
Cost-Sensitive Decision Tree Learning for Forensic
Classification

Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach,
Hany E. Ramadan, and Emmett Witchel

Dept. of Computer Sciences, The University of Texas at Austin

Abstract. In some learning settings, the cost of acquiring features for classi-
fication must be paid up front, before the classifier is evaluated. In this paper,
we introduce the forensic classification problem and present a new algorithm for
building decision trees that maximizes classification accuracy while minimizing
total feature costs. By expressing the ID3 decision tree algorithm in an informa-
tion theoretic context, we derive our algorithm from a well-formulated problem
objective. We evaluate our algorithm across several datasets and showthat, for
a given level of accuracy, our algorithm builds cheaper trees than existing meth-
ods. Finally, we apply our algorithm to a real-world system, CLARIFY . CLARIFY

classifies unknown or unexpected program errors by collecting statisticsduring
program runtime which are then used for decision tree classification afteran error
has occurred. We demonstrate that if the classifier used by the CLARIFY system
is trained with our algorithm, the computational overhead (equivalently, total fea-
ture costs) can decrease by many orders of magnitude with only a slight (< 1%)
reduction in classification accuracy.

1 Introduction

In the prototypical cost-sensitive classification problemof medical diagnosis, tests are
performed sequentially until a diagnosis is made. Classifiers such as decision trees are
natural for this problem, as predictions can be made by testing only a small subset of
total features (i.e. those features present in the path fromthe root to the predicted leaf).
In this problem, it is acceptable to have very expensive tests present in the decision tree
as long as these tests are relatively unlikely to be needed ina typical evaluation of the
tree.

However, in many settings, sequential testing is not feasible. In particular, if ob-
jects to be classified are transient, then they are not available for further testing when
diagnosis (i.e. classifier evaluation) is performed. Consider the problem of classifying
software errors: the system can be monitored during run-time, but acquiring additional
“after the fact” information requires reproducing the error. Error reproduction can be
time consuming and costly because oftentimes system errorsare non-deterministic or
environment-dependent. To efficiently classify software errors, a system must minimize
runtime monitoring costs. Equivalently, the cost of the classifier—i.e. the aggregate
cost of monitoring needed to construct any feature that can possibly be tested by the
classifier—must be minimized.

In this paper, we present a cost-sensitive decision tree algorithm for forensic clas-
sification: the problem of classifying irreproducible events. Here, we assume that all
tests (i.e. features) must be acquired before classification; consequently, the classifi-
cation cost equals the sum of the costs of all features that the classifier may use for
testing. We derive our algorithm by expressing the ID3 decision tree algorithm in an
information theoretic context; from this, we present a cost-sensitive generalization for
the information gain and gain ratio criterion. When used in conjunction with these mod-
ified cost-sensitive criteria, the resulting decision treealgorithm minimizes testing costs
under the forensic classification problem while simultaneously maximizing accuracy.

For evaluation, we incorporate our cost-sensitive criterion into the C4.5 decision tree
algorithm. We compare our algorithm to existing methods across various datasets from
the UCI machine learning repository, and show that, for a given level of accuracy, our
algorithm builds cheaper trees than existing methods. Finally, we apply our algorithm
to a real-world system that classifies program errors, CLARIFY . We give an overview of
CLARIFYand the various features available for classification. We propose a cost model
to determine feature costs, and show that, for many programs, computational overhead
can be reduced by several orders of magnitude with only a slight (< 1%) decrease in
classification accuracy.

2 Cost-sensitive ID3 decision tree algorithm

The ID3 algorithm builds decision trees using a top-down, greedy search procedure
and represents the core of Quinlan’s highly successful C4.5decision tree algorithm.
Here, we present a cost-sensitive modification to the ID3 algorithm for the forensic
classification problem. For simplicity, we will outline thealgorithm as a process of
building a tree over a nominal feature space with arbitrarily many classes. However, all
methods presented can be easily generalized to continuous attributes.

