
LAFF-On
Programming for Correctness

Margaret E. Myers

Robert A. van de Geijn

Release Date
Tuesday 13th October, 2020

Copyright © 2016, 2017, 2018, 2019, 2020 by Margaret E. Myers and Robert A. van de Geijn.

10 9 8 7 6 5 4 3 2 1

All rights reserved. No part of this book may be reproduced, stored, or transmitted in any
manner without the written permission of the publisher. For information, contact any of the
authors.

No warranties, express or implied, are made by the publisher, authors, and their employers that
the programs contained in this volume are free of error. They should not be relied on as the sole
basis to solve a problem whose incorrect solution could result in injury to person or property.
If the programs are employed in such a manner, it is at the user’s own risk and the publisher,
authors, and their employers disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol.
These names are used in an editorial context only; no infringement of trademark is intended.

Library of Congress Cataloging-in-Publication Data not yet available
Draft Edition, Tuesday 13th October, 2020
This “Draft Edition” allows this material to be used while we sort out through what mechanism
we will publish the book.

Contents

0. Getting Started 1
0.1. Opening Remarks . 1

0.1.1. Welcome to LAFF-On Programming for Correctness * to edX 1
0.1.2. Outline * to edX . 2
0.1.3. What you will learn * to edX . 3

0.2. How to LAFF-On . 4
0.2.1. What Should We Know? * to edX . 4
0.2.2. When to LAFF-On * to edX . 4
0.2.3. How to Navigate LAFF-On . 4
0.2.4. Homework and LAFF-On * to edX . 4
0.2.5. Grading and LAFF-On * to edX . 5
0.2.6. Setting Up to LAFF-On * to edX . 6

0.3. Software to LAFF-On . 6
0.3.1. Activating MATLAB Online * to edX . 6
0.3.2. MATLAB Basics * to edX . 6
0.3.3. Setting up MATLAB Online to LAFF-On * to edX . 8
0.3.4. MATLAB Live Script * to edX . 8

0.4. Typesetting LAFF-On . 9
0.4.1. Typesetting mathematics * to edX . 9
0.4.2. Downloading and testing TeXstudio * to edX . 9
0.4.3. LATEX and TeXstudio Primer * to edX . 10

0.5. Enrichments . 10
0.5.1. The Origins of MATLAB * to edX . 10
0.5.2. The Origins of LATEX * to edX . 10

0.6. Wrap Up . 10
0.6.1. Additional Homework * to edX . 10
0.6.2. Summary * to edX . 10

I Foundation 11

1. A Logical Beginning 13
1.1. Opening Remarks . 13

1.1.1. Launch * to edX . 13
1.1.2. Outline Week 1 * to edX . 15
1.1.3. What you will learn * to edX . 16

1.2. Review of Logic . 17

i

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/3

1.2.1. Simple Propositions * to edX . 17
1.2.2. Boolean operators * to edX . 18
1.2.3. Predicates * to edX . 19
1.2.4. Precedence of Boolean operators * to edX . 21
1.2.5. Proving using truth tables * to edX . 22

1.3. Proof Techniques for LAFF-On . 24
1.3.1. Basic Equivalences * to edX . 24
1.3.2. Equivalence style proofs * to edX . 24
1.3.3. (The Principle of Mathematical) Induction * to edX . 27
1.3.4. The Principle of Mathematical Induction: Examples * to edX 28

1.4. Quantified Expressions . 30
1.4.1. What is a quantifier * to edX . 30
1.4.2. The “for all” quantifier * to edX . 31
1.4.3. The “there exists” quantifier * to edX . 31
1.4.4. Splitting the range * to edX . 32
1.4.5. Quantifiers with special ranges * to edX . 32
1.4.6. Practice expressing statements as predicates * to edX . 35

1.5. Weakening/strengthening . 36
1.5.1. Weakening/strengthening laws * to edX . 36
1.5.2. Weakening/strengthening exercises * to edX . 37

1.6. Enrichment . 38
1.6.1. The Humble Programmer – Edsger W. Dijkstra * to edX 38
1.6.2. Typesetting proofs with LATEX * to edX . 39
1.6.3. More on logic * to edX . 39

1.7. Wrapup . 39
1.7.1. Additional exercises * to edX . 39
1.7.2. Summary * to edX . 40

2. Proving Programs Correct 43
2.1. Opening Remarks . 43

2.1.1. Launch * to edX . 43
2.1.2. Outline Week 2 * to edX . 47
2.1.3. What you will learn * to edX . 48

2.2. Tools for Reasoning About Correctness . 49
2.2.1. The Hoare triple * to edX . 49
2.2.2. The weakest precondition * to edX . 49
2.2.3. Proving the correctness of a Hoare triple * to edX . 51

2.3. Basic Commands . 52
2.3.1. The skip command * to edX . 52
2.3.2. The abort command * to edX . 53
2.3.3. Assignment to a simple variable * to edX . 54
2.3.4. Composition * to edX . 57
2.3.5. Simultaneous assignment * to edX . 59
2.3.6. Assignment to an array element * to edX . 60

2.4. The If Command . 63
2.4.1. Specification * to edX . 63
2.4.2. wp(“if”,R) * to edX . 63
2.4.3. The If Theorem * to edX . 65
2.4.4. A worksheet for proving an if command correct * to edX 69
2.4.5. The if-then-else command * to edX . 69

2.5. The While Command . 74
2.5.1. Specification * to edX . 74
2.5.2. Correctness * to edX . 74

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/2

2.5.3. The While Theorem * to edX . 75
2.5.4. Total correctness * to edX . 78
2.5.5. Don’t Panic * to edX . 81

2.6. Enrichment . 82
2.6.1. The do command * to edX . 82
2.6.2. Desirable properties of a language * to edX . 83
2.6.3. A conversation with Sir Tony Hoare * to edX . 86

2.7. Wrap Up . 87
2.7.1. Additional exercises * to edX . 87
2.7.2. Summary * to edX . 90

3. Deriving Programs to be Correct 99
3.1. Opening Remarks * to edX . 99

3.1.1. Launch * to edX . 99
3.1.2. Outline Week 3 * to edX . 103
3.1.3. What you will learn * to edX . 104

3.2. Developing Simple Commands * to edX . 105
3.2.1. The skip command * to edX . 105
3.2.2. Assignment to simple variables * to edX . 105
3.2.3. Careful! * to edX . 108
3.2.4. Assignment to array elements * to edX . 112

3.3. Developing the if Command * to edX . 115
3.3.1. A general strategy * to edX . 115
3.3.2. A commonly encountered case * to edX . 118

3.4. Developing a While Command * to edX . 123
3.4.1. A worksheet for the while command * to edX . 123
3.4.2. Progress towards completion * to edX . 126
3.4.3. A priori determination of loop invariants * to edX . 128
3.4.4. Deriving the loop guard and initialization command * to edX 130
3.4.5. Deriving the loop body * to edX . 132

3.5. Examples * to edX . 138
3.5.1. Evaluating a polynomial * to edX . 138
3.5.2. At last, you write your first code! * to edX . 139

3.6. Enrichment * to edX . 143
3.6.1. A conversation with Prof. David Gries * to edX . 143
3.6.2. Dafny: a language and program verifier for functional correctness 143

3.7. Wrap Up * to edX . 143
3.7.1. Additional exercises * to edX . 143
3.7.2. Summary * to edX . 147
3.7.3. Why Dijkstra received the ACM Turing Award * to edX . 151

II Application 153

4. Matrix-Vector Operations 155
4.1. Opening Remarks * to edX . 155

4.1.1. Launch * to edX . 155
4.1.2. Outline Week 4 * to edX . 158
4.1.3. What you will learn * to edX . 159

4.2. A Farewell to Indices * to edX . 160
4.2.1. More notation * to edX . 160
4.2.2. Deriving algorithms with the FLAME notation * to edX . 162
4.2.3. Typesetting algorithms with FLAME notation and LATEX * to edX 167

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/4

4.2.4. Representing (FLAME) algorithms in code * to edX . 168
4.2.5. The AXPY operation * to edX . 168

4.3. Algorithms over two-dimensional arrays (matrices) * to edX . 169
4.3.1. Some algorithms for matrix-vector multiplication * to edX 169
4.3.2. But you get so much more... * to edX . 172
4.3.3. The rank-1 update * to edX . 173
4.3.4. Why do we want multiple algorithms? * to edX . 174

