
september 2008 | vol. 51 | no. 9 | communications of the acm 83

Doi:10.1145/1378727.1378747

abstract
TxLinux is the first operating system to use hardware trans-
actional memory (HTM) as a synchronization primitive, and
the first to manage HTM in the scheduler. TxLinux, which
is a modification of Linux, is the first real-scale benchmark
for transactional memory (TM). MetaTM is a modification of
the x86 architecture that supports HTM in general and TxLi-
nux specifically.

This paper describes and measures TxLinux and MetaTM,
the HTM model that supports it. TxLinux greatly benefits
from a new primitive, called the cooperative transactional
spinlock (cxspinlock) that allows locks and transactions to
protect the same data while maintaining the advantages
of both synchronization primitives. Integrating the TxLi-
nux scheduler with the MetaTM’s architectural support for
HTM eliminates priority inversion for several real-world
benchmarks.

1. intRoDuction
To increase performance, hardware manufacturers have
turned away from scaling clock speed and are focusing on
scaling the number of cores on a chip. Increasing perfor-
mance on new hardware will require finding ways to take ad-
vantage of the parallelism made available by multiple hard-
ware processing contexts—a burden placed directly on the
software programmer. New generations of hardware will not
increase the performance of user applications unless some-
thing is done to make concurrent programming easier, so
the need for accessible approaches to parallel programming
is increasingly urgent.

The current approach to achieving concurrency using
parallel programming relies heavily on threading. Multiple
sequential flows of control (threads) execute at the same
time using locks to protect critical sections. Locks guarantee
mutually exclusive access to shared resources. Unfortunate-
ly, parallel programming using threads and locks remains
quite difficult, even for experienced programmers. Locks
suffer from a number of well-known and long- lamented
problems such as deadlock, convoys, and priority inver-
sion; they compose poorly and require complex ordering
disciplines to coordinate the use of multiple locks. There is
also an unattractive performance-complexity trade-off asso-
ciated with locks. Coarse-grain locking is simple to reason
about but sacrifices concurrent performance. Fine-grain
locking may enable high performance, but it makes code
more complex, harder to maintain because it is dependent

on invariants that are difficult to express or enforce. TM has
been the focus of much recent research attention as a tech-
nique that can provide the performance of fine-grain lock-
ing with the code complexity of coarse-grain locking.

TM is a programming model that can greatly simplify
parallel programming. A programmer demarcates critical
sections that may access shared data as transactions, which
are sequences of memory operations that either execute
completely (commit) or have no effect (abort). The system
is responsible for ensuring that transactions execute atomi-
cally (either completely or not at all), and in isolation, mean-
ing that a transaction cannot see the effects of other active
transactions, and its own operations are not visible in the
system until it commits. While transactions provide the ab-
straction of completely serial execution of critical section,
the system actually executes them optimistically, allowing
multiple transactions to proceed concurrently, as long as
atomicity and isolation are not violated. The programmer
benefits because the system provides atomicity: reasoning
about partial failures in critical sections is no longer neces-
sary. Because transactions can be composed, and do not suf-
fer from deadlock, programmers can freely compose thread-
safe libraries based on transactions.

HTM provides an efficient hardware implementation of
TM that is appropriate for use in an OS. Operating systems
benefit from using TM because TM provides a simpler pro-
gramming model than locks. For instance, operating system
has locking disciplines that specify the order in which locks
must be acquired to avoid deadlock. These disciplines be-
come complex over time and are difficult for programmers
to master; transactions require no ordering disciplines. Be-
cause many applications spend a significant fraction of their
runtime in the kernel (by making system calls, e.g., to read
and write files), another benefit of TM in the OS is increased
performance for user programs without having to modify or
recompile them.

However, management and support of HTM in an oper-
ating system requires innovation both in the architecture
and the operating system. Transactions cannot simply
replace or eliminate locks in an operating system for two
main reasons. The first is that many kernel critical sections
perform I/O, actually changing the state of devices like the
disk or network card. I/O is a problem for TM because TM
systems assume that if a conflict occurs, one transaction
can be aborted, rolled back to its start, and re-executed.
However, when the OS performs I/O it actually changes the

TxLinux and MetaTM:
Transactional Memory and
the Operating System
By Christopher J. Rossbach, hany E. Ramadan, owen S. hofmann, Donald E. Porter,
Aditya Bhandari, and Emmett Witchel

1_CACM_V51.9.indb 83 8/14/08 1:39:33 PM

84 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

state of a device (e.g., by writing data to the network). Most
devices cannot revert to a previous state once a write opera-
tion completes, so a transaction that performs I/O cannot
be rolled back and re-executed. The second reason is that
some kernel critical sections are highly contended and cur-
rently locks are more efficient than transactions for highly
contended critical sections. Under contention, the opti-
mism of transactions is unwarranted and the rollbacks and
back-off performed by the TM system can significantly re-
duce performance.

The cxspinlock (cooperative transactional spinlock) is a
new primitive that addresses the problem of I/O in trans-
actions, allowing locks and transactions to work together
to protect the same data while maintaining both of their
advantages. Previous HTM proposals require every execu-
tion of a critical section to be protected by either a lock or
a transaction, while cxspinlocks allow a critical section or
a data structure accessed from different critical sections to
sometimes be protected by a lock and sometimes by a trans-
action. Cxspinlocks dynamically and automatically choose
between locks and transactions. Cxspinlocks attempt to ex-
ecute critical sections as transactions by default, but when
the processor detects an I/O attempt, the transactions are
rolled back, and the cxspinlock will ensure that the thread
re-executes the critical section exclusively, blocking other
transactional and non-transactional threads. Additionally,
cxspinlocks provide a convenient API for converting lock-
based code to use transactions.

