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abstract
TxLinux is the first operating system to use hardware trans-
actional memory (HTM) as a synchronization primitive, and 
the first to manage HTM in the scheduler. TxLinux, which 
is a modification of Linux, is the first real-scale benchmark 
for transactional memory (TM). MetaTM is a modification of 
the x86 architecture that supports HTM in general and TxLi-
nux specifically.

This paper describes and measures TxLinux and MetaTM, 
the HTM model that supports it. TxLinux greatly benefits 
from a new primitive, called the cooperative transactional 
spinlock (cxspinlock) that allows locks and transactions to 
protect the same data while maintaining the advantages 
of both synchronization primitives. Integrating the TxLi-
nux scheduler with the MetaTM’s architectural support for 
HTM eliminates priority inversion for several real-world 
benchmarks.

1. intRoDuction
To increase performance, hardware manufacturers have 
turned away from scaling clock speed and are focusing on 
scaling the number of cores on a chip. Increasing perfor-
mance on new hardware will require finding ways to take ad-
vantage of the parallelism made available by multiple hard-
ware processing contexts—a burden placed directly on the 
software programmer. New generations of hardware will not 
increase the performance of user applications unless some-
thing is done to make concurrent programming easier, so 
the need for accessible approaches to parallel programming 
is increasingly urgent.

The current approach to achieving concurrency using 
parallel programming relies heavily on threading. Multiple 
sequential flows of control (threads) execute at the same 
time using locks to protect critical sections. Locks guarantee 
mutually exclusive access to shared resources. Unfortunate-
ly, parallel programming using threads and locks remains 
quite difficult, even for experienced programmers. Locks 
suffer from a number of well-known and long- lamented 
problems such as deadlock, convoys, and priority inver-
sion; they compose poorly and require complex ordering 
disciplines to coordinate the use of multiple locks. There is 
also an unattractive performance-complexity trade-off asso-
ciated with locks. Coarse-grain locking is simple to reason 
about but sacrifices concurrent performance. Fine-grain 
locking may enable high performance, but it makes code 
more complex, harder to maintain because it is dependent 

on invariants that are difficult to express or enforce. TM has 
been the focus of much recent research attention as a tech-
nique that can provide the performance of fine-grain lock-
ing with the code complexity of coarse-grain locking.

TM is a programming model that can greatly simplify 
parallel programming. A programmer demarcates critical 
sections that may access shared data as transactions, which 
are sequences of memory operations that either execute 
completely (commit) or have no effect (abort). The system 
is responsible for ensuring that transactions execute atomi-
cally (either completely or not at all), and in isolation, mean-
ing that a transaction cannot see the effects of other active 
transactions, and its own operations are not visible in the 
system until it commits. While transactions provide the ab-
straction of completely serial execution of critical section, 
the system actually executes them optimistically, allowing 
multiple transactions to proceed concurrently, as long as 
atomicity and isolation are not violated. The programmer 
benefits because the system provides atomicity: reasoning 
about partial failures in critical sections is no longer neces-
sary. Because transactions can be composed, and do not suf-
fer from deadlock, programmers can freely compose thread-
safe libraries based on transactions.

HTM provides an efficient hardware implementation of 
TM that is appropriate for use in an OS. Operating systems 
benefit from using TM because TM provides a simpler pro-
gramming model than locks. For instance, operating system 
has locking disciplines that specify the order in which locks 
must be acquired to avoid deadlock. These disciplines be-
come complex over time and are difficult for programmers 
to master; transactions require no ordering disciplines. Be-
cause many applications spend a significant fraction of their 
runtime in the kernel (by making system calls, e.g., to read 
and write files), another benefit of TM in the OS is increased 
performance for user programs without having to modify or 
recompile them.

However, management and support of HTM in an oper-
ating system requires innovation both in the architecture 
and the operating system. Transactions cannot simply 
replace or eliminate locks in an operating system for two 
main reasons. The first is that many kernel critical sections 
perform I/O, actually changing the state of devices like the 
disk or network card. I/O is a problem for TM because TM 
systems assume that if a conflict occurs, one transaction 
can be aborted, rolled back to its start, and re-executed. 
However, when the OS performs I/O it actually changes the 
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state of a device (e.g., by writing data to the network). Most 
devices cannot revert to a previous state once a write opera-
tion completes, so a transaction that performs I/O cannot 
be rolled back and re-executed. The second reason is that 
some kernel critical sections are highly contended and cur-
rently locks are more efficient than transactions for highly 
contended critical sections. Under contention, the opti-
mism of transactions is unwarranted and the rollbacks and 
back-off performed by the TM system can significantly re-
duce performance.

