
Is Transactional Programming Actually Easier?

Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel
Department of Computer Science, University of Texas at Austin

{rossbach,osh,witchel}@cs.utexas.edu

Abstract

Chip multi-processors (CMPs) have become ubiquitous,
while tools that ease concurrent programming have not.
The promise of increased performance for all applications
through ever more parallel hardware requires good tools
for concurrent programming, especially for average pro-
grammers. Transactional memory (TM) has enjoyed re-
cent interest as a tool that can help programmers program
concurrently.

The TM research community claims that programming
with transactional memory is easier than alternatives (like
locks), but evidence is scant. In this paper, we describe a
user-study in which 147 undergraduate students in an op-
erating systems course implemented the same programs
using coarse and fine-grain locks, monitors, and trans-
actions. We surveyed the students after the assignment,
and examined their code to determine the types and fre-
quency of programming errors for each synchronization
technique. Inexperienced programmers found baroque
syntax a barrier to entry for transactional programming.
On average, subjective evaluation showed that students
found transactions harder to use than coarse-grain locks,
but slightly easier to use than fine-grained locks. De-
tailed examination of synchronization errors in the stu-
dents’ code tells a rather different story. Overwhelm-
ingly, the number and types of programming errors the
students made was much lower for transactions than for
locks. On a similar programming problem, over 70% of
students made errors with fine-grained locking, while less
than 10% made errors with transactions.

1 Introduction

Transactional memory (TM) has enjoyed a wave of atten-
tion from the research community. The increasing ubiq-
uity of chip multiprocessors has resulted in a high avail-
ability of parallel hardware resources, without many con-
current programs. TM researchers position TM as an
enabling technology for concurrent programming for the
“average” programmer.

Transactional memory allows the programmer to de-
limit regions of code that must execute atomically and in

isolation. It promises the performance of fine-grain lock-
ing with the code simplicity of coarse-grain locking. In
contrast to locks, which use mutual exclusion to serialize
access to critical sections, TM is typically implemented
using optimistic concurrency techniques, allowing critical
sections to proceed in parallel. Because this technique dra-
matically reduces serialization when dynamic read-write
and write-write sharing is rare, it can translate directly
to improved performance without additional effort from
the programmer. Moreover, because transactions elimi-
nate many of the pitfalls commonly associated with locks
(e.g. deadlock, convoys, poor composability), transac-
tional programming is touted as being easier than lock
based programming.

Evaluating the ease of transactional programming rel-
ative to locks is largely uncharted territory. Naturally,
the question of whether transactions are easier to use
than locks is qualitative. Moreover, since transactional
memory is still a nascent technology, the only available
transactional programs are research benchmarks, and the
population of programmers familiar with both transac-
tional memory and locks for synchronization is vanish-
ingly small.

To address the absence of evidence, we developed a
concurrent programming project for students of an under-
graduate Operating Systems course at the University of
Texas at Austin, in which students were required to imple-
ment the same concurrent program using coarse and fine-
grained locks, monitors, and transactions. We surveyed
students about the relative ease of transactional program-
ming as well as their investment of development effort
using each synchronization technique. Additionally, we
examined students’ solutions in detail to characterize and
classify the types and frequency of programming errors
students made with each programming technique.

This paper makes the following contributions:

• A project and design for collecting data relevant to
the question of the relative ease of programming with
different synchronization primitives.

• Data from 147 student surveys that constitute the
first (to our knowledge) empirical data relevant to the
question of whether transactions are, in fact, easier to
use than locks.

1

Figure 1: A screen-shot of sync-gallery, the program undergraduate OS students were asked to implement. In the
figure the colored boxes represent 16 shooting lanes in a gallery populated by shooters, orrogues. A red or blue box
represents a box in which a rogue has shot either a red or blue paint ball. A white box represents a box in which no
shooting has yet taken place. A purple box indicates a line inwhich both a red and blue shot have occurred, indicating
a race condition in the program. Sliders control the rate at which shooting and cleaning threads perform their work.

• A taxonomy of synchronization errors made with dif-
ferent synchronization techniques, and a characteri-
zation of the frequency with which such errors occur
in student programs.

2 Sync-gallery

In this section, we describe sync-gallery, the Java pro-
gramming project we assigned to students in an under-
graduate operating systems course. The project is de-
signed to familiarize students with concurrent program-
ming in general, and with techniques and idioms for us-
ing a variety of synchronization primitives to manage data
structure consistency. Figure 1 shows a screen shot from
the sync-gallery program.