HTM enables a solution to the long-standing problem of
priority inversion due to locks. Priority inversion occurs when
a high priority thread waits for a lock held by a low priority
thread. We demonstrate the modifications necessary in the
TxLinux scheduler and the TM hardware to nearly eliminate
priority and policy inversion. Moreover, the OS can improve
its scheduling algorithms to help manage high contention
by leveraging a thread’s transaction history to calculate the
thread’s dynamic priority or de-schedule conflicting threads.

This paper makes the following contributions:

Creation of a transactional operating system, TxLinux, 1.
based on the Linux kernel. TxLinux is among the larg-
est real-life programs that use HTM, and the first to
use HTM inside a kernel.
Novel mechanism for cooperation between transac-2.
tional and lock-based synchronization of a critical
region. The cooperative transactional spinlock (cxspin-
lock) can be called from a transactional or non-
transactional thread, and it exploits the greater
parallelism enabled by transactions.
Novel mechanism for handling I/O within transac-3.
tions: transactions that perform I/O are restarted by
the hardware and acquire a conventional lock in
software.
HTM mechanism to nearly eliminate priority inversion.4.

2. htm PRimeR
This section provides background on parallel program-
ming with locks and gives an overview of programming with
HTM.

2.1. threads, synchronization, and locks
Current parallel programming practices rely heavily on the
thread abstraction. A thread is a sequential flow of control,
with a private program counter and call stack. Multiple
threads may share a single address space, allowing them
to communicate through memory using shared variables.
Threads make it possible for a single logical task to take ad-
vantage of multiple hardware instruction processors, for ex-
ample, by moving subsets of the task to different processing
contexts and executing them in parallel. Threads allow an
application to remain responsive to users or get other work
done while waiting for input from a slow device such as a
disk drive or a human beings. Multiple processors are the
parallel computing resource at the hardware level, multiple
threads are the parallel computing resource at the operating
system level.

Threads require synchronization when sharing data or
communicating through memory to avoid race conditions.
A race condition occurs when threads access the same data
structure concurrently in a way that violates the invariants
of the data structure. For instance, a race condition between
two threads inserting into a linked list could create a loop
in the list. Synchronization is the coordination that elimi-
nates race conditions and maintains data structure invari-
ants (like every list is null terminated). Locks allow threads to
 synchronize concurrent accesses to a data structure. A lock
protects a data structure by enforcing mutual exclusion, en-
suring that only one thread can access that data structure at
a time. When a thread has exclusive access to a data struc-
ture, it is guaranteed not to see partially completed changes
made by other threads. Locks thus help maintain consisten-
cy over shared variables and resources.

Locks introduce many challenges into the program-
ming model, such as deadlock and priority inversion.
Most importantly though, they are often a mismatch for
the programmer’s real needs and intent: a critical section
expresses a consistency constraint, while a lock provides
 exclusion. Ultimately, when a programmer encloses a set
of instructions in a critical section, it represents the assess-
ment that those instructions must be executed atomically
(either completely, or not at all), and in isolation (without
visible partial updates) in order to preserve the consistency
of the data manipulated by the critical section. HTM pro-
vides hardware and software support for precisely that
 abstraction: atomic, isolated execution of critical sections.
Locks can provide that abstraction conservatively by ensur-
ing that no two threads are ever executing in the critical sec-
tion concurrently. By contrast, TM provides this abstraction
optimistically, by allowing concurrent execution of critical
sections, detecting violations of isolation dynamically, and
restarting one or more transactions in response, revert-
ing state changes done in a transaction if the transaction
does not commit. The result is a globally consistent order
of transactions.

There are many lock variants, like reader/writer locks
and sequence locks. These lock variants reduce the amount
of exclusion for a given critical section which can improve
performance by allowing more threads to concurrently ex-
ecute a critical region. However these variants can be used

1_CACM_V51.9.indb 84 8/14/08 1:39:33 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 85

only in particular situations, such as when a particular criti-
cal region only reads a data structure. While lock variations
can reduce the performance problems of locks, they do not
reduce complexity, and in fact increase complexity as devel-
opers and code maintainers must continue to reason about
whether a particular lock variation is still safe in a particular
critical region.

2.2. synchronization with transactions
HTM is a replacement for synchronization primitives such
as spinlocks and sequence locks. Transactions are simpler
to reason about than locks. They improve performance by
eliminating lock variables and the coherence cache misses
associated with them, and they improve scalability by allow-
ing concurrent execution of threads that do not attempt to
update the same data.

Transactions compose a thread executing a transaction
can call into a module that starts another transaction. The
second transaction nests inside the first. In contrast, most
lock implementations do not compose. If one function takes
a lock and then calls another function which eventually tries
to take the same lock, the thread will deadlock. Research on
transaction nesting semantics is an active area,13,15,16 but flat
nesting, in which all nested transactions are subsumed by
the outermost transaction, is easy to implement. MetaTM
uses flat nesting, but all patterns of transaction nesting are
free from deadlock and livelock.

HTM designs share a few key high level features: primi-
tives for managing transactions, mechanisms for detecting
conflicts between transactions, called conflict detection, and
mechanisms for handling conflicts when they occur, or con-
tention management.

The table here provides an HTM glossary, defining impor-
tant concepts, and listing the primitives MetaTM adds to the
x86 ISA. The machine instructions not shown in italics are
those which are generic to any HTM design. Those shown in
italics are specific to MetaTM. The xbegin and xend instruc-
tions start and end transactions, respectively. Starting a trans-
action causes the hardware to enforce isolation for reads and
writes to memory until the transaction commits; the updates
become visible to the rest of the system on commit. The xretry
instruction provides a mechanism for explicit restart.