4.4. Enrichment * to edX . 176
4.4.1. Related reading * to edX . 176

4.5. Wrap Up * to edX . 176
4.5.1. Additional exercises * to edX . 176
4.5.2. Summary * to edX . 179

5. Matrix-Matrix Operations 195
5.1. Opening Remarks * to edX . 195

5.1.1. Launch * to edX . 195
5.1.2. Outline Week 5 * to edX . 203
5.1.3. What you will learn * to edX . 204

5.2. Partitioning matrices into quadrants * to edX . 205
5.2.1. Background * to edX . 205
5.2.2. Example: Deriving algorithms for symmetric matrix-vector multiplication * to edX 205
5.2.3. One complete derivation * to edX . 210
5.2.4. Other variants * to edX . 213
5.2.5. Visualizing the different algorithms * to edX . 214
5.2.6. Which variant? * to edX . 215

5.3. Matrix-matrix multiplication * to edX . 217
5.3.1. Background * to edX . 217
5.3.2. Matrix-matrix multiplication by columns * to edX . 218
5.3.3. Matrix-matrix multiplication by rows * to edX . 219
5.3.4. Matrix-matrix multiplication via rank-1 updates * to edX 220
5.3.5. Blocked algorithms * to edX . 221

5.4. Symmetric matrix-matrix multiplication * to edX . 223
5.4.1. Background * to edX . 223
5.4.2. Deriving the first PME and corresponding loop invariants * to edX 224
5.4.3. Deriving unblocked algorithms corresponding to PME 1 * to edX 225
5.4.4. Blocked Algorithms * to edX . 229
5.4.5. Other blocked algorithms * to edX . 233
5.4.6. A second PME * to edX . 233

5.5. Enrichment * to edX . 234
5.5.1. The memory hierarchy * to edX . 234
5.5.2. The GotoBLAS matrix-matrix multiplication algorithm * to edX 234
5.5.3. The PME and loop invariants say it all! * to edX . 234

5.6. Wrap Up * to edX . 235
5.6.1. Additional exercises * to edX . 235
5.6.2. Summary * to edX . 237

6. Advanced Matrix Operations 239
6.1. Opening Remarks * to edX . 239

6.1.1. Launch * to edX . 239
6.1.2. Outline Week 6 * to edX . 240
6.1.3. What you will learn * to edX . 241

6.2. LU Factorization * to edX . 242
6.2.1. Background * to edX . 242

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1

6.2.2. From specification to the PME * to edX . 242
6.2.3. Unblocked Variant 1 * to edX . 243
6.2.4. More loop invariants * to edX . 244
6.2.5. Blocked algorithms * to edX . 246
6.2.6. Which variant to pick * to edX . 247
6.2.7. LU factorization with pivoting * to edX . 248

6.3. Related Operations . 248
6.3.1. Triangular solve * to edX . 248
6.3.2. Triangular solve with multiple right-hand sides * to edX . 251

6.4. Enrichment * to edX . 251
6.4.1. At the frontier and beyond... 251
6.4.2. Practical libraries * to edX . 252
6.4.3. Correctness in the presence of roundoff error * to edX . 253
6.4.4. Beyond dense linear algebra * to edX . 253
6.4.5. When the worksheet does not yield algorithms for matrix operations * to edX 254
6.4.6. If it is so systematic, can’t we get a computer to do it? * to edX 254

6.5. Wrap Up * to edX . 255
6.5.1. Additional exercises * to edX . 255

Answers 261

Index 351

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

Preface

* Click to view

In the 1972 ACM Turing Lecture “The Humble Programmer,” Edsger W. Dijkstra suggested:

“Today a usual technique is to make a program and then to test it. But: program testing can be a very
effective way to show the presence of bugs, but is hopelessly inadequate for showing their absence. The
only effective way to raise the confidence level of a program significantly is to give a convincing proof
of its correctness. But one should not first make the program and then prove its correctness, because
then the requirement of providing the proof would only increase the poor programmer’s burden. On the
contrary: the programmer should let correctness proof and program grow hand in hand. Argument three is
essentially based on the following observation. If one first asks oneself what the structure of a convincing
proof would be and, having found this, then constructs a program satisfying this proof’s requirements, then
these correctness concerns turn out to be a very effective heuristic guidance. By definition this approach
is only applicable when we restrict ourselves to intellectually manageable programs, but it provides us
with effective means for finding a satisfactory one among these.”

This course introduces the basic tools that enable goal-oriented programming and demonstrates its practical applica-
tion.

vii

https://www.youtube.com/watch?v=1B0PPMNQsP4
https://www.youtube.com/watch?v=1B0PPMNQsP4
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Acknowledgments

These notes were written in support of LAFF-On Programming for Correctness, a Massive Open Online Course
(MOOC) offered by edX, a non-profit founded by Harvard University and the Massachusetts Institute of Technology.
It was funded in part by a generous gift from MathWorks and the National Science Foundation Award ACI-1550493
titled “Sustaining Innovation in the Linear Algebra Software Stack for Computational Chemistry and other Sciences”1,
which also supports our research on how to develop linear algebra software libraries. It is also supported in part by
profits from the offering of Linear Algebra: Foundations and Frontiers (LAFF) on the edX platform under agreement
with the Dean of Natural Sciences and the chairs of the Department of Computer Science and the Department of
Statistics and Data Sciences.

The course was designed and developed by Dr. Maggie Myers and Prof. Robert van de Geijn. It is based on a
Special Topics course offered by the Computer Science department titled “Programming for Correctness and Perfor-
mance.”

The Team

Dr. Maggie Myers is a lecturer in the Department of Statistics and Data Sciences and a Research Scientist in the
Institute for Computational Engineering and Sciences. She currently teaches undergraduate and graduate courses in
Bayesian Statistics. Her research activities range from informal learning opportunities in mathematics education to
formal derivation of linear algebra algorithms. Earlier in her career she was a senior research scientist with the Charles
A. Dana Center and consultant to the Southwest Educational Development Lab (SEDL). Her partnerships (in marriage
and research) with Robert have lasted for decades and seem to have survived the development of two MOOCs.

Dr. Robert van de Geijn is a professor of Computer Science and a core member of the Institute for Computational
Engineering and Sciences. Prof. van de Geijn is a leading expert in the areas of high-performance computing, lin-
ear algebra libraries, parallel processing, and formal derivation of algorithms. He is the recipient of the 2007-2008
President’s Associates Teaching Excellence Award from The University of Texas at Austin.

We gratefully acknowledge the technical support of Sejal Shah and Grace Kennedy, and early feedback on the materials
from Dr. Devangi Parikh. A number of participants were instrumental as beta testers, forging ahead as soon as a new
week was launched and giving us valuable feedback: Vincent DiCarlo, William Lucas, Richard Minke, and others.
The “sizzle” video was created for us by Thomas Humphreys.

Thank you all!

Finally, we would like to thank the participants for their enthusiasm and valuable comments. Their patience with our
occasional shortcomings were most appreciated!

1Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation (NSF).

ix

Week 0
Getting Started

0.1 Opening Remarks

0.1.1 Welcome to LAFF-On Programming for Correctness * to edX

* Watch Video on edX
* Watch Video on YouTube

1

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/1
https://www.youtube.com/watch?v=P2Yx8TPKiDY

2 Week 0. Getting Started

0.1.2 Outline * to edX

Each week is structured so that we give the outline for the week immediately after the “launch”:

0.1. Opening Remarks . 1
0.1.1. Welcome to LAFF-On Programming for Correctness * to edX 1
0.1.2. Outline * to edX . 2
0.1.3. What you will learn * to edX . 3

0.2. How to LAFF-On . 4
0.2.1. What Should We Know? * to edX . 4
0.2.2. When to LAFF-On * to edX . 4
0.2.3. How to Navigate LAFF-On . 4
0.2.4. Homework and LAFF-On * to edX . 4
0.2.5. Grading and LAFF-On * to edX . 5
0.2.6. Setting Up to LAFF-On * to edX . 6

0.3. Software to LAFF-On . 6
0.3.1. Activating MATLAB Online * to edX . 6
0.3.2. MATLAB Basics * to edX . 6
0.3.3. Setting up MATLAB Online to LAFF-On * to edX . 8
0.3.4. MATLAB Live Script * to edX . 8

0.4. Typesetting LAFF-On . 9
0.4.1. Typesetting mathematics * to edX . 9
0.4.2. Downloading and testing TeXstudio * to edX . 9
0.4.3. LATEX and TeXstudio Primer * to edX . 10

0.5. Enrichments . 10
0.5.1. The Origins of MATLAB * to edX . 10
0.5.2. The Origins of LATEX * to edX . 10

0.6. Wrap Up . 10
0.6.1. Additional Homework * to edX . 10
0.6.2. Summary * to edX . 10

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/2

0.1. Opening Remarks 3

0.1.3 What you will learn * to edX

The third unit of the week informs you of what you will learn. This describes the knowledge and skills that you can
expect to acquire. In addition, this provides an opportunity for you to self-assess upon completion of the week.

Upon completion of this week, you should be able to

• Recognize the structure of a typical week.