The project asks students to consider the metaphor of a
shooting gallery, with a fixed number of lanes in which
rogues (shooters) can shoot in individual lanes. Being
pacifists, we insist that shooters in this gallery use red or
blue paint balls rather than bullets. Targets are white, so
that lanes will change color when a rogue has shot in one.
Paint is messy, necessitatingcleaners to clean the gallery
when all lanes have been shot. Rogues and cleaners are
implemented as threads that must check the state of one
or more lanes in the gallery to decide whether it is safe
to carry out their work. For rogues, this work amounts
to shooting at some number of randomly chosen lanes.
Cleaners must return the gallery to it’s initial state with all
lanes white. The students must use various synchroniza-
tion primitives to enforce a number of program invariants:

1. Only one rogue may shoot in a given lane at a time.
2. Rogues may only shoot in a lane if it is white.
3. Cleaners should only clean when all lanes have

been shot (are non-white).
4. Only one thread can be engaged in the process of

cleaning at any given time.

If a student writes code for a rogue that fails to respect
the first two invariants, the lane can be shot with both red
and blue, and will therefore turn purple, giving the student
instant visual feedback that a race condition exists in the
program. If the code fails to respect to the second two
invariants, no visual feedback is given (indeed these in-
variants can only be checked by inspection of the code in
the current implementation).

We ask the students to implement 9 different versions
of rogues (Java classes) that are instructive for different
approaches to synchronization. Table 1 summarizes the
rogue variations. Gaining exclusive access to one or two
lanes of the gallery in order to test the lane’s state and then
modify it corresponds directly to the real-world program-
ming task of locking some number of resources in order to
test and modify them safely in the presence of concurrent
threads.

2.1 Locking

We ask the students to synchronize rogue and cleaner
threads in the sync-gallery using locks to teach them
about coarse and fine-grain locking. To ensure that stu-
dents write code that explicitly performs locking and
unlocking operations, we require them to use the Java
ReentrantLock class and do not allow use of the
synchronized keyword. In locking rogue variations,
cleaners do not use dedicated threads; the rogue that col-
ors the last white lane in the gallery is responsible for
becoming a cleaner and subsequently cleaning all lanes.
There are four variations on this rogue type:Coarse, Fine,
Coarse2 and Fine2. In the coarse implementation, stu-
dents are allowed to use a single global lock which is ac-
quired before attempting to shoot or clean. In the fine-
grain implementation, we require the students to imple-
ment individual locks for each lane. The Coarse2 and
Fine2 variations require the same mapping of locks to ob-

2

f i n a l i n t x = 10 ;
C a l l a b l e c = new C a l l a b l e<Void> {

p u b l i c Void c a l l () {
/ / t x n l code
y = x ∗ 2 ;
r e t u r n n u l l ;

}
}
Thread . d o I t (c) ;

T r a n s a c t i o n t x = new T r a n s a c t i o n (i d) ;
boo lean done = f a l s e ;
wh i l e (! done) {

t r y {
t x . B e g i n T r a n s a c t i o n () ;
/ / t x n l code
done = t x . Commi tTransac t ion () ;

} c a t c h (Abo r tExcep t i on e){
t x . A b o r t T r a n s a c t i o n () ;
done = f a l s e ;

}
}

Figure 2:Examples of (left) DSTM2 concrete syntax, and (right) JDASTMconcrete syntax.

jects in the gallery as their counterparts above, but intro-
duce the additional stipulation that rogues must acquire
access to and shoot at two random lanes rather than one.
The pedagogical value is illustration that fine-grain lock-
ing requires a lock-ordering discipline to avoid deadlock,
while a single coarse lock does not. Naturally, the use of
fine grain lane locks complicates the enforcement of in-
variants 3 and 4 above.

2.2 Monitor implementations

Students must use condition variables along with sig-
nal/wait to implement both fine and coarse locking ver-
sions of the rogue programs. These two variations intro-
duce dedicated threads for cleaners: shooters and cleaners
must use condition variables to coordinate shooting and
cleaning phases. In the coarse version (CoarseCleaner),
students use a single global lock, while the fine-grain ver-
sion (FineCleaner) requires per-lane locks.