The set of memory locations read and written during a
transaction are called its read-set and write-set, respectively.
A conflict occurs between two transactions when there is a
non-empty intersection between the write-set of one trans-
action and the union of the read- and write-sets of another
transaction. Informally, a conflict occurs if two transactions
access the same location and at least one of those accesses
is a write-set.

When two transactions conflict, one of those transac-
tions will proceed, while the other will be selected to discard
its changes and restart execution at xbegin: implementation
of a policy to choose the losing transaction is the responsi-
bility of a contention manager. In MetaTM, the contention
manager is implemented in hardware. The policies underly-
ing contention management decisions can have a first-order
impact on performance.24 Advanced issues in contention
management include asymmetric conflicts, in which one of

the conflicting accesses is performed by a thread outside a
transaction.

3. htm anD oPeRatinG sYstems
This section discusses motivation for using TM for synchro-
nization in an operation system, and considers the most
common approach to changing lock-based programs to use
transactions.

3.1. Why use htm in an operating system?
Modern operating systems use all available hardware pro-
cessors in parallel, multiplexing the finite resources of the
hardware among many user processes concurrently. The OS
delegates critical tasks such as servicing network connec-
tions or swapping out unused pages to independent kernel
threads that are scheduled intermittently. A process is one
or more kernel threads, and each kernel threads is sched-
uled directly by the OS scheduler.

The result of aggressive parallelization of OS work is sub-
stantial sharing of kernel data structures across multiple
threads within the kernel itself. Tasks that appear unrelated
can create complex synchronization in the OS. Consider, for
example, the code in Figure 1, which is a simplification of
the Linux file system’s dparent_notify function. This
function is invoked to update the parent directory’s modify
time when a file is accessed, updated, or deleted. If two sepa-
rate user processes write to different files in the same direc-
tory concurrently, two kernel threads can call this function

Primitive Definition

xbegin instruction to begin a transaction.

xend instruction to commit a transaction.

xretry instruction to restart a transaction.

xgettxid instruction to get the current transaction identifier, which is

0 if there is no currently active transaction.

xpush instruction to save transaction state and suspend current

transaction. used on receiving an interrupt.

xpop instruction to restore previously saved transaction state

and continue xpushed transaction. used on an interrupt

return.

xtest if the value of the variable equals the argument, enter the

variable into the transaction read-set (if a transaction ex-

ists) and return true. otherwise, return false, and do not

enter the variable in the read-set.

xcas A compare and swap instruction that subjects non-transac-

tional threads to contention manager policy.

Conflict one transactional thread writes an address that is read or

written by another transactional thread.

Asymmetric A non-transactional thread reads (writes) an address

conflict written (read or written) by a transactional thread. (Also

known as a violation of strong isolation.)

Contention multiple threads attempt to acquire the same resource, e.g.,

access to a particular data structure.

transaction encodes information about the current transaction,

status word including reason for most recent restart. returned from

xbegin.

hardware tm concepts in metatm.

1_CACM_V51.9.indb 85 8/14/08 1:39:34 PM

86 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

at the same time to update the parent directory modify time,
which will manifest as contention not just for the dentry
->d_lock but for the parent directory’s p->d_lock, and
p->d_count, as well as the dcache->lock). While an OS
provides programmers with the abstraction of a single se-
quential operation involving a single thread of control, all of
these threads coexist in the kernel. Even when the OS man-
ages access to different files for different programs, resources
can be used concurrently as a result, and the OS must syn-
chronize its own accesses to ensure the integrity of the data
structures involved.

To maintain good performance in the presence of such
sharing patterns, many OSes have required great program-
mer effort to make synchronization fine-grained—i.e., locks
only protect the minimum possible data. However, synchro-
nization makes OS programming and maintenance difficult.
In one comprehensive study of Linux bugs, 346 of 1025 bugs
(34%) involved synchronization, and another study7 found
four confirmed and eight unconfirmed deadlock bugs in
the Linux 2.5 kernel. The complexity of synchronization is
evident in the Linux source file mm/filemap. c that has a
50 line comment on the top of the file describing the lock
ordering used in the file. The comment describes locks used
at a calling depth of four from functions in the file. Locking
is not composable; a component must know about the locks
taken by another component in order to avoid deadlock.

TM can help reduce the complexity of synchronization
in contexts like the dparent_notify function. Because
multiple locks are involved, the OS must follow a locking
ordering discipline to avoid deadlock, which would be un-
necessary with TM. The fine-grain locking illustrated by
dparent_notify’s release of the dentry->d_lock and
subsequent acquisition of the p->d_lock and dcache
_lock could be elided with transactions. If the function
is called with different parent directories, the lock-based
code still forces some serialization because of the dcache
->lock. However, transactions can allow concurrent execu-
tions of critical sections when they do not contend for the

same data. TM is more modular than locks and can provide
greater concurrency with simpler/coarser locks; operating
systems can benefit.

3.2. converting linux to txlinux-ss
Figure 1 also illustrates the most common paradigm for in-
troducing transactions into a lock-based program: mapping
lock acquires and releases to transaction begin and end, re-
spectively. This was the first approach taken to using trans-
actions in Linux, called TxLinux-SS. Linux features over 2000
static instances of spinlocks, and most of of the transactions
in TxLinux-SS result from converted spinlocks. TxLinux-SS
also converts reader/writer spinlock variants and se-qlocks
to transactions. Based on profiling data collected from the
Syncchar tool,18 the locks used in nine subsystems were con-
verted to use transactions. TxLinux-SS took six developers a
year to create, and ultimately converted approximately 30%
of the dynamic locking calls in Linux (in our benchmarks) to
use transactions.