The cxspinlock (cooperative transactional spinlock) is a 
new primitive that addresses the problem of I/O in trans-
actions, allowing locks and transactions to work together 
to protect the same data while maintaining both of their 
advantages. Previous HTM proposals require every execu-
tion of a critical section to be protected by either a lock or 
a transaction, while cxspinlocks allow a critical section or 
a data structure accessed from different critical sections to 
sometimes be protected by a lock and sometimes by a trans-
action. Cxspinlocks dynamically and automatically choose 
between locks and transactions. Cxspinlocks attempt to ex-
ecute critical sections as transactions by default, but when 
the processor detects an I/O attempt, the transactions are 
rolled back, and the cxspinlock will ensure that the thread 
re-executes the critical section exclusively, blocking other 
transactional and non-transactional threads. Additionally, 
cxspinlocks provide a convenient API for converting lock-
based code to use transactions.

HTM enables a solution to the long-standing problem of 
priority inversion due to locks. Priority inversion occurs when 
a high priority thread waits for a lock held by a low priority 
thread. We demonstrate the modifications necessary in the 
TxLinux scheduler and the TM hardware to nearly eliminate 
priority and policy inversion. Moreover, the OS can improve 
its scheduling algorithms to help manage high contention 
by leveraging a thread’s transaction history to calculate the 
thread’s dynamic priority or de-schedule conflicting threads.

This paper makes the following contributions:

Creation of a transactional operating system, TxLinux, 1. 
based on the Linux kernel. TxLinux is among the larg-
est real-life programs that use HTM, and the first to 
use HTM inside a kernel.
Novel mechanism for cooperation between transac-2. 
tional and lock-based synchronization of a critical 
region. The cooperative transactional spinlock (cxspin-
lock) can be called from a transactional or non- 
transactional thread, and it exploits the greater 
parallelism enabled by transactions.
Novel mechanism for handling I/O within transac-3. 
tions: transactions that perform I/O are restarted by 
the hardware and acquire a conventional lock in 
software.
HTM mechanism to nearly eliminate priority inversion.4. 

2. htm PRimeR
This section provides background on parallel program-
ming with locks and gives an overview of programming with 
HTM.

2.1. threads, synchronization, and locks
Current parallel programming practices rely heavily on the 
thread abstraction. A thread is a sequential flow of control, 
with a private program counter and call stack. Multiple 
threads may share a single address space, allowing them 
to communicate through memory using shared variables. 
Threads make it possible for a single logical task to take ad-
vantage of multiple hardware instruction processors, for ex-
ample, by moving subsets of the task to different processing 
contexts and executing them in parallel. Threads allow an 
application to remain responsive to users or get other work 
done while waiting for input from a slow device such as a 
disk drive or a human beings. Multiple processors are the 
parallel computing resource at the hardware level, multiple 
threads are the parallel computing resource at the operating 
system level.

Threads require synchronization when sharing data or 
communicating through memory to avoid race conditions. 
A race condition occurs when threads access the same data 
structure concurrently in a way that violates the invariants 
of the data structure. For instance, a race condition between 
two threads inserting into a linked list could create a loop 
in the list. Synchronization is the coordination that elimi-
nates race conditions and maintains data structure invari-
ants (like every list is null terminated). Locks allow threads to 
 synchronize concurrent accesses to a data structure. A lock 
protects a data structure by enforcing mutual exclusion, en-
suring that only one thread can access that data structure at 
a time. When a thread has exclusive access to a data struc-
ture, it is guaranteed not to see partially completed changes 
made by other threads. Locks thus help maintain consisten-
cy over shared variables and resources.

Locks introduce many challenges into the program-
ming model, such as deadlock and priority inversion. 
Most importantly though, they are often a mismatch for 
the programmer’s real needs and intent: a critical section 
expresses a consistency constraint, while a lock provides 
 exclusion. Ultimately, when a programmer encloses a set 
of instructions in a critical section, it represents the assess-
ment that those instructions must be executed atomically 
(either completely, or not at all), and in isolation (without 
visible partial updates) in order to preserve the consistency 
of the data manipulated by the critical section. HTM pro-
vides hardware and software support for precisely that 
 abstraction: atomic, isolated execution of critical sections. 
Locks can provide that abstraction conservatively by ensur-
ing that no two threads are ever executing in the critical sec-
tion concurrently. By contrast, TM provides this abstraction 
optimistically, by allowing concurrent execution of critical 
sections, detecting violations of isolation dynamically, and 
restarting one or more transactions in response, revert-
ing state changes done in a transaction if the transaction 
does not commit. The result is a globally consistent order 
of transactions.

There are many lock variants, like reader/writer locks 
and sequence locks. These lock variants reduce the amount 
of exclusion for a given critical section which can improve 
performance by allowing more threads to concurrently ex-
ecute a critical region. However these variants can be used 
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only in particular situations, such as when a particular criti-
cal region only reads a data structure. While lock variations 
can reduce the performance problems of locks, they do not 
reduce complexity, and in fact increase complexity as devel-
opers and code maintainers must continue to reason about 
whether a particular lock variation is still safe in a particular 
critical region.