2.3 Transactions

Finally, the students are asked to implement 3 TM-based
variants of the rogues that share semantics with some lock-
ing versions, but use transactional memory for synchro-

nization instead of locks. The most basic TM-based rogue,
TM, is analogous to the Coarse and Fine versions: rogue
and cleaner threads are not distinct, and shooters need
shoot only one lane, while theTM2 variation requires that
rogues shoot at two lanes rather than one. In theTM-
Cleaner, rogues and cleaners have dedicated threads. Stu-
dents can rely on the TM subsystem to detect conflicts and
restart transactions to enforce all invariants, so no condi-
tion synchronization is required.

2.4 Transactional Memory Support

Since sync-gallery is a Java program, we were faced with
the question of how to support transactional memory. The
ideal case would have been to use a software transactional
memory (STM) that provides support for atomic blocks,
allowing students to write transactional code of the form:

vo id sh o o t () {
a tomic {

Lane l = getLane (rand ()) ;
i f (l . g e t C o l o r () == WHITE)

l . sh o o t (t h i s . c o l o r) ;
}

}

Rogue name Technique R/C Threads Additional Requirements
Coarse Single global lock not distinct.

Coarse2 Single global lock not distinct rogues shoot at 2 random lanes
CoarseCleaner Single global lock, conditions distinct conditions, wait/notify

Fine Per lane locks not distinct
Fine2 Per lane locks not distinct rogues shoot at 2 random lanes

FineCleaner Per lane locks, conditions distinct conditions, wait/notify
TM TM not distinct

TM2 TM not distinct rogues shoot at 2 random lanes
TMCleaner TM distinct

Table 1: The nine different rogue implementations requiredfor the sync-gallery project. The technique column in-
dicates what synchronization technique was required. The R/C Threads column indicates whether coordination was
required between dedicated rogue and cleaner threads or not. A value of “distinct” means that rogue and cleaner in-
stances run in their own thread, while a value of “not distinct” means that the last rogue to shoot an empty (white) lane
is responsible for cleaning the gallery.

3

No such tool is yet available; implementing compiler
support for atomic blocks, or use of a a source-to-source
compiler such as spoon [1] were considered out-of-scope
for the project. The trade-off is that students are forced to
deal directly with the concrete syntax of our TM imple-
mentation, and must manage read and write barriers ex-
plicitly. We assigned the lab to 4 classes over 2 semesters.
During the first semester both classes used DSTM2 [14].
For the second semester, both classes used JDASTM [24].

The concrete syntax has a direct impact on ease of pro-
gramming, as seen in Figure 2. Both examples pepper
the actual data structure manipulation with code that ex-
plicitly manages transactions. We replaced DSTM2 in the
second semester because we felt that JDASTM syntax was
somewhat less baroque and did not require students to
deal directly with programming constructs like generics.
Also, DSTM2 binds transactional execution to specialized
thread classes. However, both DSTM2 and JDASTM re-
quire explicit read and write barrier calls for transactional
reads and writes.

3 Methodology

Students completed the sync-gallery program as a pro-
gramming assignment as part of several operating systems
classes at the University of Texas at Austin. In total, 147
students completed the assignment, spanning two sections
each in classes from two different semesters of the course.
The semesters were separated by a year. We provided an
implementation of the shooting gallery, and asked students
to write the rogue classes described in the previous sec-
tions, respecting the given invariants.

We asked students to record the amount of time they
spent designing, coding, and debugging each program-
ming task (rogue). We use the amount of time spent on
each task as a measure of the difficulty that task presented
to the students. This data is presented in Section 4.1. Af-
ter completing the assignment, students rated their famil-

iarity with concurrent programming concepts prior to the
assignment. Students then rated their experience with the
various tasks, ranking synchronization methods with re-
spect to ease of development, debugging, and reasoning
(Section 4.2).

While grading the assignment, we recorded the type and
frequency of synchronization errors students made. These
are the errors still present in the student’s final version of
the code. We use the frequency with which students made
errors as another metric of the difficulty of various syn-
chronization constructs.

To prevent experience with the assignment as a whole
from influencing the difficulty of each task, we asked
students to complete the tasks in different orders. In
each group of rogues (single-lane, two-lane, and separate
cleaner thread), students completed the coarse-grained
lock version first. Students then either completed the
fine-grained or TM version second, depending on their
assigned group. We asked students to randomly assign
themselves to groups based on hashes of their name. Due
to an error, nearly twice as many students were assigned to
the group completing the fine-grained version first. How-
ever, there were no significant differences in programming
time between the two groups, suggesting that the order in
which students implemented the tasks did not affect the
difficulty of each task.