The TxLinux-SS conversion of the kernel exposes several
serious challenges that prevent rote conversion of a lock-
based operating system like Linux to use transactions, in-
cluding idiosyncratic use of lock functions, control flow that
is difficult to follow because of heavy use of function point-
ers, and most importantly, I/O. In order to ensure isolation,
HTM systems must be able to roll back the effects of a trans-
action that has lost a conflict. However, HTM can only roll
back processor state and the contents of physical memory.
The effects of device I/O, on the other hand, cannot be rolled
back, and executing I/O operations as part of a transaction
can break the atomicity and isolation that transactional
systems are designed to guarantee. This is known as the
“output commit problem.”6 A computer system cannot un-
launch missiles.

If the dentry_iput function in Figure 1, performs
I/O, the TxLinux-SS transactionalization of the kernel will
not function correctly if the transaction aborts. TM alone
is insufficient to meet all the synchronization needs of an

void void void
dnotify_parent(dentry_t *dentry, dnotify_parent(dentry_t *dentry, dnotify_parent(dentry_t *dentry,
 ulong evt) { ulong evt) { ulong evt) {
 spin_lock(&dentry->d_lock); xbegin; cx_optimistic(&dentry->d_lock);
 dentry_t * p = dentry->d_parent; dentry_t *p = dentry->d_parent; dentry_t * p = dentry->d_parent;
 dget(p); dget(p); dget(p);
 spin_unlock(&dentry->d_lock); inode_dir_notify(p->d_inode,evt); cx_end(&dentry->d_lock);
 inode_dir_notify(p->d_inode,evt); if(!(--p->d_count)) { inode_dir_notify(p->d_inode,evt);
 spin_lock(&dcache_lock); dentry_iput(p); cx_optimistic(&dcache_lock);
 if(!(––p->d_count)) { d_free(p); if(!(--p->d_count)){
 spin_lock(&p->d_lock); } cx_optimistic(&p->d_lock);
 dentry_iput(p); xend; dentry_iput(p);
 d_free(p); } d_free(p);
 spin_unlock(&p->d_lock); cx_end(&p->d_lock);
 } }
 spin_unlock(&dcache_lock); cx_end(&dcache_lock);
} }

figure 1: three adapted versions of the linux file system dparent_notify () function, which handles update of a parent directory when a
file is accessed, updated, or deleted. the leftmost version uses locks, the middle version uses bare transactions and corresponds to the code
in txlinux-ss, and the rightmost version uses cxspinlocks, corresponding to txlixux-cX. note that the dentry_iput function can do i/o.

1_CACM_V51.9.indb 86 8/14/08 1:39:34 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 87

operating system. Critical sections protected by locks will
not restart and so may freely perform I/O. There will always
be a need for some locking synchronization in an operating
system, but operating systems should be able to take advan-
tage of TM wherever possible. Given that transactions and
locks will have to coexist in any realistic implementation,
cooperation between locks and transactions is essential.

4. cooPeRation BetWeen locKs anD
 tRansactions
In order to allow both transactions and conventional locks
in the operating system, we propose a synchronization API
that affords their seamless integration, called cooperative
transactional spinlocks, or cxspinlocks. Cxspinlocks allow
different executions of a single critical section to be syn-
chronized with either locks or transactions. This freedom
enables the concurrency of transactions when possible
and enforces the safety of locks when necessary. Locking
may be used for I/O, for protection of data structures read
by hardware (e.g., the page table), or for high-contention
access paths to particular data structures (where the per-
formance of transactions might suffer from excessive re-
starts). The cxspinlock API also provides a simple upgrade
path to let the kernel use transactions in place of existing
synchronization.

Cxspinlocks are necessary for the kernel only; they allow
the user programming model to remain simple. Users do
not need them because they cannot directly access I/O de-
vices (in Linux and most operating systems, users perform
I/O by calling the OS). Blocking direct user access to devices
is a common OS design decision that allows the OS to safely
multiplex devices among noncooperative user programs. So-
phisticated user programs that want transactions and locks
to coexist can use cxspinlocks, but it is not required.

Using conventional Linux spinlocks within transactions
is possible and will maintain mutual exclusion. However,
conventional spinlocks reduce the concurrency of transac-
tions and lacks fairness. Conventional spinlocks prevent
multiple transactional threads from executing a critical
 region concurrently. All transactional threads in a critical re-
gion must read the spinlock memory location to obtain the
lock and must write it to obtain the lock and release it. This
write sharing among transactional threads will prevent con-
current execution, even if concurrent execution of the “real
work” in the critical section is safe. Moreover, conventional
spinlocks do not help with the I/O problem. A transactional
thread that acquires a spinlock can restart, therefore it can-
not perform I/O.

The progress of transactional threads can be unfairly
throttled by non-transactional threads using spinlocks. In
MetaTM conflicts between transactional and non-transac-
tional threads (asymmetric conflicts) are always resolved
in favor of the non-transactional thread. To provide isola-
tion, HTM systems guarantee either that non-transactional
threads always win asymmetric conflicts (like MetaTM), or
transactional threads always win asymmetric conflicts (like
Log-TM14). With either convention, traditional spinlocks
will cause unfairness between transactional and non-trans-
actional threads.

4.1. cooperative transactional spinlocks
Cxspinlocks allow a single critical region to be safely pro-
tected by either a lock or a transaction. A non-transactional
thread can perform I/O inside a protected critical section
without concern for undoing operations on a restart. Many
transactional threads can simultaneously enter critical sec-
tions protecting the same shared data, improving perfor-
mance. Simple return codes in MetaTM allow the choice
between locks and transactions to be made dynamically,
simplifying programmer reasoning. Cxspinlocks ensure
a set of behaviors that allow both transactional and non-
 transactional code to correctly use the same critical section
while maintaining fairness and high concurrency:

•	Multiple transactional threads may enter a single criti-
cal section without conflicting on the lock variable.
A non-transactional thread will exclude both transac-
tional and other non-transactional threads from enter-
ing the critical section.