• Navigate the different components of LAFF-On.

• Activate MATLAB Online.

• Better understand what we expect you to know when you start and intend for you to know when you finish.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/cc84d5c7de28423c944bed42cd335ad4/3

4 Week 0. Getting Started

0.2 How to LAFF-On

0.2.1 What Should We Know? * to edX

The material in this course is intended for learners who have already had an exposure to linear algebra, logic, and
simple proofs. We do briefly visit these topics to ensure that we are all on the same page to allow us to communicate
exactly and efficiently. For those who want to dig deeper, we try to give pointers to other materials.

For Part I, Foundation, you don’t need to know any linear algebra. We use simple operations with one dimensional
arrays for most of our motivating examples. The focus is on applying logic to reason about the correctness of programs
and, ultimately, to allow you to systematically derive programs hand-in-hand with their proofs of correctness. We hope
you will make Dijkstra proud!

For Part II, Application, we use progressively more complicated linear algebra operations to illustrate how to
apply the ideas from Part I to practical situations. Abstracting away from the intricacies of indices is key to making
this possible. The “slicing and dicing” that was a hallmark of our Linear Algebra: Foundations to Frontiers (LAFF)
MOOC plays a central role there. Those not comfortable with thinking about vectors and matrices as subvectors and
submatrices may want to explore Weeks 1, 3, 4, and 5 of LAFF. To what depth you would want to do so is up to you.

0.2.2 When to LAFF-On * to edX

The beauty of an online course is that you get to study when you want, where you want. Still, deadlines tend to keep
people moving forward. To strike a balance between flexibility and structure, we release the materials roughly one
week at a time. There are no intermediate due dates but only work that is completed by the closing of the course will
count towards the optional Verified Certificate. To help you structure your time, we give a suggested course calendar
with proposed due dates. It can be found by clicking the ”Calendar” tab of the navigation bar of the course on the edX
platform:

Each Week is posted on a Tuesday at UTC 23:00. Please reference this schedule often as any official changes will
appear here.

0.2.3 How to Navigate LAFF-On

* Watch Video on edX
* Watch Video on YouTube

0.2.4 Homework and LAFF-On * to edX

When future weeks become available, you will notice that homework appears both in the notes and in the correspond-
ing units on the edX platform. Most of the time, the questions will match exactly but sometimes they will be worded
slightly differently.

Realize that the edX platform is ever evolving and that at some point we had to make a decision about what features
we would embrace and what features did not fit our format so well. As a result, homework problems have frequently
been (re)phrased in a way that fits both the platform and our course.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/3
https://www.youtube.com/watch?v=neMpm7iAuzc
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/4

0.2. How to LAFF-On 5

Some things you will notice:

• “Open” questions in the text are sometimes rephrased as multiple choice or “drag and drop” questions in the
course on edX.

• Video answers appear as embedded YouTube, with the link to the end of the week where the same video, with
captioning and optional download from an alternative source, can be found. This was because edX’s video
player could not (yet) be embedded in answers.

Please be patient with some of these decisions. Our course and the edX platform are both evolving, and sometimes we
had to improvise.

0.2.5 Grading and LAFF-On * to edX

How to grade the course was another decision that required compromise. Our fundamental assumption is that you are
taking this course because you want to learn the material, and that the homework and other activities are mostly there
to help you learn and self-assess. For this reason, for the homework, we

• Give you an infinite number of chances to get an answer right;

• Provide you with detailed answers;

• Allow you to view the answer any time you believe it will help you master the material efficiently;

• Include some homework that is ungraded to give those who want extra practice an opportunity to do so while
allowing others to move on.

In other words, you get to use the homework in whatever way helps you learn best.

Don’t forget to click on “Check” or you don’t get credit for the exercise!

How your progress is measured is another interesting compromise. The homework for each of Weeks 1-5 is worth
20% of the total points in the course. Week 6 has ungraded homework, meant for those who really want to master the
techniques. It is that week that will bring you to our frontier.

To view your progress, click on “Progress” in the edX navigation bar. If you find out that you missed a homework,
scroll down the page, and you will be able to identify where to go to fix it. Don’t be shy about correcting a missed
answer. The primary goal is to learn.

Some of you will be disappointed that the course is not more rigorously graded, thereby (to you) diminishing the
value of a certificate. The fact is that MOOCs are still evolving. People are experimenting with how to make them
serve different audiences. In our case, we decided to focus on quality material first, with the assumption that for most
participants the primary goal for taking the course is to learn.

Let’s focus on what works, and please be patient with what doesn’t!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/5

6 Week 0. Getting Started

0.2.6 Setting Up to LAFF-On * to edX

When we offered the course for the first time, we were still developing it as it was being offered. For this reason,
in many of the homeworks you will find files that we suggest you download to specific places on your computer
and/or to Matlab Online. For the sake of backward compatibility, we have left the video and information that
was used the first year in place (below). If you follow those directions, all should be fine as well.
This time, we give you an alternative option for getting all the files. We have created a repository on github:*
https://github.com/ULAFF/LAFFPfC. You can download the zip file or, which we recommend, you can
”clone” the repository so that you can easily update files if necessary.
If you use a command window in Linux or a terminal window in Apple OS-X, you can execute

git clone https://github.com/ULAFF/LAFFPfC.git

in the directory where you want the directory LAFFPfC to exist. This will then create the directory structure,
with contents, described in the video and in the text below the video.
Any time you feel the need to see if there are updates to the files, you can then execute

git pull

There are ways of doing all this on a Windows system as well, but we don’t do Windows... So you will have to
figure it out yourself.

* Watch Video on edX
* Watch Video on YouTube

It helps if we all set up our environment in a consistent fashion. The easiest way to accomplish this is to download
the file * LAFFPfC.zip and to “unzip” this in a convenient place. We suggest that you put it either in your home
directory or on your desktop.

Once you unzip the file, you will find a directory LAFFPfC, with subdirectories. I did this in my home directory,
yielding the directory structure in Figure 1.

0.3 Software to LAFF-On

0.3.1 Activating MATLAB Online * to edX

Starting at the end of Week 3, we will implement derived to be correct programs using MATLAB.
MathWorks generously provides licenses and technical support for MATLAB Online for use in, and for the dura-

tion of, the course. Instructions on how to gain access to MATLAB Online for this course, please see this unit on the
edX platform * to edX. MATLAB Online is supported in Chrome (recommended for best experience), Firefox, and
Safari.

0.3.2 MATLAB Basics * to edX

Below you find a few short videos that introduce you to MATLAB. For a more comprehensive tutorial, you may want
to visit * MATLAB Tutorials at MathWorks and click “Launch Tutorial”.

You need relatively little familiarity with MATLAB in order to learn what we want you to learn in this course.
So, you could just skip these tutorials altogether, and come back to them if you find you want to know more about
MATLAB and its programming language (M-script).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/6
https://github.com/ULAFF/LAFFPfC
https://github.com/ULAFF/LAFFPfC
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/2040a6d83f194b5ab3d20f4d1ff6c9be/6
https://www.youtube.com/watch?v=Id1XROrMrQc
https://github.com/ULAFF/LAFFPfC
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page

0.3. Software to LAFF-On 7

Users
rvdg

LAFFPfC
Assignments

flameatlab.............Subdirectory with a small library that we will use.
util
matvec
matmat
vecvec

Week0...................Subdirectory for the assignments for Week 0.
LaTeX................LATEX related assignments.
matlab...............MATLAB related assignments (for if you choose to use a desktop version

of MATLAB).
...

Week6...................Subdirectory for the assignments for Week 6.

Assignments.zip File with assignments to upload to MATLAB Online.
FLaTeX.....................Directory with support files for later exercises that use LATEX.
Notes......................We suggest you place the PDFs for the course notes here. (Download

from the * Course Updates & News page.) .
Week0.pdf

...
Week6.pdf

ResourcesOther resources.
Spark......................Local copy of Spark webpage.

Figure 1: Directory structure for your LAFF-On materials. Items in blue will be placed into the materials by you. In
this example, we placed LAFFPfC in the home directory Users -> rvdg. You may want to place it on your account’s
“Desktop” instead.

The following videos are somewhat dated and target the desktop version of MATLAB. You will want to view the
videos on the edX platform instead.

What is MATLAB? * Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.PQ.14.01x+1T2017/info
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://youtu.be/DmtlGMMc8V4

8 Week 0. Getting Started

The MATLAB Environment * Watch Video on edX
* Watch Video on YouTube

MATLAB Variables * Watch Video on edX
* Watch Video on YouTube

MATLAB as a Calculator * Watch Video on edX
* Watch Video on YouTube

Managing files with MATLAB Online * Watch Video on edX
* Watch Video on YouTube

0.3.3 Setting up MATLAB Online to LAFF-On * to edX

* Watch Video on edX

0.3.4 MATLAB Live Script * to edX

MATLAB Live Script is a relatively new feature of MATLAB that allows one to interleave text with executable code. It
is nice for LAFF-On because we can insert explanations interleaved with coding exercises, thus enhancing the learning
experience.