3.1 Limitations

Perhaps the most important limitation of the study is the
much greater availability of documentation and tutorial in-
formation about locking than about transactions. The nov-
elty of transactional memory made it more difficult both
to teach and learn. The concrete syntax of transactions is
also a barrier to ease of understanding and use (see§4.2).
Lectures about locking drew on a larger body of under-
standing that has existed for a longer time. It is unlikely
that students from one year influenced students from the

Figure 3: Average design, coding, and debugging time spent for analogous rogue variations.

4

Figure 4: Distributions for the amount of time students spent coding and debugging, for all rogue variations.

next year given the difference in concrete syntax between
the two courses.

4 Evaluation

We examined development time, user experiences, and
programming errors to determine the difficulty of pro-
gramming with various synchronization primitives. In
general, we found that a single coarse-grained lock had
similar complexity to transactions. Both of these primi-
tives were less difficult, caused fewer errors, and had bet-
ter student responses than fine-grained locking.

4.1 Development time

Figures 4 and 3 characterize the amount of time the
students spent designing, coding and debugging with
each synchronization primitive. On average, transactional
memory required more development time than coarse
locks, but less than required for fine-grain locks and condi-
tion synchronization. With more complex synchronization
tasks, such as coloring two lanes and condition synchro-
nization, the amount of time required for debugging in-
creases relative to the time required for design and coding
(Figure 3).

We evaluate the statistical significance of differences in
development time in Table 2. Using a Wilcoxon signed-
rank test, we evaluated the alternative hypothesis on each
pair of synchronization tasks that the row task required

less time than the column task. Pairs for which the signed-
rank test reports a p-value of< .05 are considered statisti-
cally significant, indicating that the row task required less
time than the column. If the p-value is greater than .05,
the difference in time for the tasks is not statistically sig-
nificant or the row task required more time than the col-
umn task. Results for the different class years are sep-
arated due to differences in the TM part of the assign-
ment(Section 2.4).

We found that students took more time to develop the
initial tasks while familiarizing themselves with the as-
signment. Except for fine-grain locks, later versions of
similar synchronization primitives took less time than
earlier, e.g. the Coarse2 task took less time than the
Coarse task. In addition, condition synchronization is dif-
ficult. For both rogues with less complex synchroniza-
tion (Coarse and TM), adding condition synchronization
increases the time required for development. For fine-
grain locking, students simply replace one complex prob-
lem with a second, and so do not require significant addi-
tional time.

In both years, we found that coarse locks and transac-
tions required less time than fine-grain locks on the more
complex two-lane assignments. This echoes the promise
of transactions, removing the coding and debugging com-
plexity of fine-grain locking and lock ordering when more
than one lock is required.

5

4.2 User experience

To gain insight into the students’ perceptions about the
relative ease of using different synchronization techniques
we asked the students to respond to a survey after com-
pleting the sync-gallery project. The survey ends with 6
questions asking students to rank their favorite technique
with respect to ease of development, debugging, reasoning
about, and so on.

A version of the complete survey can be viewed at [2].
In student opinions, we found that the more baroque

syntax of the DSTM2 system was a barrier to entry for
new transactional programmers. Figure 5 shows student
responses to questions about syntax and ease of thinking
about different transactional primitives. In the first class
year, students found transactions more difficult to think
about and had syntax more difficult than that of fine-grain
locks. In the second year, when the TM implementation
was replaced with one less cumbersome, student opinions
aligned with our other findings: TM ranked behind coarse
locks, but ahead of fine-grain. For both years, other ques-
tions on ease of design and implementation mirrored these
results, with TM ranked ahead of fine-grain locks.

4.3 Synchronization Error Characteriza-
tion

We examined the solutions from the second year’s class in
detail to classify the types of synchronization errors stu-
dents made along with their frequency. This involved both
a thorough reading of every student’s final solutions and
automated testing. While the students’ subjective evalu-
ation of the ease of transactional programming does not

clearly indicate that transactional programming is easier,
the types and frequency of programming errors does.

While the students showed an impressive level of cre-
ativity with respect to synchronization errors, we found
that all errors fit within the taxonomy described below.

