.
      - Example: there are duplicate attributes.
    - The leaf becomes a decision node, if  $\nabla G < \varepsilon < \tau$

where  $\tau$  is a user defined constant.



$$n_{\min} = 1/(2*\delta)*\log(2/\varepsilon)$$



# **Short Term Memory**

- We maintain a limited number of the most recent examples.
- They are maintained on a *double queue*, that supports
  - Constant time for insertion of elements at the beginning of the sequence.
  - Constant time for deletion of elements at the end of the sequence.
- When the tree is expanded, two new leaves are generated.
  - The sufficient statistics of these new leaves are initialized with the examples at the short term memory.

# Classification strategies at Leaves

- To classify a test example
  - The example traverses the tree from the root to a leaf,
    - Following the path given by the attribute values.
  - The leaf classifies the example.
- The usual strategy:
  - The test example is classified with the majority class from the training examples that reached the leaf.
  - In incremental learning, that
    - Maintain a set of sufficient statistics at each leaf
    - Only install a split test when there is evidence enough
    - More appropriate and powerful techniques should be applied!
  - We have implemented two other classification strategies:
    - Naive Bayes
    - Incremental Delta-Bar-Delta rule

# Functional Leaves: Naïve Bayes

- Naive Bayes
  - Based on Bayes Theorem
    - Assuming the independence of the attributes given the class label
    - We assume that, for each class, the attribute-values follow a normal distribution
      - From the sufficient statistics stored at each leaf.
  - Naturally Incremental
  - A test example is classified in the class that maximizes:

$$P(Cl_i \mid \vec{x}) \propto \log(P(Cl_i)) + \sum_i \log(\phi(\vec{x}_k^i, \sigma_k^i))$$

#### Forest of Trees

- A multi-class problem is decomposed into a set of two-class problems.
  - A n class problem is decomposed into n(n-1)/2 binary problems.
    - A two-class problem for each possible pair of classes..
  - For each problem generate a decision tree
    - Leading to a forest of decision trees.
- Fusion of classifiers
  - To classify a test example:
    - Each decision tree classifies the example
      - Output a probability class distribution
    - The outputs of all decision trees are aggregated using the sum rule.

# Experimental Evaluation: Physiological Data

#### Tasks

- 1. Predict the gender for every sessionId
- 2. Identify when a person is participating in context 1
- 3. Identify when a person is participating in context 2.

#### • The Data

- For all tasks we have used as attributes:
  - Characteristics 1 and 2
  - Sensor 1-9
- We have considered all the tasks as two-class problems

# Task 1 Evaluation on training set

- Evaluation method:
  - Split the labelled set into two sets
    - Training set: 500000 records
    - Evaluation set: last 80264 records
  - Some points:
    - All users consistently classified
    - Confusion Matrix:

• Training Time: 39 seconds

# Task2 and 3: Evaluation on Training Set

#### Skew class distribution

Consider misclassification costs

```
N P
N 0 10
P 0.1 0
```

Sequences on the training set:

| - Task2    | Nr.seq        | Mean(Size)             | Min(Size)         | Max(Size)            |
|------------|---------------|------------------------|-------------------|----------------------|
| Prediction | 2992          | 12.7                   | 3                 | 154                  |
| Observed   | 75            | 57                     | 6                 | 177                  |
| T 1.3      | 3.7           | 14 (G: )               | <b>7.4:</b> (C: ) | 1.4 (G: )            |
| Task3      | Nr.seq        | Mean(Size)             | Min(Size)         | Max(Size)            |
| Prediction | Nr.seq<br>795 | <i>Mean(Size)</i> 30.3 | Min(Size)<br>3    | <i>Max(Size)</i> 516 |

João Gama 1'

#### Conclusions

- Our solution:
  - Single model
  - Incremental and online model
    - Can incorporate new information
  - Fast training
  - Misclassification costs
  - Any time classifier

# Thanks for your attention!

More information:

http://www.liacc.up.pt/~jgama