In this course, we will also use Live Script in an innovative way, by using the text boxes to insert the proof of
correctness into the code itself. This will become clearer later in the course.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://youtu.be/9lt-FYOEqEo
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://youtu.be/vrRhryhRP90
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://youtu.be/K9xy5kQHDBo
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://youtu.be/mqYwMnM-x5Q
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e443987e81d148838729d2d9dedea9c2/4

0.4. Typesetting LAFF-On 9

0.4 Typesetting LAFF-On

0.4.1 Typesetting mathematics * to edX

The tool of choice for typesetting mathematics is a document typesetting system called LATEX. We will use it to typeset
many of our exercises in a way that captures how we want you to think about discovering algorithms hand-in-hand
with their proofs of correctness.

We recommend that you use TeXstudio:

“TeXstudio an integrated writing environment for creating LaTeX documents.”

It is the environment we typically use in the videos for this course and that we used to create the notes and many of
the activities. You are, of course, free to use whatever such environment you prefer.

When asking questions or posting comments on the discussion board for this course, you can also use LATEX
syntax to typeset mathematics. You place LaTeX math source between dollar signs ($) to do so.

0.4.2 Downloading and testing TeXstudio * to edX

* Watch Video on edX
* Watch Video on YouTube

Since installing and use of TeXstudio may depend on what operating system you use, we suggest participants help
each other by asking and answering questions about this on the discussion board for this unit.

You can download the open source TeXstudio software from * www.texstudio.org.

• Open the file Assignments/Week0/LaTeX/HelloWorld.tex.

– You may want to set up your computer so that the default application for “.tex” files is the TeXstudio
application.

– Alternatively, you can open the TeXstudio application and then click on

File -> Open

choosing the file.

– At this point, it is a good idea to click on

Options -> Root Document -> Set Current Document as Explicit Root

which will make the “HelloWorld.tex” file the root file for the “compilation” of the document. This is
important when the root file itself includes other files in some hierarchical fashion, in future exercises.

• Once you have opened “HelloWorld.tex” Click on

on the top bar. Eventually you will see a ”Process exited normally” in the message box in the lower left-hand
corner as well as the formatted text to the right.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/2
https://www.youtube.com/watch?v=BW7PWoDyxBY
http://www.texstudio.org
www.texstudio.org

10 Week 0. Getting Started

0.4.3 LATEX and TeXstudio Primer * to edX

* Watch Video on edX
* Watch Video on YouTube

The source for the LATEX example in that video is found in

LAFFPfC -> Assignments -> Week0 -> LaTeX -> LaTeXPrimer.tex

We will use LATEX in a very limited way. But you may want to become more familiar with this tool by following
some tutorials that you can find on the internet. (Search ”LaTeX tutorial”).

The following is probably a good place to start:

* LATEX Tutorials - a Primer.

Whenever it talks about latex myfile and xdvi myfile instead just click on .

0.5 Enrichments

0.5.1 The Origins of MATLAB * to edX

* Watch Video on edX

(Or view at MathWorks.)

0.5.2 The Origins of LATEX * to edX

You may enjoy this interview with Dr. Leslie Lamport, who created LATEX.
* https://www.infoq.com/interviews/lamport-latex-paxos-tla

0.6 Wrap Up

0.6.1 Additional Homework * to edX

For a typical week, additional assignments may be given in this unit.
This week, we point you to other resources that delve deeper into some prerequisite knowledge. We provide limited

overviews of logic (needed for the entire course) and linear algebra (needed to fully appreciate the second part of the
course). One strategy is to get started with LAFF-On, and visit some of these resources as needed and desired.

0.6.2 Summary * to edX

You will see that we develop a lot of the theory behind the various topics in linear algebra via a sequence of homework
exercises. At the end of each week, we summarize theorems and insights for easy reference.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/6ba45bfd20384116a60d4087f0495e5a/3
https://www.youtube.com/watch?v=LMYX9gA3WFU
https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/2
https://www.mathworks.com/videos/origins-of-matlab-70332.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/57ac7d2b9b404776a742afb24a382dd9/3
https://www.infoq.com/interviews/lamport-latex-paxos-tla
https://www.infoq.com/interviews/lamport-latex-paxos-tla
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/931de648efcd42e0a45712f407bbefd7/e7d9a8b51cee43d5856f87cc87478611/2

Part I

Foundation

11

Week 1
A Logical Beginning

1.1 Opening Remarks

1.1.1 Launch * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the polynomial
y = p1 + p2x+ p3x2 + · · ·+ pn+1xn.

If the coefficients are stored in (n+1)×1 array p and x is the scalar, an efficient way of evaluating this polynomial is
given by the MATLAB function

function y = EvalPolynomial(p, x)

assert(size(p, 1) >= 1 && size(p, 2) == 1, ...
’p must be a column vector with n+1 elements’)

assert(isscalar(x), ’x must be a scalar’);

n = size(p, 1)-1;

y = 0;
for k=n+1:-1:1

y = y * x + p(k);
end

end

For those who aren’t familiar with MATLAB:

• In MATLAB, all variables are multidimensional arrays (matrices, for simplicity). Here we assume the vector p
is stored in an (n+1)×1 array (in other words, it is a column vector).

• size(p) extracts the row and column sizes of the matrix p.

• for k=n+1:-1:1
means that you execute the statement between this line and the first end for values of k equal to n+1, n, through
1, in that order.

13

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/1
https://www.youtube.com/watch?v=Kl1DqUW2QN8

14 Week 1. A Logical Beginning

For your coding pleasure, this exercise is also available as a MATLAB Live Script

LAFFPfC -> Assignments -> Week1 -> matlab -> EvalPolynomial.mlx.

• Decide if EvalPolynomial correctly computes the polynomial.

• Convince someone else of your conclusion.

• How sure are you?

• How long did it take you to convince yourself?

• How long did it take you to convince someone else?

We will not give you the answer now. By the end of Week 2, you will be able to determine if a program is correct,
and by the end of Week 3 you will be able to derive it hand-in-hand with its proofs of correctness. You will then know
that the implementation is correct before you ever execute it. Indeed, you will wonder why you are executing it at all,
since you know it is correct!

1.1. Opening Remarks 15

1.1.2 Outline Week 1 * to edX

1.1. Opening Remarks . 13
1.1.1. Launch * to edX . 13
1.1.2. Outline Week 1 * to edX . 15
1.1.3. What you will learn * to edX . 16

1.2. Review of Logic . 17
1.2.1. Simple Propositions * to edX . 17
1.2.2. Boolean operators * to edX . 18
1.2.3. Predicates * to edX . 19
1.2.4. Precedence of Boolean operators * to edX . 21
1.2.5. Proving using truth tables * to edX . 22

1.3. Proof Techniques for LAFF-On . 24
1.3.1. Basic Equivalences * to edX . 24
1.3.2. Equivalence style proofs * to edX . 24
1.3.3. (The Principle of Mathematical) Induction * to edX . 27
1.3.4. The Principle of Mathematical Induction: Examples * to edX 28

1.4. Quantified Expressions . 30
1.4.1. What is a quantifier * to edX . 30
1.4.2. The “for all” quantifier * to edX . 31
1.4.3. The “there exists” quantifier * to edX . 31
1.4.4. Splitting the range * to edX . 32
1.4.5. Quantifiers with special ranges * to edX . 32
1.4.6. Practice expressing statements as predicates * to edX . 35

1.5. Weakening/strengthening . 36
1.5.1. Weakening/strengthening laws * to edX . 36
1.5.2. Weakening/strengthening exercises * to edX . 37

1.6. Enrichment . 38
1.6.1. The Humble Programmer – Edsger W. Dijkstra * to edX 38
1.6.2. Typesetting proofs with LATEX * to edX . 39
1.6.3. More on logic * to edX . 39

1.7. Wrapup . 39
1.7.1. Additional exercises * to edX . 39
1.7.2. Summary * to edX . 40

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1

16 Week 1. A Logical Beginning

1.1.3 What you will learn * to edX

Before we begin programming for correctness, we need to start with an overview (or review) of logic since we want
to create and clearly reason about correct code. Logic is essential to reasoning.

Upon completion of this week, you should be able to

• Translate between English statements and predicates that may involve quantifiers (in various ways).

• Write predicates that involve “for all”, “there exist”, “summation”, and other quantifiers.

• Prove using truth tables and equivalence style proofs.

• Prove using the Principle of Mathematical Induction.