2.2. synchronization with transactions
HTM is a replacement for synchronization primitives such 
as spinlocks and sequence locks. Transactions are simpler 
to reason about than locks. They improve performance by 
eliminating lock variables and the coherence cache misses 
associated with them, and they improve scalability by allow-
ing concurrent execution of threads that do not attempt to 
update the same data.

Transactions compose a thread executing a transaction 
can call into a module that starts another transaction. The 
second transaction nests inside the first. In contrast, most 
lock implementations do not compose. If one function takes 
a lock and then calls another function which eventually tries 
to take the same lock, the thread will deadlock. Research on 
transaction nesting semantics is an active area,13,15,16 but flat 
nesting, in which all nested transactions are subsumed by 
the outermost transaction, is easy to implement. MetaTM 
uses flat nesting, but all patterns of transaction nesting are 
free from deadlock and livelock.

HTM designs share a few key high level features: primi-
tives for managing transactions, mechanisms for detecting 
conflicts between transactions, called conflict detection, and 
mechanisms for handling conflicts when they occur, or con-
tention management.

The table here provides an HTM glossary, defining impor-
tant concepts, and listing the primitives MetaTM adds to the 
x86 ISA. The machine instructions not shown in italics are 
those which are generic to any HTM design. Those shown in 
italics are specific to MetaTM. The xbegin and xend instruc-
tions start and end transactions, respectively. Starting a trans-
action causes the hardware to enforce isolation for reads and 
writes to memory until the transaction commits; the updates 
become visible to the rest of the system on commit. The xretry 
instruction provides a mechanism for explicit restart.

The set of memory locations read and written during a 
transaction are called its read-set and write-set, respectively. 
A conflict occurs between two transactions when there is a 
non-empty intersection between the write-set of one trans-
action and the union of the read- and write-sets of another 
transaction. Informally, a conflict occurs if two transactions 
access the same location and at least one of those accesses 
is a write-set.

When two transactions conflict, one of those transac-
tions will proceed, while the other will be selected to discard 
its changes and restart execution at xbegin: implementation 
of a policy to choose the losing transaction is the responsi-
bility of a contention manager. In MetaTM, the contention 
manager is implemented in hardware. The policies underly-
ing contention management decisions can have a first-order 
impact on performance.24 Advanced issues in contention 
management include asymmetric conflicts, in which one of 

the conflicting accesses is performed by a thread outside a 
transaction.

3. htm anD oPeRatinG sYstems
This section discusses motivation for using TM for synchro-
nization in an operation system, and considers the most 
common approach to changing lock-based programs to use 
transactions.

3.1. Why use htm in an operating system?
Modern operating systems use all available hardware pro-
cessors in parallel, multiplexing the finite resources of the 
hardware among many user processes concurrently. The OS 
delegates critical tasks such as servicing network connec-
tions or swapping out unused pages to independent kernel 
threads that are scheduled intermittently. A process is one 
or more kernel threads, and each kernel threads is sched-
uled directly by the OS scheduler.

The result of aggressive parallelization of OS work is sub-
stantial sharing of kernel data structures across multiple 
threads within the kernel itself. Tasks that appear unrelated 
can create complex synchronization in the OS. Consider, for 
example, the code in Figure 1, which is a simplification of 
the Linux file system’s dparent_notify function. This 
function is invoked to update the parent directory’s modify 
time when a file is accessed, updated, or deleted. If two sepa-
rate user processes write to different files in the same direc-
tory concurrently, two kernel threads can call this function 

Primitive Definition

xbegin instruction to begin a transaction.

xend instruction to commit a transaction.

xretry instruction to restart a transaction.

xgettxid  instruction to get the current transaction identifier, which is 

0 if there is no currently active transaction.

xpush  instruction to save transaction state and suspend current 

transaction. used on receiving an interrupt.

xpop  instruction to restore previously saved transaction state 

and continue xpushed transaction. used on an interrupt 

return.

xtest  if the value of the variable equals the argument, enter the 

variable into the transaction read-set (if a transaction ex-

ists) and return true. otherwise, return false, and do not 

enter the variable in the read-set.

xcas  A compare and swap instruction that subjects non-transac-

tional threads to contention manager policy.

Conflict  one transactional thread writes an address that is read or 

written by another transactional thread.

Asymmetric A non-transactional thread reads (writes) an address  

conflict   written (read or written) by a transactional thread. (Also 

known as a violation of strong isolation.)

Contention  multiple threads attempt to acquire the same resource, e.g., 

access to a particular data structure.

transaction encodes information about the current transaction,  

status word   including reason for most recent restart. returned from 

xbegin.

hardware tm concepts in metatm.
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at the same time to update the parent directory modify time, 
which will manifest as contention not just for the dentry 
->d_lock but for the parent directory’s p->d_lock, and 
p->d_count, as well as the dcache->lock). While an OS 
provides programmers with the abstraction of a single se-
quential operation involving a single thread of control, all of 
these threads coexist in the kernel. Even when the OS man-
ages access to different files for different programs, resources 
can be used concurrently as a result, and the OS must syn-
chronize its own accesses to ensure the integrity of the data 
structures involved.