•	Transactional threads poll the cxspinlock using the
xtest instruction, which allows a thread to check the
value of a lock variable without entering the lock vari-
able into the transaction’s read-set, enabling the trans-
action to avoid restarting when the lock is released
(another thread writes the lock variable). This is espe-
cially important for acquiring nested cxspinlocks where
the thread will have done transactional work before the
attempted acquire.

•	Non-transactional threads acquire the cxspinlock using
an instruction (xcas) that is arbitrated by the transac-
tional contention manager. This enables fairness
between locks and transactions because the conten-
tion manager can implement many kinds of policies
favoring transactional threads, non-transactional
threads, readers, writers, etc.

Figure 2 shows the API and implementation. Cxspinlocks
are acquired using two functions: cx_exclusive and
cx_optimistic. Both functions take a lock address as an
argument.

cx_optimistic is a drop-in replacement for spinlocks
and is safe for almost all locking done in the Linux kernel
(the exceptions are a few low-level page table locks and
locks whose ownership is passed between threads, such as
that protecting the run queue). cx_optimistic optimis-
tically attempts to protect a critical section using transac-
tions. If a code path within the critical section protected
by cx_optimistic requires mutual exclusion, then the
transaction restarts and acquires the lock exclusively. The
code in Figure 1, which can fail due to I/O with bare transac-
tions, functions with cxspinlocks, taking advantage of opti-
mism with transactions when the dentry_iput function
does no I/O, and retrying with with exclusive access when
it does.

Control paths that will always require mutual exclusion
(e.g., those that always perform I/O) can be optimized with
cx_exclusive. Other paths that access the same data struc-
ture may execute transactionally using cx_optimistic.
 Allowing different critical regions to synchronize with a mix of

1_CACM_V51.9.indb 87 8/14/08 1:39:34 PM

88 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

cx_optimistic and cx_exclusive assures the maximum
concurrency while maintaining safety.

4.2. converting linux to txlixux-cX
While the TxLinux-SS conversion of the kernel replaces
spinlocks in selected subsystems with bare transactions,
TxLixux-CX replaces all spinlocks with cxspinlocks. The API
addresses the limitations of transactions in an OS context,
which not only made it possible to convert more locks, but
made it possible to do it much more quickly: in contrast to
the six developer years required to create TxLinux-SS, Tx-
Lixux-CX required a single developer-month.

5. htm aWaRe scheDulinG
This section describes how MetaTM allows the OS to com-
municate its scheduling priorities to the hardware conflict
manger, so the TM hardware does not subvert OS schedul-
ing priorities or policy.

5.1. Priority and policy inversion
Locks can invert OS scheduling priority, resulting in a high-
er-priority thread waiting for a lower-priority thread. Some
OSes, like Solaris, have mechanisms to deal with priority in-
version such as priority inheritance, where a waiting thread
temporarily donates its priority to the thread holding the
lock. Recent versions of RT (Real-Time) Linux implement
priority inheritance as well. Priority inheritance is compli-
cated, and while the technique can shorten the length of pri-
ority inversion, it cannot eliminate it. In addition, it requires
conversion of busy-waiting primitives such as spinlocks into
blocking primitives such as mutexes. Conversion to mutex-
es provides an upper bound on latency in the face of priority
inversion, but it slows down response time overall and does
not eliminate the problem.

Simple hardware contention management policies for TM
can invert the OS scheduling priority. HTM researchers have
focused on simple hardware contention management that is
guaranteed free from deadlock and livelock, e.g., timestamp,
where the oldest transaction wins.20 The timestamp policy

does not deadlock or livelock because timestamps are not
refreshed during transactional restarts—a transaction will
eventually become the oldest in the system, and it will suc-
ceed. But if a process with higher OS scheduler priority can
start a transaction after a process with lower priority starts
one and those transactions conflict, the timestamp policy will
allow the lower priority process to continue if a violation oc-
curs, and the higher priority process will be forced to restart.

Locks and transactions can invert not only scheduling
priority, but scheduling policy as well. OSes that support soft
real-time processes, like Linux, allow real-time threads to
synchronize with non-real-time threads. Such synchroniza-
tion can cause policy inversion where a real-time thread waits
for a non-real-time thread. Policy inversion is more serious
than priority inversion. Real-time processes are not just reg-
ular processes with higher priority, the OS scheduler treats
them differently (e.g., if a real-time process exists, it will al-
ways be scheduled before a non-real-time process). Just as
with priority inversion, many contention management poli-
cies bring the policy inversion of locks into the domain of
transactions. A contention manager that respects OS sched-
uling policy can largely eliminate policy inversion.

The contention manager of an HTM system can nearly
eradicate policy and priority inversion. The contention man-
ager is invoked when the write-set of one transaction has
a non-empty intersection with the union of the read- and
write-set of another transaction. If the contention manager
resolves this conflict in favor of the thread with higher OS
scheduling priority, then transactions will not experience
priority inversion.