1. Lock ordering (lock-ord). In fine-grain locking so-
lutions, a program failed to use a lock ordering dis-
cipline to acquire locks, admitting the possibility of
deadlock.

2. Checking conditions outside a critical section
(lock-cond). This type of error occurs when code
checks a program condition with no locks held, and
subsequently acts on that condition after acquiring
locks. This was the most common error in sync-
gallery, and usually occurred when students would
check whether to clean the gallery with no locks held,
subsequently acquiring lane locks and proceeding to
clean. The result is a violation of invariant 4 (§2).
This type of error may be more common because no
visual feedback is given when it is violated (unlike
races for shooting lanes, which can result in purple
lanes).

3. Forgotten synchronization (lock-forgot). This
class of errors includes all cases where the program-
mer forgot to acquire locks, or simply did not realize
that a particular region would require mutual exclu-
sion to be correct.

4. Exotic use of condition variables (cv-exotic). We
encountered a good deal of signal/wait usage on con-
dition variables that indicates no clear understanding
of what the primitives actually do. The canonical ex-
ample of this is signaling and waiting the same con-

Year 1

Best syntax
Answers 1 2 3 4

Coarse 69.6% 17.4% 0% 8.7%
Fine 13.0% 43.5% 17.4% 21.7%
TM 8.7% 21.7% 21.7% 43.5%

Conditions 0% 21.7% 52.1% 21.7%

Easiest to think about
Answers 1 2 3 4

Coarse 78.2% 13.0% 4.3% 0%
Fine 4.3% 39.1% 34.8% 17.4%
TM 8.7% 21.7% 26.1% 39.1%

Conditions 4.3% 21.7% 30.4% 39.1%

Year 2

Best syntax
Answers 1 2 3 4

Coarse 61.6% 30.1% 1.3% 4.1%
Fine 5.5% 20.5% 45.2% 26.0%
TM 26.0% 31.5% 19.2% 20.5%

Cond. 5.5% 20.5% 28.8% 39.7%

Easiest to think about
Answers 1 2 3 4

Coarse 80.8% 13.7% 1.3% 2.7%
Fine 1.3% 38.4% 30.1% 28.8%
TM 16.4% 31.5% 30.1% 20.5%

Cond. 4.1% 13.7% 39.7% 39.7%

Figure 5: Selected results from student surveys. Column numbers represent rank order, and entries represent what
percentage of students assigned a particular synchronization technique a given rank (e.g. 80.8% of students ranked
Coarse locks first in the “Easiest to think about category”).In the first year the assignment was presented, the more
complex syntax of DSTM made TM more difficult to think about. In the second year, simpler syntax alleviated this
problem.

6

Coarse Fine TM Coarse2 Fine2 TM2 CoarseCleaner FineCleaner TMCleaner
Coarse Y1 1.00 0.03 0.02 1.00 0.02 1.00 0.95 0.47 0.73

Y2 1.00 0.33 0.12 1.00 0.38 1.00 1.00 0.18 1.00
Fine Y1 0.97 1.00 0.33 1.00 0.24 1.00 1.00 0.97 0.88

Y2 0.68 1.00 0.58 1.00 0.51 1.00 1.00 0.40 1.00
TM Y1 0.98 0.68 1.00 1.00 0.13 1.00 1.00 0.98 0.92

Y2 0.88 0.43 1.00 1.00 0.68 1.00 1.00 0.41 1.00
Coarse2 Y1 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 <0.01

Y2 <0.01 <0.01 <0.01 1.00 <0.01 0.45 <0.01 <0.01 <0.01
Fine2 Y1 0.98 0.77 0.87 1.00 1.00 1.00 1.00 1.00 0.98

Y2 0.62 0.49 0.32 1.00 1.00 1.00 0.99 0.59 1.00
TM2 Y1 <0.01 <0.01 <0.01 0.99 <0.01 1.00 0.04 <0.01 <0.01

Y2 <0.01 <0.01 <0.01 0.55 <0.01 1.00 <0.01 <0.01 <0.01
CoarseCleaner Y1 0.05 <0.01 <0.01 1.00 <0.01 0.96 1.00 <0.01 0.08

Y2 <0.01 <0.01 <0.01 1.00 <0.01 1.00 1.00 <0.01 0.96
FineCleaner Y1 0.53 0.03 0.02 1.00 <0.01 1.00 0.99 1.00 0.46