Given a decision tree withk internal nodes1, ..., k, each of which split on features
F 1, ..., F k, we will denote the tuple(Xi, yi) to be the set of (instance, label) pairs that
will ‘pass through’ (for internal nodes), or ‘end at’ (for leaf nodes) nodei when the
tree is evaluated. We will defineV (f) to be the set of values that featuref takes on,
and let(Xj

[f=v], y
j
[f=v]) denote the set of instances in(Xj , yj) such that featuref takes

on valuev. Given some leaf nodej, the ID3 algorithm splits on the featuref which
maximizes the information gain,

Gain(Xj , f) = H(yj) −
∑

v∈V (f)

∣

∣

∣
X

j
[f=v]

∣

∣

∣

|Xj |
H

(

y
j
[f=v]

)

, (1)

whereH(y) = −
∑

ℓ∈Classes
|y[Class=ℓ]|

|y| log
|y[Class=ℓ]|

|y| , the entropy of the class labels.
The information gain can be thought of as the expected decrease in entropy caused by
splitting on featuref . Furthermore, if we think of the featuref and class labelsyj as
random variables over the set of instances, then the information gain is equivalent to
the mutual information betweenf andyj , which we denoteI(yj ; f). Mutual informa-
tion is a standard information-theoretic measure of the correlation between two random
variables [4].

Since the ID3 algorithm builds the tree in a top-down manner,the split at the root
node of the tree is selected usingX1 = X, the set of all instances used to train the tree.
Recursively applying (1) in terms ofH(y), and re-arranging terms yields:

∑

i∈internal

|Xi|

|X|
Gain(Xi, F i) = H(y) −

∑

ℓ∈leaf

|Xℓ|

|X|
H(yℓ)

= I(y; p), (2)

wherep is a random variable that gives the class values as predictedby the tree. Thus,
maximizing the mutual information between the true and predicted class labels is equiv-
alent to maximizing the weighted sum of the information gainscores at each internal
node of the tree. Furthermore, the ID3 algorithm can be viewed as a greedy method to
maximize this mutual information.

In an effort to reduce the cost of the features used to build the ID3 decision tree, we
propose the following multi-way objective criteria that maximizes the mutual informa-
tion while minimizing cost:

I(y; p) − γ
∑

f∈F

cost(f), (3)

whereF = ∪k
i=1F

k, the set of features used in the tree,cost is an arbitrary cost func-
tion, andγ ≥ 0 is an adjustable parameter that tunes the tradeoff between maximizing
mutual information and minimizing costs.

We optimize this quantity in the same top-down, greedy manner that ID3 operates
by maximizing the right hand side of (2) with respect to nodei. We get a new cost-
sensitive information gain feature selection criteria of the form:

CSG(Xi, f) =
|Xi|

|X|
Gain(Xi, f) − γ · cost(f)1[f /∈F]. (4)

The indicator function1[f /∈F] allows for the re-use of features already added to the tree
without incurring additional costs. The normalization forthe first term can be factored
out if the cost term is not present and reduces to the basic ID3splitting criteria (1). This
normalization results in criteria that are willing to pay for more expensive features at
higher levels of the tree, since a larger percentage of the distribution will ‘pass through’
these nodes. Nodes near the leaves of the tree will be evaluated on a relatively smaller
portion of instances, and, consequently, the criteria (4) will seek cheaper features for
such nodes.

Quinlan’s C4.5 decision tree algorithm [13] uses a modified splitting criteria, called
gain ratio, that normalizes the information gain score of splitting on featuref by the

entropy of the featuref : H(X, f) = −
∑

v∈V (f)
|X[f=v]|

|X| log
|X[f=v]|

|X| . Using a similar
procedure above, this criteria also results in a global objective function, and the resulting
cost-sensitive update for our model is:

CSGR(Xi, f) =
|Xi|

|X|

∏

j∈Path(i)

1

H(Xj , F j)

 Gain(Xi, f) − γ · cost(f)1[f /∈F].

(5)

Whereas theCSGain criteria (4) normalizes theGain term for nodej by the proba-
bility of an instance arriving at nodej, the above criteria normalizes by weights that are
a function of both the training set distribution and the split entropies.

3 Experiments

To evaluate our method, we incorporate our cost-sensitive criteria (4) and (5) into a
C4.5 decision tree. The C4.5 algorithm builds the decision tree in the same manner as
ID3, but incorporates several post-processing heuristics, including a pruning method
that removes statistically insignificant leaf nodes after the tree is built. We found that
C4.5 yielded trees with significantly higher accuracy than ID3.