5.2. contention management using os priority
To eliminate priority and policy inversion, MetaTM-
provides an interface for the OS to communicate schedul-
ing priority and policy to the hardware contention manager
(a mechanism suggested by other researchers14,22). MetaTM
 implements a novel contention management policy called
os_prio. The os_prio policy is a hybrid of contention man-
agement policies. The first prefers the transaction with the

cx_optimistic cx_exclusive cx_end
Use transactions, restart on I/O attempt Acquire a lock, with contention manager Release a critical section

void cx_optimistic(lock) { void cx_exclusive(lock) { void cx_end(lock) {
 status = xbegin; while(1) { if(xgettxid)
 if(status==NEED_EXCL) { while(*lock != 1); xend;
 xend ; if(xcas(lock, 1, 0)) else
 if(gettxid) break; *lock = 1;
 xrestart(NEED_EXCL); } }
 else }
 cx_exclusive(lock);
 return; }
 while(!xtest(lock,1));
}

figure 2: the cxspinlock aPi and implementation. the cx_optimistic aPi attempts to execute a critical section by starting a transaction,
and using xtest to spin until the lock is free. if the critical section attempts i/o, the hardware will retry the transaction, returning the NEED_
EXCL flag from the xbegin instruction. this will result in a call to the cx_exclusive aPi, which waits until the lock is free, and acquires the
lock using the xcas instruction to atomically compare and swap the lock variable, and which invokes the contention manager to arbitrate any
conflicts on the lock. the cx_end aPi exits a critical section, either by ending the current transaction, or releasing the lock.

1_CACM_V51.9.indb 88 8/14/08 1:39:34 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 89

greatest scheduling value to the OS. Given the small number
of scheduling priority values, ties in conflict priority will not
be rare, so os_prio next employs timestamp. This hybrid con-
tention management policy induces a total order on trans-
actions and is therefore livelock-free.

A single register in the MetaTM architecture allows the OS
to communicate its scheduling priorities to the contention
manager. TxLinux encodes a process’ dynamic scheduling
priority and scheduling policy into a single integer called the
conflict priority, which it writes to a privileged status register
during the process of scheduling the process. The register
can only be written by the OS so the user code cannot change
the value. The value of the register does not change during
a scheduling quantum. For instance, the scheduling policy
might be encoded in the upper bits of the conflict priority
and the scheduling priority in the lower bits. An 8-bit value is
sufficient to record the policies and priority values of Linux
processes. Upon detecting a conflict, the os_prio contention
manager favors the transaction whose conflict priority value
is the largest.

The os_prio policy is free from deadlock and livelock be-
cause the conflict priority is computed before the xbegin
instruction is executed, and the OS never changes the con-
flict priority during the lifetime of the transaction (some de-
signs allow transactions to continue for multiple scheduling
quanta). When priorities are equal, os_prio defaults to Size-
Matters, which defaults to timestamp when read–write set
sizes are equal. Hence, the tuple (conflict priority, size, age)
induces a total order, making the os_prio policy free of dead-
lock and livelock.

6. eValuation
Linux and TxLinux versions 2.6.16.1 run on the Simics ma-
chine simulator version 3.0.27. In the following experiments,
Simics models an x86 SMP machine with 16 and 32 proces-
sors and an IPC of one instruction per cycle. The memory hi-
erarchy uses per-processor split instruction and data caches
(16 KB with 4-way associativity, 64-byte cache lines, 1-cycle
cache hit and 16-cycle miss penalties). The level one data
cache has extra tag bits to manage transactional data. There
is a unified second level cache that is 4 MB, 8-way associative,
with 64-byte cache lines, and a 200 cycle miss penalty to main
memory. Coherence is maintained with a transactional MESI
snooping protocol, and main memory is a single shared 1 GB.
The disk device models PCI bandwidth limitations, DMA
data transfer, and has a fixed 5.5 ms access latency. All bench-
marks are scripted, requiring no user interaction.

6.1. Workloads
We evaluated TxLinux-SS and TxLixux-CX on a number of ap-
plication benchmarks. Where P denotes the number of pro-
cessors, these are:

•	 pmake (make -j P to compile part of libFLAC source
tree)

•	MAB (modififed andrew benchmark, P instances, no
compile phase)

•	 configure (configure script for a subset of TeTeX, P
instances)

•	find (Search 78MB directory (29 dirs, 968 files), P
instances)

•	 bonnie++ (models filesystem activity of a web cache, P
instances)

•	 dpunish (a filesystem stress test, with operations split
across P processes)

It is important to note that none of these benchmarks uses
transactions directly; the benchmarks exercise the kernel,
which in turn, uses transactions for synchronization.

6.2. Performance
Figure 3 shows the synchronization performance for Linux,
Tx-Linux-SS (using bare transactions) and TxLixux-CX (us-
ing cxspin-locks) for 16 CPUs, broken down into time spent
spinning on locks and time spent aborting and retrying
transactions. Linux spends between 1% and 6% of kernel
time synchronizing, while TxLinux spends between 1% and
12% of kernel time synchronizing. However, on average, Tx-
Linux reduces synchronization time by 34% and 40% with
transactions and cxspinlocks, respectively. While HTM
generally reduces synchronization overhead, it more than
double the time lost for bonnie++. This loss is due to trans-
actions that restart, back-off, but continue to fail. Since bon-
nie++ does substantial creation and deletion of small files
in a single directory, the resulting contention in file system
code paths results in pathological restart behavior in the
file system code that handles updates to directories. High
contention on kernel data structures causes a situation in
which repeated back-off and restart effectively starves a few
transactions. Using back-off before restart as a technique to
handle such high contention may be insufficient for com-
plex systems: the transaction system may need to queue
transactions that consistently do not complete.

Averaged over all benchmarks, TxLinux-SS shows a 2% slow-
down over Linux for 16 CPUs and a 2% speedup for 32 CPUs.
The slowdown in the 16 CPU case results from the pathologi-
cal restart situation in the bonnie++ benchmark, discussed
above; the pathology is not present in the 32 CPU case with

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

pmake bonnie++ mab find config dpunish

0

2

4

6

8

10

12

14

P
er

ce
n

t
of

 K
er

n
el

 t
im

e
sp

en
t

sy
n

ch
ro

n
iz

in
g

aborts

spins

figure 3: synchronization performance for 16 cPus, txlinux-ss, and
txlinux-cX.