To maintain good performance in the presence of such 
sharing patterns, many OSes have required great program-
mer effort to make synchronization fine-grained—i.e., locks 
only protect the minimum possible data. However, synchro-
nization makes OS programming and maintenance difficult. 
In one comprehensive study of Linux bugs, 346 of 1025 bugs 
(34%) involved synchronization, and another study7 found 
four confirmed and eight unconfirmed deadlock bugs in 
the Linux 2.5 kernel. The complexity of synchronization is 
evident in the Linux source file mm/filemap. c that has a 
50 line comment on the top of the file describing the lock 
ordering used in the file. The comment describes locks used 
at a calling depth of four from functions in the file. Locking 
is not composable; a component must know about the locks 
taken by another component in order to avoid deadlock.

TM can help reduce the complexity of synchronization 
in contexts like the dparent_notify function. Because 
multiple locks are involved, the OS must follow a locking 
ordering discipline to avoid deadlock, which would be un-
necessary with TM. The fine-grain locking illustrated by 
dparent_notify’s release of the dentry->d_lock and 
subsequent acquisition of the p->d_lock and dcache 
_lock could be elided with transactions. If the function 
is called with different parent directories, the lock-based 
code still forces some serialization because of the dcache 
->lock. However, transactions can allow concurrent execu-
tions of critical sections when they do not contend for the 

same data. TM is more modular than locks and can provide 
greater concurrency with simpler/coarser locks; operating 
systems can benefit.

3.2. converting linux to txlinux-ss
Figure 1 also illustrates the most common paradigm for in-
troducing transactions into a lock-based program: mapping 
lock acquires and releases to transaction begin and end, re-
spectively. This was the first approach taken to using trans-
actions in Linux, called TxLinux-SS. Linux features over 2000 
static instances of spinlocks, and most of of the transactions 
in TxLinux-SS result from converted spinlocks. TxLinux-SS 
also converts reader/writer spinlock variants and se-qlocks 
to transactions. Based on profiling data collected from the 
Syncchar tool,18 the locks used in nine subsystems were con-
verted to use transactions. TxLinux-SS took six developers a 
year to create, and ultimately converted approximately 30% 
of the dynamic locking calls in Linux (in our benchmarks) to 
use transactions.

The TxLinux-SS conversion of the kernel exposes several 
serious challenges that prevent rote conversion of a lock-
based operating system like Linux to use transactions, in-
cluding idiosyncratic use of lock functions, control flow that 
is difficult to follow because of heavy use of function point-
ers, and most importantly, I/O. In order to ensure isolation, 
HTM systems must be able to roll back the effects of a trans-
action that has lost a conflict. However, HTM can only roll 
back processor state and the contents of physical memory. 
The effects of device I/O, on the other hand, cannot be rolled 
back, and executing I/O operations as part of a transaction 
can break the atomicity and isolation that transactional 
systems are designed to guarantee. This is known as the 
“output commit problem.”6 A computer system cannot un-
launch missiles.

If the dentry_iput function in Figure 1, performs 
I/O, the TxLinux-SS transactionalization of the kernel will 
not function correctly if the transaction aborts. TM alone 
is insufficient to meet all the synchronization needs of an 

void void void
dnotify_parent(dentry_t *dentry, dnotify_parent(dentry_t *dentry, dnotify_parent(dentry_t *dentry,
         ulong evt) {          ulong evt) {          ulong evt) {
 spin_lock(&dentry->d_lock);  xbegin;  cx_optimistic(&dentry->d_lock);
 dentry_t * p = dentry->d_parent;  dentry_t *p = dentry->d_parent;  dentry_t * p = dentry->d_parent;
 dget(p);  dget(p);  dget(p);
 spin_unlock(&dentry->d_lock);  inode_dir_notify(p->d_inode,evt);  cx_end(&dentry->d_lock);
 inode_dir_notify(p->d_inode,evt);  if(!(--p->d_count)) {  inode_dir_notify(p->d_inode,evt);
 spin_lock(&dcache_lock);   dentry_iput(p);  cx_optimistic(&dcache_lock);
 if(!(––p->d_count))  {   d_free(p);  if(!(--p->d_count)){
  spin_lock(&p->d_lock);  }   cx_optimistic(&p->d_lock);
  dentry_iput(p);  xend;   dentry_iput(p);
  d_free(p); }   d_free(p);
  spin_unlock(&p->d_lock);    cx_end(&p->d_lock);
 }   }
 spin_unlock(&dcache_lock);   cx_end(&dcache_lock );
}  }

figure 1: three adapted versions of the linux file system dparent_notify () function, which handles update of a parent directory when a 
file is accessed, updated, or deleted. the leftmost version uses locks, the middle version uses bare transactions and corresponds to the code 
in txlinux-ss, and the rightmost version uses cxspinlocks, corresponding to txlixux-cX. note that the dentry_iput function can do i/o.
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operating system. Critical sections protected by locks will 
not restart and so may freely perform I/O. There will always 
be a need for some locking synchronization in an operating 
system, but operating systems should be able to take advan-
tage of TM wherever possible. Given that transactions and 
locks will have to coexist in any realistic implementation, 
cooperation between locks and transactions is essential.