• Evaluate and simplify predicates that involve quantifiers such as applying empty ranges, splitting ranges, and
splitting off one term.

• Understand, recognize, and prove when one predicate is weaker or stronger than another predicate.

• Manipulate two predicates to expose that one is weaker than the other.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/9a69513eb54a43aca63f43d474e593c0/3

1.2. Review of Logic 17

1.2 Review of Logic

1.2.1 Simple Propositions * to edX

* Watch Video on edX
* Watch Video on YouTube

Translating from English to logical symbols is a foundational and challenging task. It is most valuable. Why?
Writing English statements in symbolic form since they can be more concise and more precise. We put our thoughts
into symbols that make reasoning easier to follow and judge for correctness.

Let’s start by looking at some vocabulary and examples we run into in informal arguments. To begin, a Boolean
value is one with two choices: TRUE or FALSE (YES or NO, 1 or 0). We will talk about logical statements that are
declarative sentences taking on values TRUE or FALSE, known as propositions. For example,

• “Fivee is positive” (5 > 0) is a proposition that is TRUE.

• “The sum of five and three is two” or (5+3 = 2) is a proposition that is FALSE.

We often represent propositions by letters such as p, q, and r .
To understand what propositions are, answer the following problems.

Homework 1.2.1.1 Decide whether or not the following are propositions:
1. Is it raining?

(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

2. Shut the window when it is raining!
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

3. There is a number between 0 and 5 that is even.
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

4. There is no number between 0 and 5 that is even.
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://www.youtube.com/watch?v=OrOz5jE2GfI
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/

18 Week 1. A Logical Beginning

1.2.2 Boolean operators * to edX

* Watch Video on edX
* Watch Video on YouTube

Logical statements can be simple statements like our examples or formed from (functions of) operations with
simple statements. These operations (known as Boolean operators) include:

• not (negation, ¬);

• and (conjunction, ∧);

• or (disjunction, ∨);

• implies (implication,⇒);

• is equivalent to (equivalence,⇔).

For a list of logic symbols that includes LATEX symbols, you may want to consult Wikipedia’s * List of logic symbols
entry.

Let’s define these operations by first looking at examples.

• “Five is positive” (5 > 0) is a simple proposition that is always TRUE. We will represent it by p.

• “Five is not positive” ¬(5 > 0) or ¬p is a proposition that is always FALSE. We can represent it by q. If p
represents the proposition “Five is positive” then we can represent “Five is not positive” with ¬p. When p is
TRUE then ¬p is FALSE and when p is FALSE then ¬p is TRUE.

• “Five is positive and six is positive” is the result of two simple sentences connected with the Boolean operator
and, ∧. If p is the logical statement “Five is positive” and q is the statement that “Six is positive”, then “Five is
positive and six is positive” is written as p∧q. In order for the conjunction of logical expressions to be TRUE,
both logical expressions must be TRUE. In this case, p∧q is TRUE since both p and q are TRUE. .

• “Five is positive or six is positive” is the result of two simple sentences connected with the Boolean operator or,
∨. If p is the logical statement “Five is positive” and q is the statement “Six is positive”, then “Five is positive
or six is positive” is written as p∨q. In order for the disjunction of logical expressions to be TRUE, at least one
of logical expressions must be TRUE. In this case, p∨q is TRUE since both p and q are TRUE.

• “If five is non-negative then six is positive” is the result of two simple sentences connected with the Boolean
implication operator, ⇒. If p is the logical statement “Five is non-negative” and q is the statement “Six is
positive”, then “If five is non-negative then six is positive” is written as p⇒q. For general p and q, in order
for an implication to be TRUE, either p is FALSE or both p and q are TRUE. The implication is FALSE if p is
TRUE but q is FALSE. In this example, p⇒q is TRUE since both p and q are TRUE.

• “Five is non-negative is equivalent to six is positive” (or “Five is non-negative if and only if six is positive”)
is the result of two simple sentences connected with the Boolean equivalence operator, ⇔. If p is the logical
statement “Five is non-negative” and q is the statement “Six is positive”, then “Five is non-negative iff six is
positive” is given by p⇔ q. For general p and q, in order for an equivalence to be TRUE, either both p and q are
TRUE or both p and q are FALSE.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/2
https://www.youtube.com/watch?v=dB7ctWUeoUw
https://en.wikipedia.org/wiki/List_of_logic_symbols

1.2. Review of Logic 19

The following table, known as a truth table, summarizes how the discussed operators evaluate.

not and or implies equivalent

p q ¬p p∧q p∨q p⇒ q p⇔ q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Homework 1.2.2.1 Complete the truth table for (p⇒ q)∧ (q⇒ r).

p q r p⇒ q q⇒ r (p⇒ q)∧ (q⇒ r)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

* SEE ANSWER
* DO EXERCISE ON edX

1.2.3 Predicates * to edX

* Watch Video on edX
* Watch Video on YouTube

Propositions are expressions that are either TRUE or FALSE. Sometimes, our logical expressions involve vari-
ables. A predicate is a logical expression that may be TRUE or FALSE depending on the values of the variables that
appear in the expression.

• If a predicate is always TRUE no matter the values of its variables, it is known as a tautology.

• If it is always FALSE, it is called a contradiction.

• If it is sometimes TRUE and sometimes FALSE, it is known as a contingency.

Now, predicates could be constants– as in, they may not have variables involved. In particular, propositions are
also predicates. So, for example, TRUE, FALSE, and 5 > 0 are predicates. In addition, algebraic expressions that

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/3
https://www.youtube.com/watch?v=ZpT47yWfsGE

20 Week 1. A Logical Beginning

evaluate to TRUE or FALSE, depending on the input variables, are predicates. Furthermore, predicates connected
with Boolean operators are also predicates.

Some examples:

• Let x be a variable that takes on integer values. “x is positive” is a simple sentence that is TRUE or FALSE
depending on the value that x takes on so it is a contingency. It is not both when x is specified. We can assign p
to represent this predicate.

• Let x and y be variables that take on integer values. “x is positive and y is positive” is the result of two simple
sentences connected with the Boolean operator and, ∧ . If p is the logical statement that x is positive and q is the
statement that y is positive, then “x is positive and y is positive” is written as p ∧ q . In order for the predicate to
be TRUE, both simple predicates p and q must be TRUE. In this case, both x and y must be positive.

• Let x and y be variables that take on integer values. “x is positive or y is positive” is the result of two simple
sentences connected with the Boolean operator or, ∨ . If p is the logical statement that x is positive and q is
the statement that “y is positive, then x is positive or y is positive” is written as p ∨ q . In order for the logical
expression to be TRUE, one of the simple sentences p and q must be TRUE (and both CAN be TRUE). In this
case, both x and y must be positive.

1.2. Review of Logic 21

Homework 1.2.3.1 Let x and y be variables that take on integer values. Let p be the statement “x is positive” and
q be the statement “y is positive”. Determine the symbolic statements for the following predicates described using
English. Mark all that are correct. (There may be multiple correct answers.)

1. Both x and y are positive.
(a) p∧q

(b) p∨q

(c) ¬(p∧q)

(d) p⇒ q

2. Either x or y is positive.
(a) p∧q

(b) p∨q

(c) ¬(p∧q)

(d) p⇒ q

3. x is positive but y is not.
(a) ¬q

(b) ¬(p∧q)

(c) ¬p∨¬q

(d) p∧¬q

4. Either x or y is positive but not both are positive.
(a) p∧q

(b) (p∨q)∧¬(p∧q)

(c) ¬p∨q

(d) (p∧¬q)∨ (¬p∧q)

5. x is not positive and y is not positive.

(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧¬q

(d) ¬p∨¬q

6. At least one of x and y is not positive.
(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧¬q

(d) ¬p∨¬q

7. Neither x nor y is positive.
(a) ¬p

(b) ¬(p∧q)

(c) ¬p∧¬q

(d) ¬p∨¬q

8. It is not the case that both x and y are positive.
(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧q

(d) p∧¬q

9. Both x and y are not positive.
(a) ¬p

(b) ¬(p∧q)

(c) ¬p∧¬q

(d) ¬p∨¬q

(e) not clear

10. If x is positive then y is positive.
(a) p∧q

(b) p⇒ q

(c) p∨q

(d) ¬(p∧q)

* SEE ANSWER
* DO EXERCISE ON edX

1.2.4 Precedence of Boolean operators * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/4
https://www.youtube.com/watch?v=ky1yzwnWsmY

22 Week 1. A Logical Beginning

To avoid the unnecessary extra parentheses, there is a precedence order in which operations are evaluated:

• First negate: ¬p∧q is the same as (¬p)∧q.

• Second, evaluate ∧: ¬p∧q⇒ r is the same as ((¬p)∧q)⇒ r.