Y2 0.83 0.60 0.59 1.00 0.42 1.00 1.00 1.00 1.00
TMCleaner Y1 0.28 0.12 0.08 1.00 0.03 1.00 0.92 0.55 1.00

Y2 <0.01 <0.01 <0.01 0.99 <0.01 1.00 0.04 <0.01 1.00

Table 2: Comparison of time taken to complete programming tasks for all students. The time to complete the task on
the row is compared to the time for the task on the column. Eachcell contains p-values for a Wilcoxon signed-rank
test, testing the hypothesis that the row task took less timethan the column task. Entries are considered statistically
significant whenp < .05, meaning that the row task did take less time to complete thanthe column task, and are
marked in bold. Results for first and second class years are reported separately, due to differing transactional memory
implementations.

dition in the same thread.
5. Condition variable use errors (cv-use). These

types of errors indicate a failure to use condition vari-
ables properly, but do indicate a certain level of un-
derstanding. This class includes use ofif instead of
while when checking conditions on a decision to
wait, or failure to check the condition at all before
waiting.

6. TM primitive misuse (TM-exotic). This class of er-
ror includes any misuse of transactional primitives.
Technically, this class includes mis-use of the API,
but in practice the only errors of this form we saw
were failure to callBeginTransaction before
callingEndTransaction. Omission of read/write
barriers falls within this class as well, but it is inter-
esting to note that we found no bugs of this form.

7. TM ordering (TM-order). This class of errors rep-
resents attempts by the programmer to follow some
sort of locking discipline in the presence of trans-
actions, where they are strictly unnecessary. Such
errors do not result in an incorrect program, but do
represent a misunderstanding of the primitive.

8. Forgotten TM synchronization (TM-forgot). Like
the forgotten synchronization class above (lock-
forgot), these errors occur when a programmer failed
to recognize the need for synchronization and did not
use transactions to protect a data structure.

Table 3 shows the characterization of synchronization
for programs submitted in year 2. Figure 6 shows the
overall portion of students that made an error on each pro-
gramming task. Students were far more likely to make an
error on fine-grain synchronization than on coarse or TM.

lock-ord lock-cond lock-forgot cv-exotic cv-use TM-exotic TM-order TM-forgot
occurrences 11 62 26 11 14 5 4 1

opportunities 134 402 402 134 134 201 201 201
rate 8.2% 6.5% 15.4% 8.2% 10.5% 2.5% 2.0% 0.5%

Table 3: Synchronization error rates for year 2. The occurrences row indicates the number of programs in which at
least one bug of the type indicated by the column header occurred. Theopportunities row indicates the sample size
(the number of programs we examined in which that type of bug could arise: e.g. lock-ordering bugs cannot occur in
with a single coarse lock). Therate column expresses the percentage of examined programs containing that type of
bug. Bug types are explained in Section 4.3.

7

C
oa

rs
e

F
in

e

T
M

C
oa

rs
e2

F
in

e2

T
M

2

C
oa

rs
eC

le
an

er

F
in

eC
le

an
er

T
M

C
le

an
er

P
ro

po
rt

io
n

of
 e

rr
or

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6: Overall error rates for programming tasks. Error bars show a 95% confidence interval on the error rate.
Fine-grained locking tasks were more likely to contain errors than coarse-grained or transactional memory (TM).

About 70% of students made at least one error on the Fine
and Fine2 portions of the assignment.

5 Related work

Hardware transactional memory research is an active re-
search field with many competing proposals [4–7, 9–11,
15–17, 19–23, 26]. All this research on hardware mech-
anism is the cart leading the horse if researchers never
validate the assumption that transactional programming is
actually easier than lock-based programming.

This research uses software transactional memory
(which has no shortage of proposals [3, 12–14, 18, 25]),
but its purpose is to validate how untrained programmers
learn to write correct and performant concurrent programs
with locks and transactions. The programming interface
for STM systems is the same as HTM systems, but with-
out compiler support, STM implementations require ex-
plicit read-write barriers, which are not required in an
HTM. Compiler integration is easier to program than us-
ing a TM library [8]. Future work research could inves-
tigate whether compiler integration lowers the perceived
programmer difficulty in using transactions.