4. cooPeRation BetWeen locKs anD 
 tRansactions
In order to allow both transactions and conventional locks 
in the operating system, we propose a synchronization API 
that affords their seamless integration, called cooperative 
transactional spinlocks, or cxspinlocks. Cxspinlocks allow 
different executions of a single critical section to be syn-
chronized with either locks or transactions. This freedom 
enables the concurrency of transactions when possible 
and enforces the safety of locks when necessary. Locking 
may be used for I/O, for protection of data structures read 
by hardware (e.g., the page table), or for high-contention 
access paths to particular data structures (where the per-
formance of transactions might suffer from excessive re-
starts). The cxspinlock API also provides a simple upgrade 
path to let the kernel use transactions in place of existing 
synchronization.

Cxspinlocks are necessary for the kernel only; they allow 
the user programming model to remain simple. Users do 
not need them because they cannot directly access I/O de-
vices (in Linux and most operating systems, users perform 
I/O by calling the OS). Blocking direct user access to devices 
is a common OS design decision that allows the OS to safely 
multiplex devices among noncooperative user programs. So-
phisticated user programs that want transactions and locks 
to coexist can use cxspinlocks, but it is not required.

Using conventional Linux spinlocks within transactions 
is possible and will maintain mutual exclusion. However, 
conventional spinlocks reduce the concurrency of transac-
tions and lacks fairness. Conventional spinlocks prevent 
multiple transactional threads from executing a critical 
 region concurrently. All transactional threads in a critical re-
gion must read the spinlock memory location to obtain the 
lock and must write it to obtain the lock and release it. This 
write sharing among transactional threads will prevent con-
current execution, even if concurrent execution of the “real 
work” in the critical section is safe. Moreover, conventional 
spinlocks do not help with the I/O problem. A transactional 
thread that acquires a spinlock can restart, therefore it can-
not perform I/O.

The progress of transactional threads can be unfairly 
throttled by non-transactional threads using spinlocks. In 
MetaTM conflicts between transactional and non-transac-
tional threads (asymmetric conflicts) are always resolved 
in favor of the non-transactional thread. To provide isola-
tion, HTM systems guarantee either that non-transactional 
threads always win asymmetric conflicts (like MetaTM), or 
transactional threads always win asymmetric conflicts (like 
Log-TM14). With either convention, traditional spinlocks 
will cause unfairness between transactional and non-trans-
actional threads.

4.1. cooperative transactional spinlocks
Cxspinlocks allow a single critical region to be safely pro-
tected by either a lock or a transaction. A non-transactional 
thread can perform I/O inside a protected critical section 
without concern for undoing operations on a restart. Many 
transactional threads can simultaneously enter critical sec-
tions protecting the same shared data, improving perfor-
mance. Simple return codes in MetaTM allow the choice 
between locks and transactions to be made dynamically, 
simplifying programmer reasoning. Cxspinlocks ensure 
a set of behaviors that allow both transactional and non-
 transactional code to correctly use the same critical section 
while maintaining fairness and high concurrency:

•	Multiple transactional threads may enter a single criti-
cal section without conflicting on the lock variable. 
A non-transactional thread will exclude both transac-
tional and other non-transactional threads from enter-
ing the critical section.

•	Transactional threads poll the cxspinlock using the 
xtest instruction, which allows a thread to check the 
value of a lock variable without entering the lock vari-
able into the transaction’s read-set, enabling the trans-
action to avoid restarting when the lock is released 
(another thread writes the lock variable). This is espe-
cially important for acquiring nested cxspinlocks where 
the thread will have done transactional work before the 
attempted acquire.

•	Non-transactional threads acquire the cxspinlock using 
an instruction (xcas) that is arbitrated by the transac-
tional contention manager. This enables fairness 
between locks and transactions because the conten-
tion manager can implement many kinds of policies 
favoring transactional threads, non-transactional 
threads, readers, writers, etc.

Figure 2 shows the API and implementation. Cxspinlocks 
are acquired using two functions: cx_exclusive and 
cx_optimistic. Both functions take a lock address as an 
argument.

cx_optimistic is a drop-in replacement for spinlocks 
and is safe for almost all locking done in the Linux kernel 
(the exceptions are a few low-level page table locks and 
locks whose ownership is passed between threads, such as 
that protecting the run queue). cx_optimistic optimis-
tically attempts to protect a critical section using transac-
tions. If a code path within the critical section protected 
by cx_optimistic requires mutual exclusion, then the 
transaction restarts and acquires the lock exclusively. The 
code in Figure 1, which can fail due to I/O with bare transac-
tions, functions with cxspinlocks, taking advantage of opti-
mism with transactions when the dentry_iput function 
does no I/O, and retrying with with exclusive access when 
it does.