1_CACM_V51.9.indb 89 8/14/08 1:39:34 PM

90 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

bare transactions, and without bonnie++, TxLinux-SS shows
the same speedup for 16 CPUs as 32 CPUs. TxLixux-CX sees
2.5% and 1% speedups over Linux for 16 and 32 CPUs. These
performance deltas are negligible and do not demonstrate a
conclusive performance increase. However, the argument for
HTM in an operating system is about reducing programming
complexity. These results show that HTM can enhance pro-
grammability without a negative impact on performance.

6.3. Priority inversion performance
Figure 4 shows how frequently transactional priority inver-
sion occurs in TxLinux. In this case, priority inversion means
that the default SizeMatters contention management policy21
favors the process with the lower OS scheduling priority when
deciding the winning transaction in a conflict. Results for
timestamp-based contention management are similar. Most
benchmarks show that a significant percentage of transac-
tional conflicts result in a priority inversion, with the aver-
age 9.5% across all kernel and CPU configurations we tested,
with as has 25% for find. Priority inversion tends to decrease
with larger numbers of processors, but the trend is not strict.
The pmake and bonnie++ benchmarks show an increase
with higher processor count. The number and distribution
of transactional conflicts is chaotic, so changing the number
of processors can change the conflict behavior. The os_prio
contention management policy eliminates priority inversion
entirely in our benchmarks, at a performance cost under 1%.
By contrast, techniques for ameliorating priority inversion
with locks such as priority inheritance only provide an upper
bound on priority inversion, and require taking the perfor-
mance hit of turning polling locks into blocking locks.

The frequency with which naïve contention management
violates OS scheduling priority argues strongly for a mecha-
nism that lets the OS participate in contention management,
e.g., by communicating hints to the hardware.

7. RelateD WoRK
Due to limited space, we refer the interested reader to the
complete discussions,21,23 and survey the related literature in

brief. Larus and Rajwar provide a thorough reference on TM
research through the end of 2006.12

HTM. Herlihy and Moss10 gave one of the earliest designs
for HTM; many proposals since have focused on architec-
tural mechanisms to support HTM,5,8,13,14,25 and language-
level support for HTM. Some proposals for TM virtualiza-
tion (when transactions overflow hardware resources)
involve the OS,2,5 but no proposals to date have allowed the
OS itself to use transactions for synchronization. This pa-
per, however, examines the systems issues that arise when
using HTM in an OS and OS support for HTM. Rajwar and
Goodman explored speculative19 and transactional20 execu-
tion of critical sections. These mechanisms for falling back
on locking when isolation is violated are similar to (but less
general than) the cxspinlock technique of executing in a
transactional context and reverting to locking when I/O is
detected.

I/O in transactions. Proposals for I/O in transactions fall
into three basic camps: give transactions an isolation escape
hatch,15–17 delay the I/O until the transaction commits,8,9 and
guarantee that the thread performing I/O will commit.2,8 All
of these strategies have serious drawbacks.11. Escape hatch-
es introduce complexity and correctness conditions that
restrict the programming model and are easy to violate in
common programming idioms. Delaying I/O is not possible
when the code performing the I/O depends on its result, e.g.,
a device register read might return a status word that the OS
must interpret in order to finish the transaction. Finally,
guaranteeing that a transaction will commit severely lim-
its scheduler flexibility, and can, for long-running or highly
contended transactions, result in serial bottlenecks or dead-
lock. Non-transactional threads on other processors which
conflict the guaranteed thread will be forced to stall until the
guaranteed thread commits its work. This will likely lead to
lost timer interrupts and deadlock in the kernel.

Scheduling. Operating systems such as Microsoft Win-
dows, Linux, and Solaris implement sophisticated, priority-
based, pre-emptive schedulers that provide different classes
of priorities and a variety of scheduling techniques for each
class. The Linux RT patch supports priority inheritance to
help mitigate the effects of priority inversion: while our
work also addresses priority inversion, the Linux RT patch
implementation converts spinlocks to mutexes. While these
mechanisms guarantee an upper bound on priority inver-
sion, the os_prio policy allows the contention manager to ef-
fectively eliminate priority inversion without requiring the
primitive to block or involve the scheduler.

8. conclusion
This paper is the first description of an operating system
that uses HTM as a synchronization primitive, and pres-
ents innovative techniques for HTM-aware scheduling and
cooperation between locks and transactions. TxLinux dem-
onstrates that HTM provides comparable performance to
locks, and can simplify code while coexisting with other
synchronization primitives in a modern OS. The cxspinlock
primitive enables a solution to the long-standing problem of
I/O in transactions, and the API eases conversion from lock-
ing primitives to transactions significantly. Introduction of

0

5

10

15

20

25

30

pm
ake

bonnie++
m

ab
fin

d

co
nfig

dpunish

16 cpus
32 cpus

Transactional priority inversion

figure 4: Percentage of transaction restarts decided in favor of a
transaction started by the processor with lower process priority,
resulting in “transactional” priority inversion. Results shown are for
all benchmarks, for 16 and 32 processors, txlinux-ss.

1_CACM_V51.9.indb 90 8/14/08 1:39:35 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 91

transactions as a synchronization primitive in the OS reduc-
es time wasted synchronizing on average, but can cause pa-
thologies that do not occur with traditional locks under very
high contention or when critical sections are large enough
to incur the overhead of HTM virtualization. HTM aware
scheduling eliminates priority inversion for all the work-
loads we investigate.