We compare our criteria to three existing methods. Nunez [12] proposes a cost-
sensitive criteria called the information cost function,2Gain(X,f)−1

(Cost(f)+1)γ , which is motivated

using an economic argument. Mitchell [10] proposes a criteria, Gain(Xi, f) − γ ·
cost(f)1[f /∈F], which is similar to ourCSGain criteria. However, this method does
not normalize theGain function. Note that this criteria is a generalization of Mitchell’s
method that incorporates a cost/accuracy tradeoff parameterγ to the second term. Nor-

ton [11] uses a cost-sensitive criteria,Gain(Xi,f)
Cost(f)γ , in his proposed IDX algorithm. We

also generalize this algorithm to account for varying cost/accuracy tradeoffs. We note
that since the Mitchell method incorporates the cost factorusing an additive term, we
have incorporated the cost/accuracy tradeoff parameterγ as a multiplicative factor. The
Norton method incorporates costs using a multiplicative factor, so we use an exponen-
tial to adjust this tradeoff.

We present our results in terms of cost ratio, which we define as the sum of the costs
of the features in the cost-sensitive decision tree, divided by the total cost of the features
in the cost-insensitive tree. We compare our method againstexisting methods described
above using eight datasets from the UCI repository [5], which are outlined in table 1.

For each dataset, we perform 50 trials of the following test.First, we randomly gen-
erate costs for each feature in the dataset from a uniform distribution on [0,1]. Second,
for each of our algorithms and for each of the 3 existing algorithms, we identify the
value ofγ that produces the cheapest tree and that also has a 10-fold cross-validated
accuracy within1% of the baseline, cross-validated cost-insensitive C4.5 tree. We use
several values ofγ ranging from10−6 to 106. For each algorithm, we then compute the
average cost ratio across all 50 trials. Table 1 shows these average ratios for all 5 algo-
rithms. Our cost-sensitive criteria result in significantly lower costs than that of existing
algorithms.

4 CLARIFY : forensic classification of confusing software error
behavior

In this section, we apply our cost-sensitive decision tree algorithm to a system called
CLARIFY . CLARIFY ’s features are abstractions orrepresentationsof program control
flow, and its classes are error behaviors that are ambiguous or misleading to a pro-
gram’s users. CLARIFY classifies program error behavior via monitored control flow

Table 1. Average cost ratio for our methods (CSGain and CS Gain Ratio) compared to existing
methods. The cost ratio is the cost of the cost-sensitive decision tree normalized by the cost of
the baseline, cost-insensitive tree. For a given level of accuracy, trees constructed with the cost-
sensitive information gain and cost-sensitive gain ratio criterion tend to buildmuch cheaper trees
than existing methods.

Dataset properties Cost Ratios
Dataset # instances# classes# featuresCSGainCS Gain RatioNunezMitchell Norton

audiology 226 24 70 0.964 0.980 0.991 5.650 5.650
breast-w 699 2 10 0.647 0.671 0.917 1.106 0.970
credit-a 701 2 16 0.394 0.374 0.557 1.015 0.111
diabetes 768 2 9 0.498 0.541 0.961 0.973 1.123
hepatitis 155 2 20 0.474 0.417 0.558 1.522 0.536
liver-disorders 345 7 2 0.976 0.972 0.997 1.008 1.013
vehicle 849 4 19 0.653 0.790 0.862 0.936 1.051
zoo 107 18 7 0.524 0.507 0.606 1.045 0.542

average - - - 0.641 0.657 0.806 1.657 1.375

forensics to produce more informative error messages. When aprogram produces an
error, CLARIFY uses a classifier to predict the cause of the error from the monitored
system forensics. C4.5 decision trees empirically performvery well in this domain [7].

As a testbed for the CLARIFY system, we use six different benchmarks based on
the following large, mature programs:latex (a typesetting program),gcc (GNU
C compiler),mpg321 (mp3 player),Microsoft Visual FoxPro (a commercial
database management program),lynx (a text-based web browser), andapache (a
web server). For each benchmark, we identified program errors with nondescript, am-
biguous, or misleading error handling. For example, such errors includempg321 emit-
ting garbled audio resulting from corrupted audio file input—no message is given to the
user that any problem has occurred. Benchmarks have 3 (lynx) to 9 (latex) distinct
error cases with 30 (FoxPro) to 1,024 (apache) instances per error. Dimensional-
ity is also quite high ranging from 3,600 features (mpg321) to approximately 100,000
features (gcc). For more details, see [7].