• Third, evaluate ∨: ¬p∧q∨ r⇒ s is the same as (((¬b)∧ c)∨ r)⇒ s.

• Fourth, evaluate⇒: t⇔¬p∧q∨ r⇒ s is the same as t⇔ ((((¬b)∧ c)∨ r)⇒ s).

• Last evaluate⇔.

We will throw in extra parentheses if we think it makes the predicate clearer. So should you!

Homework 1.2.4.1 Let p = F, q = F, and r = F. Evaluate

• p∧q⇒ r

• (p∧q)⇒ r

• p∧ (q⇒ r)

* SEE ANSWER
* DO EXERCISE ON edX

Homework 1.2.4.2 Evaluate
T ∨¬T ∧F ⇒ T ∧¬T ⇔ T ⇒ F.

a) T

b) F

* SEE ANSWER
* DO EXERCISE ON edX

1.2.5 Proving using truth tables * to edX

* Watch Video on edX
* Watch Video on YouTube

As we mentioned previously, truth tables give the truth values of predicates under all combinations of the values
of the components. We can prove that predicates are tautologies by examining all combinations of the input values.
The following video illustrates how to construct a truth table for proving the contrapositive.

Example 1.1 Prove the contrapositive: (E1⇒ E2)⇔ (¬E2⇒¬E1) with a truth table.
We start by setting up the truth table:

E1 E2 ¬E1 ¬E2 (E1⇒ E2) (¬E2⇒¬E1) (E1⇒ E2)⇔ (¬E2⇒¬E1)

T T

T F

F T

F F

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/5
https://www.youtube.com/watch?v=Q4LMVr7OdX4

1.2. Review of Logic 23

and then systematically evaluate first the components ¬E1, ¬E2:

E1 E2 ¬E1 ¬E2 (E1⇒ E2) (¬E2⇒¬E1) (E1⇒ E2)⇔ (¬E2⇒¬E1)

T T F F

T F F T

F T T F

F F T T

and then (E1⇒ E2) and (¬E2⇒¬E1),

E1 E2 ¬E1 ¬E2 (E1⇒ E2) (¬E2⇒¬E1) (E1⇒ E2)⇔ (¬E2⇒¬E1)

T T F F T T

T F F T F F

F T T F T T

F F T T T T

,

which then allows us to evaluate the desired result (E1⇒ E2)⇔ (¬E2⇒¬E1).

E1 E2 ¬E1 ¬E2 (E1⇒ E2) (¬E2⇒¬E1) (E1⇒ E2)⇔ (¬E2⇒¬E1)

T T F F T T T

T F F T F F T

F T T F T T T

F F T T T T T

Homework 1.2.5.1 Use a truth table to prove the commutativity of the ∧ operator:

(E1∧E2)⇔ (E2∧E1).

* SEE ANSWER
* DO EXERCISE ON edX

Homework 1.2.5.2 Use a truth table to prove
p∧q⇒ p.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/457c8205c28847e08489db5d3708a4bc/

24 Week 1. A Logical Beginning

1.3 Proof Techniques for LAFF-On

1.3.1 Basic Equivalences * to edX

* Watch Video on edX
* Watch Video on YouTube

There are a variety of proof styles and techniques that one can use for predicate logic. We will use equivalence
style proofs that start with a set of Basic Equivalences, given in Figure 1.1. It is these equivalences, and a few other
laws introduced later, that we tend to use to justify our reasoning. Each can be easily proven via truth tables.

You should learn them — and their names — well. The tab “Laws of Logic” in the LAFF-On navigation bar
on the edX platform, is where you can also find Figure 1.1.

1.3.2 Equivalence style proofs * to edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

Let us illustrate what we mean by an equivalence style proof with an example:

Example 1.2 Prove the contrapositive: (E1⇒ E2)⇔ (¬E2⇒¬E1) using only the other Basic Equivalences.

Proof: It often helps to start with the most complicated side:

¬E2⇒¬E1

⇔< implication >

¬(¬E2)∨¬E1

⇔< negation >

E2∨¬E1

⇔< commutativity >

¬E1∨E2

⇔< implication >

E1⇒ E2

Hence, by transitivity of equivalence, the two predicates are equal.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://www.youtube.com/watch?v=tphtVT079U8
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/2
https://www.youtube.com/watch?v=WCCsDp3PWn4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/2
https://www.youtube.com/watch?v=-PptZ9DaogE

1.3. Proof Techniques for LAFF-On 25

Let E1 , E2 , and E3 be any propositions. Then

Commutativity: (E1 ∧ E2) ⇔ (E2 ∧ E1)

(E1 ∨ E2) ⇔ (E2 ∨ E1)

(E1 ⇔ E2) ⇔ (E2 ⇔ E1)

Associativity: (E1 ∧ (E2 ∧ E3)) ⇔ ((E1 ∧ E2) ∧ E3)

(E1 ∨ (E2 ∨ E3)) ⇔ ((E1 ∨E2) ∨ E3)

Distributivity: (E1 ∧ (E2 ∨ E3)) ⇔ ((E1 ∧E2) ∨ (E1 ∧ E3))

(E1 ∨ (E2 ∧ E3)) ⇔ ((E1 ∨ E2) ∧ (E1 ∨ E3))

De Morgan’s laws: ¬(E1 ∧ E2) ⇔ (¬E1 ∨ ¬E2)

¬(E1 ∨ E2) ⇔ (¬E1 ∧ ¬E2)

Negation: ¬(¬E1) ⇔ E1

Excluded Middle: (E1 ∨ ¬E1) ⇔ T

Contradiction: (E1 ∧ ¬E1) ⇔ F

Implication: (E1 ⇒ E2) ⇔ (¬E1 ∨ E2)

Equivalence: (E1 ⇔ E2) ⇔ (E1 ⇒ E2) ∧ (E2 ⇒ E1)

∨-simplification: (E1 ∨ E1) ⇔ E1

(E1 ∨ T) ⇔ T

(E1 ∨ F) ⇔ E1

(E1 ∨ (E1 ∧ E2)) ⇔ E1

∧-simplification: (E1 ∧ E1) ⇔ E1

(E1 ∧ T) ⇔ E1

(E1 ∧ F) ⇔ F

(E1 ∧ (E1 ∨ E2)) ⇔ E1

Identity: E1 ⇔ E1

⇒-simplification: (E1 ⇒ E1) ⇔ T

(F ⇒ E1) ⇔ T

(E1 ⇒ T) ⇔ T

(T ⇒ E1) ⇔ E1

Contrapositive (E1 ⇒ E2) ⇔ (¬E2 ⇒ ¬E1)

Figure 1.1: Basic Equivalences.

26 Week 1. A Logical Beginning

What do we notice in this example: We created a sequence of equivalences P0 ⇔ P1, P1 ⇔ P2, . . ., Pn−2 ⇔ Pn−1,
presented as

P0

⇔< justification >

P1

⇔< justification >
...

⇔< justification >

Pn−1

By transitivity (p⇔ q and q⇔ r implies that p⇔ r), we conclude that P0⇔ Pn−1. Each step is typically an application
of one or more Basic Equivalences or similar law.

In our proof above (and in the video), we started with the most complicated side and then reasoned towards the
less complicated side. Alternatively, we can establish that a given predicate is a tautology by showing it is equivalent
to TRUE. For example, we can alternatively prove the contrapositive with the following proof:

(E1⇒ E2)⇔ (¬E2⇒¬E1)

⇔< implication ×2 >

(¬E1∨E2)⇔ (¬(¬E2)∨¬E1)

⇔< negation >

(¬E1∨E2)⇔ (E2∨¬E1)

⇔< commutativity >

(¬E1∨E2)⇔ (¬E1∨E2)

⇔< identity >

T

Notice that there are other styles of proofs. Let’s embrace equivalence style proofs so we are all on the same page.
This will make it easier for us to communicate with each other.

The following two tautologies will become important in Unit 2.4.3 when we prove the If Theorem (which itself
allows one to prove an “if” command correct):

Homework 1.3.2.1 Prove that (p⇒ (q∧ r))⇔ ((p⇒ q)∧ (p⇒ r)).
* SEE ANSWER

* DO EXERCISE ON edX

Homework 1.3.2.2 Prove that (p⇒ (q⇒ r))⇔ (p∧q⇒ r).
* SEE ANSWER

* DO EXERCISE ON edX

Homework 1.3.2.3 Prove that (p⇒ (q∨ r))⇔ ((p⇒ q)∨ (p⇒ r)).
* SEE ANSWER

* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/

1.3. Proof Techniques for LAFF-On 27

1.3.3 (The Principle of Mathematical) Induction * to edX

* Watch Video on edX
* Watch Video on YouTube

We will see starting in Week 2 that the Principle of Mathematical Induction (often simply called “induction”) is
perhaps the most fundamental of all mathematical theorems to programming. It is what will allow us to prove loops
correct. (It also plays an important role in proving recursive functions correct, but we do not stress that in this course.)

