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We would like to tune the parameters of the wall-following controller so
that it is as close to critically-damped as possible. That is, it converges to
the setpoint as quickly as possible without overshooting.
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Figure 1: The robot is at position (x; y) and orientation �. The range sensor
in direction � senses distance s�, but in this paper we assume that y and �
are sensed directly.

The dynamical model of the robot (Figure 1) is x0 = f(x;u), with con-
stant forward velocity v and exogenously speci�ed angular velocity !.
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The Wall-Following Controller

We use a slightly simpli�ed version of the wall-following controller from [2].
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The wall-following control law (3) sets angular velocity !, responding
to positional error e = y � yset and orientation error �, and assuming that
forward velocity v is constant.

We want to specify the control law so that the behavior of the system
will be described by

�e+ k� _e+ kee = 0: (2)

where the constants ke and k� are tuned to make the system behave well
(i.e., critically damped convergence e! 0).

For small values of �,

_e = v sin � � v�

and
�e = v cos � _� � v!;

so we can transform the general system description (2) into a control law: a
rule for specifying the value of the controlled variable ! as a function of the
values of the observed variables e, � and v:

! =
1

v
[�k�v� � kee]: (3)

Qualitative Behavior

Any elementary discussion of di�erential equations and dynamical systems
(e.g. [1]) provides the qualitative framework we need to tune this controller.

When obeying the wall-following control law, the robot's behavior ap-
proximates the linear harmonic oscillator, which is a special case of the
general linear second-order system:

a�x+ b _x+ cx = 0: (4)

The behavior of this system is determined by the roots of its character-
istic equation:

r1; r2 =
�b�

p
b2 � 4ac

2a
:

The qualitative behavior x(t) is determined by the qualitative properties
of the roots, which are determined in important part by the sign of the
discriminant:

D = b2 � 4ac:
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� If the roots have non-zero imaginary part (i.e., D < 0), the behavior
oscillates. If the roots are purely imaginary (i.e., D < 0 and b = 0),
the oscillation is periodic.

� If either root has a positive real part, the behavior diverges. In a
usefully controlled system, the behavior must converge, so both roots
must have negative real parts. If D < 0, we require only that b > 0. If
D > 0, we also need to have b >

p
b2 � 4ac, which therefore requires

that

0 < c <
b2

2a
:

� Critical damping occurs at the boundary between oscillatory and non-
oscillatory behavior; that is, where D = 0, so:

c =
b2

4a
: (5)

Tuning the Controller

To make the behavior of the system (2) critically damped, we apply (5) and
require that

ke =
k2�
4

or equivalently, k� =
p
4ke: (6)

Experimental Results

The model rwall2.m implements this controller, with some modi�cations.
In order to avoid divergence when v � 0 during starting and stopping, the
1=v term in (3) is replaced by min(v2; 1=max(0:01; v)).

Setting ke to values in the range [0:1; 0:6] controlls how aggressively
the controller seeks the setpoint. Setting k� =

p
4ke makes the resulting

controller critically damped, as expected. High gains at lower velocities
results in turns that might be overly aggressive.

Next Steps

� Set the gain as a function of forward velocity, to see whether this gives
better performance.
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� What are the applicability conditions for this controller? How close is
� � 0? What happens if the robot is close to facing the wall?
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