4.1 Feature construction

CLARIFY uses behavior profiles, which are abstractions of program control flow, to
monitor program behavior. This paper uses two behavior profiles: function counting
(FC) and a novel method called call-tree profiling (CTP). Function counting (sometimes
called function call profiling) is a simple count of the number of times each function is
called during a program’s execution.

Call-tree profiling is a method that captures relations between function calls. Mod-
ular software design encourages programmers to create small, simple functions with
clear semantics, making function boundaries important. Moreover, the order of func-
tion calls and their relationship is a rich source of programbehavior data. The dynamic
function calling behavior of a program can be represented bya dynamic call tree, where

each node is a dynamic instance of a function call, and edges are calls between func-
tions. Call-tree profiling associates a counter with a depth-bounded subtree rooted at
a particular function, and increments the counter when the subtree is executed. Each
subtree is a feature and the feature value is the counter value associated to the subtree.
In this paper, CTP will refer to the union of the feature spaces at depth bound of at most
two (i.e., CTP-D0, CTP-D1, and CTP-D2). Note that CTP-D0 is equivalent to FC.

4.2 Minimizing overhead costs

The instrumentation inserted into applications to producea behavior profile for the
CLARIFY decision tree classifier can have significant computationalcosts. If CLARIFY

monitored all features it could monitor, the computationaloverhead of the system would
be high. One way to reduce CLARIFY ’s computational overhead is to instrument only
those features tested in the decision tree. Cost-sensitivelearning reduces the amount
of required instrumentation even further. Since program instrumentation points must
be chosen before the program is executed (i.e. not during prediction), the CLARIFY

classification problem is a forensic problem and is thus well-suited for our algorithm.
Feature costs vary greatly in this problem domain: featurescorresponding to frequently
executed functions incur overheads many times larger than features corresponding to
rarely called functions.

For function counting, instrumentation points are needed only at functions that cor-
respond to nodes in the decision tree. To record function counts, an array of counters
is used to track execution for each instrumented function. Let G be the set of moni-
tored functions, and letE[g] be the expected number of times a functiong is called in
a program’s execution. Note that these expectations can be computed from the training
set. Then

∑

g∈G E[g] gives the expected number of instrumented events per program
execution, and will be proportional to overhead cost.

In call-tree profiling (CTP), instrumentation code at the start of each function records
function call subtrees. Hence, the cost model accounts for the execution of all functions
that appear within any CTP feature. Given a set of CTP subtrees over a set of functions
F , we approximate the overhead cost of instrumenting these subtrees as

∑

f∈F E[f].
Once a function is part of a CTP feature, including it in a different CTP feature does
not add significant overhead. Therefore, the cost of each feature must be computed in
the context of the features that have already been added to the tree at an earlier stage of
the algorithm.

4.3 Results

Figure 1 (left) shows the cost/accuracy tradeoff for thegcc benchmark. As a baseline,
the cost of the trees built using the two best existing methods (as quantified in section 3)
are also plotted. This curve is generated using five-fold cross validation to estimate the
classification accuracy of the cost-sensitive decision tree for various values ofγ. Among
this set of (cost, accuracy) pairs, pareto optimal points are identified to generate the
cost/accuracy curve. Since the absolute overhead slowdownis a function of program
running time (which varies greatly from benchmark to benchmark), the costs here are
normalized by the total instrumentation slowdown incurredif all available features were

70 75 80 85 90 95
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Accuracy

C
os

t

CSGain

Mitchell

Nunez

Benchmark BaselineCSGain w/FC, CTP

mpg321 19.4% 158.3×

gcc 24.2% 1.8×

gzprintf 20.1% 1.7×

latex 44.0% 468.1×

foxpro 3.7% 1, 485, 943.7×

lynx 1.9% 552.3×

apache 8.9% 4, 684.2×

Fig. 1.Left: cost/accuracy tradeoff for thegcc benchmark. Right: costs for six benchmarks with
accuracy reductions of at most 1%. The Baseline column gives the decision tree cost when built
with the baseline C4.5 algorithm, using CTP, expressed as a percentage of the total cost of instru-
menting all features. The remaining columns provide the speedup ratio (defined as baseline cost
/ cost) for C4.5 using the cost-sensitive gain criteria (CSGain) with FC andCTP features.

instrumented. For example, a cost of.1 corresponds to instrumenting an average of10%
of all function calls in an execution of a program.