Control paths that will always require mutual exclusion 
(e.g., those that always perform I/O) can be optimized with 
cx_exclusive. Other paths that access the same data struc-
ture may execute transactionally using cx_optimistic. 
 Allowing different critical regions to synchronize with a mix of 
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cx_optimistic and cx_exclusive assures the maximum 
concurrency while maintaining safety.

4.2. converting linux to txlixux-cX
While the TxLinux-SS conversion of the kernel replaces 
spinlocks in selected subsystems with bare transactions, 
TxLixux-CX replaces all spinlocks with cxspinlocks. The API 
addresses the limitations of transactions in an OS context, 
which not only made it possible to convert more locks, but 
made it possible to do it much more quickly: in contrast to 
the six developer years required to create TxLinux-SS, Tx-
Lixux-CX required a single developer-month.

5. htm aWaRe scheDulinG
This section describes how MetaTM allows the OS to com-
municate its scheduling priorities to the hardware conflict 
manger, so the TM hardware does not subvert OS schedul-
ing priorities or policy.

5.1. Priority and policy inversion
Locks can invert OS scheduling priority, resulting in a high-
er-priority thread waiting for a lower-priority thread. Some 
OSes, like Solaris, have mechanisms to deal with priority in-
version such as priority inheritance, where a waiting thread 
temporarily donates its priority to the thread holding the 
lock. Recent versions of RT (Real-Time) Linux implement 
priority inheritance as well. Priority inheritance is compli-
cated, and while the technique can shorten the length of pri-
ority inversion, it cannot eliminate it. In addition, it requires 
conversion of busy-waiting primitives such as spinlocks into 
blocking primitives such as mutexes. Conversion to mutex-
es provides an upper bound on latency in the face of priority 
inversion, but it slows down response time overall and does 
not eliminate the problem.

Simple hardware contention management policies for TM 
can invert the OS scheduling priority. HTM researchers have 
focused on simple hardware contention management that is 
guaranteed free from deadlock and livelock, e.g., timestamp, 
where the oldest transaction wins.20 The timestamp policy 

does not deadlock or livelock because timestamps are not 
refreshed during transactional restarts—a transaction will 
eventually become the oldest in the system, and it will suc-
ceed. But if a process with higher OS scheduler priority can 
start a transaction after a process with lower priority starts 
one and those transactions conflict, the timestamp policy will 
allow the lower priority process to continue if a violation oc-
curs, and the higher priority process will be forced to restart.

Locks and transactions can invert not only scheduling 
priority, but scheduling policy as well. OSes that support soft 
real-time processes, like Linux, allow real-time threads to 
synchronize with non-real-time threads. Such synchroniza-
tion can cause policy inversion where a real-time thread waits 
for a non-real-time thread. Policy inversion is more serious 
than priority inversion. Real-time processes are not just reg-
ular processes with higher priority, the OS scheduler treats 
them differently (e.g., if a real-time process exists, it will al-
ways be scheduled before a non-real-time process). Just as 
with priority inversion, many contention management poli-
cies bring the policy inversion of locks into the domain of 
transactions. A contention manager that respects OS sched-
uling policy can largely eliminate policy inversion.

The contention manager of an HTM system can nearly 
eradicate policy and priority inversion. The contention man-
ager is invoked when the write-set of one transaction has 
a non-empty intersection with the union of the read- and 
write-set of another transaction. If the contention manager 
resolves this conflict in favor of the thread with higher OS 
scheduling priority, then transactions will not experience 
priority inversion.

5.2. contention management using os priority
To eliminate priority and policy inversion, MetaTM-
provides an interface for the OS to communicate schedul-
ing priority and policy to the hardware contention manager 
(a mechanism suggested by other researchers14,22). MetaTM 
 implements a novel contention management policy called 
os_prio. The os_prio policy is a hybrid of contention man-
agement policies. The first prefers the transaction with the 

cx_optimistic cx_exclusive cx_end
Use transactions, restart on I/O attempt Acquire a lock, with contention manager Release a critical section

void cx_optimistic(lock) { void cx_exclusive(lock) { void cx_end(lock) {
 status = xbegin;  while(1) {  if(xgettxid)
 if(status==NEED_EXCL) {  while(*lock != 1);  xend;
 xend ;  if(xcas(lock, 1, 0))  else
 if(gettxid)     break;  *lock = 1;
    xrestart(NEED_EXCL);  } }
 else } 
    cx_exclusive(lock);  
 return; }  
 while(!xtest(lock,1));  
}  

figure 2: the cxspinlock aPi and implementation. the cx_optimistic aPi attempts to execute a critical section by starting a transaction, 
and using xtest to spin until the lock is free. if the critical section attempts i/o, the hardware will retry the transaction, returning the NEED_
EXCL flag from the xbegin instruction. this will result in a call to the cx_exclusive aPi, which waits until the lock is free, and acquires the 
lock using the xcas instruction to atomically compare and swap the lock variable, and which invokes the contention manager to arbitrate any 
conflicts on the lock. the cx_end aPi exits a critical section, either by ending the current transaction, or releasing the lock.
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greatest scheduling value to the OS. Given the small number 
of scheduling priority values, ties in conflict priority will not 
be rare, so os_prio next employs timestamp. This hybrid con-
tention management policy induces a total order on trans-
actions and is therefore livelock-free.