References

 1. Adl-Tabatabai, A.-R., Lewis, B. T.,
Menon, V., Murphy, B. R., Saha, B.,
and Shpeisman, T. Compiler and
runtime support for efficient software
transactional memory. In PLDI,
June 2006.

 2. Blundell, C., Devietti, J., Lewis,
E. C., and Martin, M. M. K. Making
the fast case common and the
uncommon case simple in unbounded
transactional memory. In ISCA, 2007.

 3. Carlstrom, B., McDonald, A., Chafi, H.,
Chung, J., Cao Minh, C., Kozyrakis, C.,
and Olukotun, K. The Atomos
transactional programming language.
In PLDI, June 2006.

 4. Chou, A., Yang, J., Chelf, B., Hallem, S.,
and Engler, D. An emprical study of
operating systems errors. In SOSP, 2001.

 5. Chuang, W., Narayanasamy, S.,
Venkatesh, G., Sampson, J.,
Biesbrouck, M. V., Pokam, G., Calder, B.,
and Colavin, O. Unbounded page-
based transactional memory.
In ASPLOS-XII, 2006.

 6. Elnozahy, E., Johnson, D., and Wang, Y.

A survey of rollback-recovery protocols
in message-passing systems, 1996.

 7. Engler, D. and Ashcraft, K. Racer-X:
Effective, static detection of race
conditions and deadlocks. In SOSP, 2003.

 8. Hammond, L., Wong, V., Chen, M.,
Carlstrom, B. D., Davis, J. D.,
Hertzberg, B., Prabhu, M. K., Wijaya, H.,
Kozyrakis, C., and Olukotun, K.,
Transactional memory coherence and
consistency. In ISCA, June 2004.

 9. Harris, T. Exceptions and side-effects
in atomic blocks. Sci. Comput.
Program., 58(3):325–343, 2005.

 10. Herlihy, M. and Moss, J. E. Transactional
memory: Architectural support for
lock-free data structures. In ISCA,
May 1993.

 11. Hofmann, O. S., Porter, D. E.,
Rossbach, C. J., Ramadan, H. E., and
Witchel, E. Solving difficult HTM
problems without difficult hardware.
In ACM TrANSACT Workshop, 2007.

 12. Larus, J. R. and Rajwar, R.
Transactional Memory. Morgan &
Claypool, 2006.

 13. McDonald, A., Chung, J., Carlstrom, B.,
Minh, C. C., Chafi, H., Kozyrakis, C.,
and Olukotun, K. Architectural
semantics for practical transactional
memory. In ISCA, June 2006.

 14. Moore, K. E., Bobba, J., Moravan, M. J.,
Hill, M. D., and Wood, D. A. Logtm:
Log-based transactional memory. In
HPCA, 2006.

 15. Moravan, M. J., Bobba, J., Moore, K. E.,
Yen, L., Hill, M. D., Liblit, B., Swift, M. M.,
and Wood, D. A. Supporting nested
transactional memory in logtm. In
ASPLOS-XII. 2006.

 16. Moss, E. and Hosking, T. Nested
transactional memory: Model and
preliminary architecture sketches.
In SCOOL, 2005.

 17. Moss, J. E. B., Griffeth, N. D., and
Graham, M. H. Abstraction in recovery
management. SIGMOD rec.,
15(2):72–83, 1986.

 18. Porter, D. E., Hofmann, O. S., and
Witchel, E. Is the optimism in
optimistic concurrency warranted?
In HotOS, 2007.

 19. Rajwar, R. and Goodman, J.
Speculative lock elision: Enabling
highly concurrent multithreaded
execution. In MICrO, 2001.

 20. Rajwar, R. and Goodman, J.

Transactional lock-free execution of
lock-based programs. In ASPLOS, 2002.

 21. Ramadan, H., Rossbach, C., Porter, D.,
Hofmann, O., Bhandari, A., and
Witchel, E. MetaTM/TxLinux:
Transactional Memory for an
Operating System. Evaluating
transactional memory tradeoffs with
TxLinux. In ISCA, 2007.

 22. Ramadan, H., Rossbach, C., and
Witchel, E. The Linux kernel:
A challenging workload for
transactional memory. In Workshop
on Transactional Memory Workloads,
June 2006.

 23. Rossbach, C. J., Hofmann, O. S.,
Porter, D. E., Ramadan, H. E., Aditya,
B., and Witchel, E. Txlinux: using and
managing hardware transactional
memory in an operating system. In
SOSP, 2007.

 24. Scherer III, W. N. and Scott, M. L.
Advanced contention management
for dynamic software transactional
memory. In PODC, 2005.

 25. Yen, L., Bobba, J., Marty, M., Moore,
K. E., Volos, H., Hill, M. D., Swift,
M. M., and Wood, D. A. Logtm-SE:
Decoupling hardware transactional
memory from caches. In HPCA,
Feb 2007.

Christopher J. Rossbach, hany E. Ramadan, Owen S. hofmann, Donald E. Porter,
Aditya Bhandari, and Emmett Witchel (rossbach,ramadan,osh, porterde,bhandari,witchel)
@cs.utexas.edu, Department of Computer Sciences, University of Texas, Austin

© 2008 ACM 0001-0782/08/0900 $5.00

ACM Transactions on
Internet TechnologyInternet TechnologyInternet Technology

This quarterly publication encompasses many disciplines
in computing—including computer software engineering,
middleware, database management, security, knowledge dis-
covery and data mining, networking and distributed systems,
communications, and performance and scalability—all under
one roof. TOIT brings a sharper focus on the results and roles
of the individual disciplines and the relationship among
them. Extensive multi-disciplinary coverage is placed on the
new application technologies, social issues, and public policies
shaping Internet development.

http://toit.acm.org/

1_CACM_V51.9.indb 91 8/14/08 1:39:35 PM