The material in the remainder of this unit was duplicated from Linear Algebra: Foundations to Frontiers – Notes
to LAFF With.

If we want to show something to be true for all integer values greater than or equal to kb, then the Principle of
Mathematical Induction (weak induction) says that if one can show that

• (Base case) a property holds for k = kb; and

• (Inductive step) if it holds for k = K, where K ≥ kb, then it is also holds for k = K +1,

then one can conclude that the property holds for all integers k ≥ kb. Often kb = 0 or kb = 1.
Here is Maggie’s take on Induction, extending it beyond the proofs we do.

In fact, if you want to prove something holds for all members of a set that can be defined inductively, then
you would use mathematical induction. What does it mean for a set to be defined inductively? You may
recall a set is a collection and as such the order of its members is not important. However, some sets do
have a natural ordering that can be used to describe the membership. This is especially valuable when
the set has an infinite number of members, for example, natural numbers. Sets for which the membership
can be described by suggesting there is a first element (or small group of firsts) then from this first you
can create another (or others) then more and more by applying a rule to get another element in the set are
our focus here. If all elements (members) are in the set because they are either the first (basis) or can be
constructed by applying the rule to the first (basis) a finite number of times, then the set can be inductively
defined.

So for us, the set of natural numbers is inductively defined. As a computer scientist you would say 0 is the
first and the rule is to add one to get another element. So 0,1,2,3, . . . are members of the natural numbers.
In this way, 10 is a member of natural numbers because you can find it by adding 1 to 0 ten times to get it.

So, the Principle of Mathematical induction proves that something is true for all of the members of a set
that can be defined inductively. If this set has an infinite number of members, you couldn’t show it is true
for each of them individually. The idea is if it is true for the first(s) and it is true for any next constructed
member(s) no matter where you are in the list, it must be true for all. Why? Since we are proving things
about natural numbers, the idea is if it is true for 0 and the next constructed, it must be true for 1 but then
its true for 2, and then 3 and 4 and 5 and · · · and 10 and · · · and 10000 and 10001 , and so forth (all natural
numbers). This is only because of the special ordering we can put on this set so we can know there is
a next one for which it must be true. People often picture this rule by thinking of climbing a ladder or
pushing down dominoes. If you know you started and you know wherever you are the next will follow,
then you must make it through all (even if there are an infinite number).

That is why to prove something using the Principle of Mathematical Induction you must show what you
are proving holds at a start and then if it holds (assume it holds up to some point) then it holds for the next
constructed element in the set. With these two parts shown, we know it must hold for all members of this
inductively defined set.

You can find many examples of how to prove using PMI as well as many examples of when and why
this method of proof will fail all over the web. Notice it only works for statements about sets ”that can

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/3
https://youtu.be/M0RhjRHvmME

28 Week 1. A Logical Beginning

be defined inductively”. Also notice subsets of natural numbers can often be defined inductively. For
example, if I am a mathematician I may start counting at 1. Or I may decide that the statement holds for
natural numbers ≥ 4 so I start my base case at 4.

My last comment in this very long message is that this style of proof extends to other structures that can
be defined inductively (such as trees or special graphs in CS).

If mathematical induction intimidates you, have a look at * Puzzles and Paradoxes in Mathematical Induction, by
Adam Bjorndahl.

1.3.4 The Principle of Mathematical Induction: Examples * to edX

* Watch Video on edX
* Watch Video on YouTube

Example 1.3

n−1

∑
i=0

i = n(n−1)/2.

Proof:

Base case: n = 1. For this case, we must show that ∑
1−1
i=0 i = 1(0)/2.

∑
1−1
i=0 i

= < Definition of summation>

0

= < arithmetic>

1(0)/2

This proves the base case.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for n = k where k ≥ 1:

k−1

∑
i=0

i = k(k−1)/2.

We will show that the result is then also true for n = k+1:

(k+1)−1

∑
i=0

i = (k+1)((k+1)−1)/2.

http://www.math.cornell.edu/~mec/2008-2009/ABjorndahl/ppmi.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/4
https://youtu.be/KIHgHcIfq1Y

1.3. Proof Techniques for LAFF-On 29

Assume that k ≥ 1. Then
∑
(k+1)−1
i=0 i

= < arithmetic>

∑
k
i=0 i

= < split off last term>

∑
k−1
i=0 i+ k

= < I.H.>

k(k−1)/2+ k.

= < algebra>

(k2− k)/2+2k/2.

= < algebra>

(k2 + k)/2.

= < algebra>

(k+1)k/2.

= < arithmetic>

(k+1)((k+1)−1)/2.

This proves the inductive step.

By the Principle of Mathematical Induction the result holds for all n.

As we become more proficient, we will start combining steps. For now, we give lots of detail to make sure everyone
stays on board.

* Watch Video on edX
* Watch Video on YouTube

There is an alternative proof for this result which does not involve mathematical induction. We give this proof now
because it is a convenient way to re-derive the result should you need it in the future.

Proof:(alternative)

∑
n−1
i=0 i = 0 + 1 + · · · + (n−2) + (n−1)

∑
n−1
i=0 i = (n−1) + (n−2) + · · · + 1 + 0

2∑
n−1
i=0 i = (n−1) + (n−1) + · · · + (n−1) + (n−1)︸ ︷︷ ︸

n times the term (n−1)

so that 2∑
n−1
i=0 i = n(n−1). Hence ∑

n−1
i=0 i = n(n−1)/2.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/4
https://youtu.be/cCcnvI3w7e8

30 Week 1. A Logical Beginning

For those who don’t like the “· · ·” in the above argument, notice that

2∑
n−1
i=0 i = ∑

n−1
i=0 i+∑

n−1
j=0 j < algebra >

= ∑
n−1
i=0 i+∑

0
j=n−1 j < reverse the order of the summation >

= ∑
n−1
i=0 i+∑

n−1
i=0 (n− i−1) < substituting j = n− i−1 >

= ∑
n−1
i=0 (i+n− i−1) < merge sums >

= ∑
n−1
i=0 (n−1) < algebra >

= n(n−1) < (n−1) is summed n times >.

Hence ∑
n−1
i=0 i = n(n−1)/2.

Homework 1.3.4.1 Let n≥ 1. Then ∑
n
i=1 i = n(n+1)/2.

Always/Sometimes/Never
* SEE ANSWER

* DO EXERCISE ON edX

Homework 1.3.4.2 Let n≥ 1. ∑
n−1
i=0 1 = n.

Always/Sometimes/Never
* SEE ANSWER

* DO EXERCISE ON edX

Homework 1.3.4.3 Let n≥ 1 and x ∈ Rm. Then

n−1

∑
i=0

x = x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= nx

Always/Sometimes/Never
* SEE ANSWER

* DO EXERCISE ON edX

Homework 1.3.4.4 Let n≥ 1. ∑
n−1
i=0 i2 = (n−1)n(2n−1)/6.

Always/Sometimes/Never
* SEE ANSWER

* DO EXERCISE ON edX

1.4 Quantified Expressions

1.4.1 What is a quantifier * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/7f4818ffe62c4e50979ab0f308823791/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://www.youtube.com/watch?v=MsW4xbImuxQ

1.4. Quantified Expressions 31

1.4.2 The “for all” quantifier * to edX

* Watch Video on edX
* Watch Video on YouTube

To avoid having to explicitly list every term in the conjunction, one can instead use the “for all” quantifier:

P0∧P1∧·· ·∧Pn−1 can be written as (is equivalent to) (∀k | 0≤ k < n : Pk).

This is read as “for all k in the range 0≤ k < n the expression Pk holds” or, equivalently, “Pk holds for all k in the range
0≤ k < n.”

More generally, we may have a predicate that is a function of the integer variable k, P(k), and a set of values of k
for which this expression evaluates to TRUE. This would be expressed as

(∀k | R(k) : P(k)).

Here

• k is the bound variable in the “for all” quantification.

• R(k) is a predicate that is a function of k and specifies the range of the quantification. It is the values of k for
which R(k) evaluates to TRUE that are in the range.

• P(k) is the predicate that is a function of k.

If S = {k0,k1,k2, . . .} is the set of all integers that satisfies R(k), then

(∀k | k ∈ S : P(k)) = (∀k | R(k) : P(k)) = (P(k0)∧P(k1)∧·· ·).
In this course, the set denoted by R(k) can be finite (e.g., 0≤ k < 10) or countably infinite (e.g., 0≤ k).

