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1. Introduction

Our Digial Human Memory project (Lin & Haupt-
mann, 2002) aims to collect and index every aspect of
human daily experiences in digital form. By wearing
a spy camera, microphones, and a BodyMedia arm-
band, the wearer can collect rich records in a unobtru-
tive fashion, and many applications can build on top
of such multimodal collections. For example, digital
human memory can serve as a memory prosthesis to
help the wearer recall past events; the habits or anoma-
lies of the wearer can be analyzed from digital human
memory. The physiological recordings recorded by a
Bodymedia armband provides complementary dimen-
sions of the wearer’s experiences, and play an impor-
tant role in identifying wearer’s context and activities.

In this year Physiological Data Modeling Contest, we
build a baseline system that models the gender and
context tasks as simple binary classification problems
using only unambiguous annotations. In addition, we
explore two issues. First, instead of ignoring ambigu-
ous annotations and unlabeled data, we attempt to
disambiguate them into positive and negative annota-
tions such that the learner can incorporate them in the
training phase. Second, we exploit sequence relation-
ship because context activities do not appear randomly
but usually in the consecutive minutes as a cluster. A
conditional model is built to incorporate the sequence
information.

2. Baseline System

In the baseline system, we approach both gender and
context tasks as binary classification tasks on a per
minute basis. Each minute of instances are assumed to
be independently drawn from a identical distribution,
and data are represented as a set of feature and label
tuples, denoted as {(xi, yi)}n

i=1, where xi and yi are
the feature vector and the label respectively of the
ith example in the data set of size n. Since gender
should be the same within a session, different gender

predictions within a session are resolved by majority
votes.

Feature vectors are consisted of nine sensors and two
characteristics, and thus the dimension of xi is eleven.
Numeric values of features are scaled. In the gender
task, all training data are fully labeled and yi are set
to 1 or 0 correspondingly. In the context tasks, we
separate annotations into three set: positive (3004 in
context 1, 5102 in context 2), ambiguous (0, 3003,
5199, 5101 in context 1, 0, 5103, 2901, 2902 in context
2), and negative (annotations are in neither Positive
nor Ambiguous). Classifiers for both context tasks in
the baseline systems are trained only with Positive and
Negative annotations.

We choose Support Vector Machine (SVM) (Cristian-
ini & Shawe-Taylor, 2000) as the binary classification
learner. The kernel is radial basis function, and model
selection is based grid-searching on two parameters (γ
from the kernel and C cost parameter) in 10-fold cross-
validation.

We evaluate the baseline system on the training set in
10-fold cross-validation, as shown in Table 1. The met-
ric for the gender task is the balanced error rates, and
the metric for the context tasks is weighted formula as
suggested in the official instruction. We also list the
random baseline which guesses every session as gender
0 in the gender task, every minute as 0 (negative) in
the context tasks.

Gender Context 1 Context 2
SVM Baseline 0.9572 0.7548 0.8711

Random Baseline 0.5 0.7 0.7

Table 1. The performance of out baseline system in 10-fold
cross-validation on the training set

3. Annotation Disambiguation

One drawback in the baseline system for the context
tasks is that ambiguous annotations are totally ig-



nored. While training data may be easier to discrim-
inate, it runs the great risk of confusing ambiguous
labels in the testing phase because the learner never
observes the ambiguous data in the training phase.
Moreover, the proportion of unlabeled data (annota-
tion 0) is huge (404872/580264 ≈ 0.698) in the training
data, which makes the problem even worse.

We consider the following possible strategies to utilize
ambiguous annotations:

1. Ambiguous annotations are either positive or neg-
ative with equal probability. Without any prior
information, the only reasonable assumption we
can make is that it is equally probably for an am-
biguous annotation to be positive or negative.

2. Ambiguous annotations are all negative. Al-
though ambiguous annotations may be either pos-
itive or negative, we can make a stronger assump-
tion that very few of them contain true positive
annotations. By treating all ambiguous annota-
tions as negative hopefully the learner can acquire
the “negativity” of the ambiguous labels.