6 Conclusion

To our knowledge, no previous work directly addresses
the question of whether transactional memory actually de-
livers on its promise of being easier to use than locks.
This paper offers evidence that transactional program-
ming really is less error-prone than high-performance
locking, even if newbie programmers have some trouble
understanding transactions. Students subjective evalua-
tion showed that they found transactional memory slightly
harder to use than coarse locks, and easier to use than fine-
grain locks and condition synchronization. However, anal-
ysis of synchronization error rates in students’ code yields
a more dramatic result, showing that for similar program-
ming tasks, transactions are considerably easier to get cor-
rect than locks.

References
[1] Spoon, 2009. http://spoon.gforge.inria.fr/.

[2] Sync-gallery survey: http://www.cs.utexas.edu/users/witchel/tx/sync-
gallery-survey.html, 2009.

[3] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. Murphy, B. Saha, and
T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. InPLDI, Jun 2006.

[4] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hard-
ware memory protection to build a high-performance, strongly
atomic hybrid transactional memory. InProceedings of the 35th

8

Annual International Symposium on Computer Architecture. June
2008.

[5] Colin Blundell, Joe Devietti, E. Christopher Lewis, andMilo M. K.
Martin. Making the fast case common and the uncommon case
simple in unbounded transactional memory.SIGARCH Comput.
Archit. News, 35(2):24–34, 2007.

[6] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift,
and David A. Wood. Tokentm: Efficient execution of large trans-
actions with hardware transactional memory. InProceedings of
the 35th Annual International Symposium on Computer Architec-
ture. Jun 2008.

[7] J. Chung, C. Minh, A. McDonald, T. Skare, H. Chafi, B. Carlstrom,
C. Kozyrakis, and K. Olukotun. Tradeoffs in transactional mem-
ory virtualization. InASPLOS, 2006.

[8] Luke Dalessandro, Virendra J. Marathe, Michael F. Spear, and
Michael L. Scott. Capabilities and limitations of library-based
software transactional memory in c++. InProceedings of the 2nd
ACM SIGPLAN Workshop on Transactional Computing. Portland,
OR, Aug 2007.

[9] L. Yen et al. Logtm-SE: Decoupling hardware transactional mem-
ory from caches. InHPCA. 2007.

[10] Mark Moir et. al. Experiences with a commercial processorsup-
porting htm. ASPLOS 2009.

[11] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transac-
tional memory coherence and consistency. InISCA, 2004.

[12] T. Harris, M. Plesko, A. Shinnar, and D.Tarditi. Optimizing mem-
ory transactions. InPLDI, Jun 2006.

[13] Tim Harris and Keir Fraser. Language support for lightweight
transactions. InOOPSLA, pages 388–402, Oct 2003.

[14] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for
implementing software transactional memory. InOOPSLA, pages
253–262, 2006.

[15] M. Herlihy and J. E. Moss. Transactional memory: Architectural
support for lock-free data structures. InISCA, May 1993.

[16] Owen S. Hofmann, Christopher J. Rossbach, and Emmett Witchel.
Maximal benefit from a minimal tm.ASPLOS.

[17] Yossi Lev and Jan-Willem Maessen. Split hardware transactions:
true nesting of transactions using best-effort hardware transactional
memory. InPPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming,
pages 197–206, New York, NY, USA, 2008. ACM.

[18] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott. Lowering the overhead of nonblock-
ing software transactional memory. InTRANSACT, 2006.

[19] A. McDonald, J. Chung, B. Carlstrom, C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for prac-
tical transactional memory. InISCA, Jun 2006.

[20] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, , and D. A.
Wood. Logtm: Log-based transactional memory. InHPCA, 2006.

[21] R. Rajwar and M. Herlihy K. Lai. Virtualizing transactional mem-
ory. In ISCA, Jun 2005.

[22] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari,
and E. Witchel. Metatm/txlinux: Transactional memory for an op-
erating system. InISCA, 2007.

[23] H. Ramadan, C. Rossbach, and E. Witchel. Dependence-aware
transactional memory for increased concurrency. InMICRO,
2008.

[24] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett
Witchel. Committing conflicting transactions in an STM. In
PPoPP, 2009.

[25] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing, pages 204–213, Aug 1995.

[26] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott.
Flexible decoupled transactional memory support. InProceedings
of the 35th Annual International Symposium on Computer Archi-
tecture. Jun 2008.

9