A single register in the MetaTM architecture allows the OS 
to communicate its scheduling priorities to the contention 
manager. TxLinux encodes a process’ dynamic scheduling 
priority and scheduling policy into a single integer called the 
conflict priority, which it writes to a privileged status register 
during the process of scheduling the process. The register 
can only be written by the OS so the user code cannot change 
the value. The value of the register does not change during 
a scheduling quantum. For instance, the scheduling policy 
might be encoded in the upper bits of the conflict priority 
and the scheduling priority in the lower bits. An 8-bit value is 
sufficient to record the policies and priority values of Linux 
processes. Upon detecting a conflict, the os_prio contention 
manager favors the transaction whose conflict priority value 
is the largest.

The os_prio policy is free from deadlock and livelock be-
cause the conflict priority is computed before the xbegin 
instruction is executed, and the OS never changes the con-
flict priority during the lifetime of the transaction (some de-
signs allow transactions to continue for multiple scheduling 
quanta). When priorities are equal, os_prio defaults to Size-
Matters, which defaults to timestamp when read–write set 
sizes are equal. Hence, the tuple (conflict priority, size, age) 
induces a total order, making the os_prio policy free of dead-
lock and livelock.

6. eValuation
Linux and TxLinux versions 2.6.16.1 run on the Simics ma-
chine simulator version 3.0.27. In the following experiments, 
Simics models an x86 SMP machine with 16 and 32 proces-
sors and an IPC of one instruction per cycle. The memory hi-
erarchy uses per-processor split instruction and data caches 
(16 KB with 4-way associativity, 64-byte cache lines, 1-cycle 
cache hit and 16-cycle miss penalties). The level one data 
cache has extra tag bits to manage transactional data. There 
is a unified second level cache that is 4 MB, 8-way associative, 
with 64-byte cache lines, and a 200 cycle miss penalty to main 
memory. Coherence is maintained with a transactional MESI 
snooping protocol, and main memory is a single shared 1 GB. 
The disk device models PCI bandwidth limitations, DMA 
data transfer, and has a fixed 5.5 ms access latency. All bench-
marks are scripted, requiring no user interaction.

6.1. Workloads
We evaluated TxLinux-SS and TxLixux-CX on a number of ap-
plication benchmarks. Where P denotes the number of pro-
cessors, these are:

•	 pmake (make -j P to compile part of libFLAC source 
tree)

•	MAB (modififed andrew benchmark, P instances, no 
compile phase)

•	 configure (configure script for a subset of TeTeX, P 
instances)

•	find (Search 78MB directory (29 dirs, 968 files), P 
instances)

•	 bonnie++ (models filesystem activity of a web cache, P 
instances)

•	 dpunish (a filesystem stress test, with operations split 
across P processes)

It is important to note that none of these benchmarks uses 
transactions directly; the benchmarks exercise the kernel, 
which in turn, uses transactions for synchronization.

6.2. Performance
Figure 3 shows the synchronization performance for Linux, 
Tx-Linux-SS (using bare transactions) and TxLixux-CX (us-
ing cxspin-locks) for 16 CPUs, broken down into time spent 
spinning on locks and time spent aborting and retrying 
transactions. Linux spends between 1% and 6% of kernel 
time synchronizing, while TxLinux spends between 1% and 
12% of kernel time synchronizing. However, on average, Tx-
Linux reduces synchronization time by 34% and 40% with 
transactions and cxspinlocks, respectively. While HTM 
generally reduces synchronization overhead, it more than 
double the time lost for bonnie++. This loss is due to trans-
actions that restart, back-off, but continue to fail. Since bon-
nie++ does substantial creation and deletion of small files 
in a single directory, the resulting contention in file system 
code paths results in pathological restart behavior in the 
file system code that handles updates to directories. High 
contention on kernel data structures causes a situation in 
which repeated back-off and restart effectively starves a few 
transactions. Using back-off before restart as a technique to 
handle such high contention may be insufficient for com-
plex systems: the transaction system may need to queue 
transactions that consistently do not complete.

Averaged over all benchmarks, TxLinux-SS shows a 2% slow-
down over Linux for 16 CPUs and a 2% speedup for 32 CPUs. 
The slowdown in the 16 CPU case results from the pathologi-
cal restart situation in the bonnie++ benchmark, discussed 
above; the pathology is not present in the 32 CPU case with 
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figure 3: synchronization performance for 16 cPus, txlinux-ss, and 
txlinux-cX.
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bare transactions, and without bonnie++, TxLinux-SS shows 
the same speedup for 16 CPUs as 32 CPUs. TxLixux-CX sees 
2.5% and 1% speedups over Linux for 16 and 32 CPUs. These 
performance deltas are negligible and do not demonstrate a 
conclusive performance increase. However, the argument for 
HTM in an operating system is about reducing programming 
complexity. These results show that HTM can enhance pro-
grammability without a negative impact on performance.