3. Efforts are spent to disambiguate ambiguous an-
notations. Consider the annotations in question,
the context tasks is closer to “semi-supervised”
learning where we have both positive, negative,
and unlabeled data and multiple-label frame-
work(Jin & Ghahramani, 2003) is applicable. In
the multiple-label framework, each data is associ-
ated with multiple labels and only one of them is
correct label. In order to disambiguate the mul-
tiple labels, we can randomly initiate the label
distribution P (yi|xi) to train a classifier, then use
the learned classifier to update the label distribu-
tion in an iterative fashion. In context tasks, we
fix the label distribution of examples with posi-
tive and negative annotations, and only update
the distribution of the examples with ambiguous
annotations. In order to prevent overfitting, we
select the iteration number with the best perfor-
mance on 10-fold cross-validation.

The above strategies are implemented via sampling.
Each training example is assigned a label distribution
according to the strategy, and the learner samples pos-
itive and examples according to the label distribution.
In strategy 3, SVM decision values are transformed
into label probability distributions via fitting logistic
regression. The performance of the above strategies
on the training set is shown in Table 2.

,

Context 1 Context 2
Strategy 1 0.7625 0.8834
Strategy 2 0.6957 0.8559
Strategy 3 0.7613 0.8707

SVM Baseline 0.7548 0.8711
Random Baseline 0.7 0.7

Table 2. The performance of three annotation disambigua-
tion strategies in 10-fold cross-validation on the training
set

4. SVM-Based Markov Models

Besides ignoring ambiguous annotations, the other
piece of information the baseline system that is not
exploited is the sequential relationship. It is instantly
recognizable that positive annotations do not appear
randomly within an session. It is more likely to see
a positive annotation in the followin minute after see-
ing a positive annotation and so does negative anno-
tation. Inspired by (McCallum et al., 2000), we create
a conditional markov model based on SVM to make
predictions on a session (sequence) level. Given a se-
quence of observations (feature vectors) x1, x2, . . . , xm,
the context task can be formulated as finding the anno-
tation sequence of states (annotations) y1, y2, . . . , ym

that maximizes the posterior probabilities, where λ is
the model parameters,

arg max
y1,y2,...,ym

P (y1, y2, . . . , ym|x1, x2, . . . , xm; λ) (1)

Like other markov models, we make the assumption
that current state depends on only the previous state
but not earlier states; unlike Hidden Markov Models,
we do not model the joint probability of states and
observations. Instead, we let the current state depend
on not only the previous state but also the current
observations. Therefore, Eq. 1 can be rewritten as
follows,

arg max
y1,y2,...,ym

P (y1|x1; θ)
m∏

t=2

P (yt|xt, yt−1; λ) (2)

Conditional on yt−1, we train each conditional prob-
ability model P (yt|xt, yt−1; λ) using SVM, and prob-
ability are obtained by fitting logistic regression on
SVM decision values.

It turns out that we can have Viterbi-like algorithm
to find the most probable annotation sequence given a
series of observations. Follow the notation in (Rabiner,
1989), define δt(i) as the highest probability along a
single path at time t and the state equals to qi, where



q1 is positive, and q2 is negative:

δt(i) = max
y1,y2,...,yt−1

P (y1, y2, . . . , yt = qi|x1, x2, . . . , xt; λ)

(3)

Eq. 3 can be solved using Dynamic Programming,

δt(i) = max
j

δt−1(j) · P (yt = qi|yt−1, xt; λ) (4)

However, the performance of SVM-based Markov
Model does not perform well, worse than random base-
line. The problem is due to the high unbalanced posi-
tive and negative examples after conditioned on st−1,
as illustrated in Table 3. While the number of positive

st−1 = neg st−1 = pos
st = neg 575776 75
st = pos 75 4338

Table 3. Number of examples for the context 1 task in the
training set

examples in the training set is already scare and make
the learner difficulty to learn, conditioned on st−1 ex-
asperates the situation.
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