Table 1 (right) gives decision tree costs for several benchmarks when trained using
the baseline, cost-insensitive C4.5 algorithm (using FC and CTP behavior profiles),
and also when trained using C4.5 with the CSGain criteria (4). This improvement is
measured as the cost of the tree divided by the cost of the baseline, cost-insensitive
tree (note that this is the inverse of the cost ratio term usedin section 3). For the cost-
sensitive algorithms, results are given for trees with accuracy levels that are no less than
1% lower than the cross validated accuracy of the baseline cost-insensitive classifier
trained with FC and CTP representation. Our cost-sensitivealgorithm yields reduction
in execution of instrumentation points of up to six orders ofmagnitude.

5 Related work

Building classifiers that minimize testing costs has received much attention in the field
of medical diagnosis. However, the problem of medical diagnosis is fundamentally dif-
ferent from the forensic classification problem. Several cost-sensitive algorithms have
been proposed that build decision trees using non-incremental methods, such as a ge-
netic algorithm [14] and a “look ahead” heuristic [11]. These methods are not consid-
ered here, as the training time required is several orders ofmagnitude larger than a C4.5
based incremental algorithm.

In this paper, we have focused on the problem of minimizing test cost while maxi-
mizing accuracy. In some settings, it is more appropriate tominimize misclassification
costs instead of maximizing accuracy. For the two class problem, Elkan [6] gives a
method to minimize misclassification costs given classification probability estimates.
Bradford et al. compare pruning algorithms to minimize misclassification costs [1]. As
both of these methods act independently of the decision treegrowing process, they can
be incorporated with our algorithms (although we leave thisas future work). Ling et.

al. propose a cost-sensitive decision tree algorithm that optimizes both accuracy and
cost. However, the cost insensitive version of their algorithm (i.e. the algorithm run if
all feature costs are zero), reduces to a splitting criteriathat maximizes accuracy, which
is well known to be inferior to the information gain and gain ratio criterion [13, 10].

Integrating machine learning with program understanding is an active area of cur-
rent research. Systems that analyze root cause errors in distributed systems [3] and
systems that find bugs using dynamic predicates [2, 8, 9] may both benefit from cost-
sensitive learning to decrease overhead monitoring costs.

6 Conclusion

We have introduced two algorithms for the problem of minimizing feature costs for
forensic classification. Our algorithms are modifications to the C4.5 decision tree al-
gorithm that use a well motivated cost-sensitive splittingcriteria. We provide extensive
experiments on real data and objectively demonstrate that our criterion yield algorithms
that build cheaper trees than existing methods. Finally, weimplement our method in
a novel cost-sensitive forensic classification problem, the CLARIFY system. We show
our algorithm can reduce overhead costs by many orders of magnitude at only a slight
(< 1%) reduction in classification accuracy.

References

1. J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley. Pruning decision trees with
misclassification costs. InEuropean Conference on Machine Learning, 1998.

2. Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over program
executions. InICSE, 2004.

3. I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing, indexing,
clustering, and retrieving system history. InSOSP, 2005.

4. T. M. Cover and J. A. Thomas.Elements of information theory. Wiley Series in Telecom-
munications, 1991.

5. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine learning
databases, 1998.

6. C. Elkan. The foundations of cost-sensitive learning. InInternational joint conference on
artifical intelligence, 2001.

7. J. Ha, H. Ramadan, J. Davis, C. Rossbach, I. Roy, and E. Witchel.Navel: Automating
software support by classifying program behavior. Technical Report TR-06-11, University
of Texas at Austin, 2006.

8. S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly detection.
In ICSE, 2002.

9. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation.
In PLDI, 2005.

10. T. Mitchell. Machine Learning. WCB McGraw-Hill, 1997.
11. S.W. Norton. Generating better decision trees. InInternational joint conference on artifical

intelligence, 1989.
12. M. Nunez. The use of background knowledge in decision tree induction. In Machine Learn-

ing, 1991.
13. R. Quinlan.C4.5: programs for machine learning. Morgan Kaufmann Publishers, 1992.
14. P. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision

tree induction algorithm. InJournal of artificial intelligence research, 1995.