6.3. Priority inversion performance
Figure 4 shows how frequently transactional priority inver-
sion occurs in TxLinux. In this case, priority inversion means 
that the default SizeMatters contention management policy21 
favors the process with the lower OS scheduling priority when 
deciding the winning transaction in a conflict. Results for 
timestamp-based contention management are similar. Most 
benchmarks show that a significant percentage of transac-
tional conflicts result in a priority inversion, with the aver-
age 9.5% across all kernel and CPU configurations we tested, 
with as has 25% for find. Priority inversion tends to decrease 
with larger numbers of processors, but the trend is not strict. 
The pmake and bonnie++ benchmarks show an increase 
with higher processor count. The number and distribution 
of transactional conflicts is chaotic, so changing the number 
of processors can change the conflict behavior. The os_prio 
contention management policy eliminates priority inversion 
entirely in our benchmarks, at a performance cost under 1%. 
By contrast, techniques for ameliorating priority inversion 
with locks such as priority inheritance only provide an upper 
bound on priority inversion, and require taking the perfor-
mance hit of turning polling locks into blocking locks.

The frequency with which naïve contention management 
violates OS scheduling priority argues strongly for a mecha-
nism that lets the OS participate in contention management, 
e.g., by communicating hints to the hardware.

7. RelateD WoRK
Due to limited space, we refer the interested reader to the 
complete discussions,21,23 and survey the related literature in 

brief. Larus and Rajwar provide a thorough reference on TM 
research through the end of 2006.12

HTM. Herlihy and Moss10 gave one of the earliest designs 
for HTM; many proposals since have focused on architec-
tural mechanisms to support HTM,5,8,13,14,25 and language-
level support for HTM. Some proposals for TM virtualiza-
tion (when transactions overflow hardware resources) 
involve the OS,2,5 but no proposals to date have allowed the 
OS itself to use transactions for synchronization. This pa-
per, however, examines the systems issues that arise when 
using HTM in an OS and OS support for HTM. Rajwar and 
Goodman explored speculative19 and transactional20 execu-
tion of critical sections. These mechanisms for falling back 
on locking when isolation is violated are similar to (but less 
general than) the cxspinlock technique of executing in a 
transactional context and reverting to locking when I/O is 
detected.

I/O in transactions. Proposals for I/O in transactions fall 
into three basic camps: give transactions an isolation escape 
hatch,15–17 delay the I/O until the transaction commits,8,9 and 
guarantee that the thread performing I/O will commit.2,8 All 
of these strategies have serious drawbacks.11. Escape hatch-
es introduce complexity and correctness conditions that 
restrict the programming model and are easy to violate in 
common programming idioms. Delaying I/O is not possible 
when the code performing the I/O depends on its result, e.g., 
a device register read might return a status word that the OS 
must interpret in order to finish the transaction. Finally, 
guaranteeing that a transaction will commit severely lim-
its scheduler flexibility, and can, for long-running or highly 
contended transactions, result in serial bottlenecks or dead-
lock. Non-transactional threads on other processors which 
conflict the guaranteed thread will be forced to stall until the 
guaranteed thread commits its work. This will likely lead to 
lost timer interrupts and deadlock in the kernel.

Scheduling. Operating systems such as Microsoft Win-
dows, Linux, and Solaris implement sophisticated, priority-
based, pre-emptive schedulers that provide different classes 
of priorities and a variety of scheduling techniques for each 
class. The Linux RT patch supports priority inheritance to 
help mitigate the effects of priority inversion: while our 
work also addresses priority inversion, the Linux RT patch 
implementation converts spinlocks to mutexes. While these 
mechanisms guarantee an upper bound on priority inver-
sion, the os_prio policy allows the contention manager to ef-
fectively eliminate priority inversion without requiring the 
primitive to block or involve the scheduler.

8. conclusion
This paper is the first description of an operating system 
that uses HTM as a synchronization primitive, and pres-
ents innovative techniques for HTM-aware scheduling and 
cooperation between locks and transactions. TxLinux dem-
onstrates that HTM provides comparable performance to 
locks, and can simplify code while coexisting with other 
synchronization primitives in a modern OS. The cxspinlock 
primitive enables a solution to the long-standing problem of 
I/O in transactions, and the API eases conversion from lock-
ing primitives to transactions significantly. Introduction of 
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transactions as a synchronization primitive in the OS reduc-
es time wasted synchronizing on average, but can cause pa-
thologies that do not occur with traditional locks under very 
high contention or when critical sections are large enough 
to incur the overhead of HTM virtualization. HTM aware 
scheduling eliminates priority inversion for all the work-
loads we investigate. 
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