1.4.3 The “there exists” quantifier * to edX

* Watch Video on edX
* Watch Video on YouTube

To avoid having to explicitly list every term in the disjunction, one can instead use the “there exists” quantifier:

P0∨P1∨·· ·∨Pn−1 can be written as (is equivalent to) (∃k | 0≤ k < n : Pk).

This is read as “there exists a k in the range 0≤ k < n such that the expression Pk holds” or, equivalently, “Pk holds for
at least one k in the range 0≤ k < n.”

More generally, in
(∃k | R(k) : P(k)).

• k is the bound variable in the “there exists” quantification.

• R(k) is a predicate that is a function of k and specifies the range of the quantification. It is the values of k for
which R(k) evaluates to TRUE that are in the range.

• P(k) is the predicate that is a function of k.

If S = {k0,k1,k2, . . .} is the set of all integers that satisfy R(k), then

(∃k | k ∈ S : P(k)) = (∃k | R(k) : P(k)) = (P(k0)∨P(k1)∨·· ·).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/2
https://www.youtube.com/watch?v=D42quc06ENE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/3
https://www.youtube.com/watch?v=liMvzXE042c

32 Week 1. A Logical Beginning

1.4.4 Splitting the range * to edX

* Watch Video on edX
* Watch Video on YouTube

Often in our discussions we will want to “split the range” of a quantifier.

Example 1.4 Consider, an array b with elements b(0) through b(n−1). The predicate

s = (∑k | 0≤ k < n : b(k))

expresses that variable s equals the sum of the elements of b. Given an integer i that satisfies 0 ≤ i < n, the given
predicate is equivalent to

s = (∑k | 0≤ k < i : b(k))+(∑k | i≤ k < n : b(k)).

because

(∑k | 0≤ k < n : b(k)) = b(0)+ · · ·+b(i−1)︸ ︷︷ ︸
(∑k | 0≤ k < i : b(k))

+ b(i)+ · · ·+b(n−1)︸ ︷︷ ︸
(∑k | i≤ k < n : b(k))

= (∑k | 0≤ k < i : b(k))+(∑k | i≤ k < n : b(k))

Let us discuss the theory that underlies this. Partition S into the subsets S0 and S1. Partitioning means that
S0∪S1 = S and S0∩S1 =∅. Then

(∀k | k ∈ S : E(k)) ⇔ (∀k | k ∈ S0 : E(k)) ∧ (∀k | k ∈ S1 : E(k))

(∃k | k ∈ S : E(k)) ⇔ (∃k | k ∈ S0 : E(k)) ∨ (∃k | k ∈ S1 : E(k))

(∑k | k ∈ S : E(k)) = (∑k | k ∈ S0 : E(k)) + (∑k | k ∈ S1 : E(k))

(∏k | k ∈ S : E(k)) = (∏k | k ∈ S0 : E(k)) × (∏k | k ∈ S1 : E(k)).

1.4.5 Quantifiers with special ranges * to edX

* Watch Video on edX
* Watch Video on YouTube

In our proofs of correctness, we will often want to split one component or term from a quantifier.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/4
https://www.youtube.com/watch?v=QP05oPq74S0
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/5
https://www.youtube.com/watch?v=v7-QdKJEC84

1.4. Quantified Expressions 33

Example 1.5 Splitting one term from a “for all” quantifier:

1≤ k∧ (∀i | 1≤ i≤ k : a(i) = b(i)+ c(i))

= 1≤ k∧ (∀i | 1≤ i < k : a(i) = b(i)+ c(i))∧ (∀i | k ≤ i≤ k : a(i) = b(i)+ c(i))︸ ︷︷ ︸
a(k) = b(k)+ c(k)

= 1≤ k∧ (∀i | 1≤ i < k : a(i) = b(i)+ c(i))∧a(k) = b(k)+ c(k)

Splitting one term from a “there exists” quantifier:

1≤ k∧ (∃i | 1≤ i≤ k : a(i) = b(i)+ c(i))

= 1≤ k∧ (∃i | 1≤ i < k : a(i) = b(i)+ c(i))∨ (∃i | k ≤ i≤ k : a(i) = b(i)+ c(i))︸ ︷︷ ︸
a(k) = b(k)+ c(k)

= 1≤ k∧ (∃i | 1≤ i < k : a(i) = b(i)+ c(i))∨a(k) = b(k)+ c(k)

Splitting one term from a summation:

1≤ k∧ (∑i | 1≤ i≤ k : a(i))

= 1≤ k∧ (∑i | 1≤ i < k : a(i))+ (∑i | k ≤ i≤ k : a(i))︸ ︷︷ ︸
a(k)

= 1≤ k∧ (∑i | 1≤ i < k : a(i))+a(k)

What these examples illustrate is that when the range of a quantifier consists of a single point it simply evaluates
to the expression (term) evaluated at that point.

In the last unit you may also have wondered what would happen if one of the two sets S0 or S1 is the empty set.
Let us motivate this by revisiting Example 1.4:

34 Week 1. A Logical Beginning

Example 1.6 Consider, an array b with elements b(0) through b(n−1). The predicate

s = (∑k | 0≤ k < n : b(k))

expresses that variable s equals the sum of the elements of b. Given an integer i that satisfies 0 ≤ i < n, the given
predicate is equivalent to

s = (∑k | 0≤ k < i : b(k))+(∑k | i≤ k < n : b(k)).

Let us examine the extreme cases:

i = 0: In this case, we find that

s = (∑k | 0≤ k < 0︸ ︷︷ ︸
empty!

: b(k))+(∑k | 0≤ k < n : b(k))

We notice that in this example, the sum over the empty range better be defined to equal zero!

i = n: In this case, we find that

s = (∑k | 0≤ k < n : b(k))+(∑k | n≤ k < n︸ ︷︷ ︸
empty!

: b(k))

We notice that, again, the sum over the empty range better be defined to equal zero!

Let us look at this more generally. Split S = S0∪S1 where S0∩S1 =∅. Consider

(∑k | k ∈ S : E(k)) = (∑k | k ∈ S0 : E(k))+(∑k | k ∈ S1 : E(k)).

If S0 =∅, then S1 = S and

(∑k | k ∈ S : E(k)) = (∑k | k ∈∅ : E(k))+(∑k | k ∈ S : E(k))

implies that

(∑k | k ∈∅ : E(k)) = 0.

Via similar reasoning one concludes that

(∀k | k ∈∅ : P(k)) ⇔ T

(∃k | k ∈∅ : P(k)) ⇔ F

(∑k | k ∈∅ : E(k)) = 0
(∏k | k ∈∅ : E(k)) = 1.

1.4. Quantified Expressions 35

1.4.6 Practice expressing statements as predicates * to edX

Homework 1.4.6.1 Let us consider a one dimensional array b(1 : n) (using Matlab notation), where 1 ≤ n. Let
j and k be two integer variables satisfying 1 ≤ j ≤ k ≤ n. By b(j : k) we mean the subarray of b consisting of
b(j),b(j+1), . . .b(k). The segment b(j : k) is empty (contains no elements) if j > k.
Translate the following sentences into predicates.

1. All elements in the subarray b(j : k) are positive.

2. No element in the subarray b(j : k) is positive.

3. It is not the case that all elements in the subarray b(j : k) are positive.

4. All elements in the subarray b(j : k) are not positive.

5. Some element in the subarray b(j : k) is positive.

6. There is an element in the subarray b(j : k) that is positive.

7. At least one element in the subarray b(j : k) is positive.

8. Some element in the subarray b(j : k) is not positive.

9. Not all elements in the subarray b(j : k) are positive.

10. It is not the case that there is an element in the subarray b(j : k) that is positive.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 1.4.6.2 Translate the following sentence into a predicate: Exactly one element in the subarray b(j : k)
is positive.

1. (∃i | j ≤ i≤ k : b(i)> 0∧ (∀p | j ≤ p≤ k∧ p 6= i : ¬(b(p)> 0)))

2. (∃i | j ≤ i≤ k : b(i)> 0)∧ (∀p | j ≤ p≤ k∧ p 6= i : ¬(b(p)> 0))

* SEE ANSWER
* DO EXERCISE ON edX

Homework 1.4.6.3 Formalize the following English specifications. Be sure to introduce necessary restrictions.

1. Set s equal to the sum of the elements of b(j : k).

2. Set M equal to the maximum value in b(j : k).

3. Set I equal to the index of a maximum value of b(j : k).

4. Calculate x, the greatest power of 2 that is not greater than positive integer n.

5. Compute c, the number of zeroes in array b(1 : n).

6. Consider array of integers b(1 : n). Each of its subsegments b(i : j) has a sum Si, j = (∑ | i ≤ k ≤ j : b(k)).
Compute M equal to the maximum such sum.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/f00c5b4f8eb749019e57b780e297c599/

36 Week 1. A Logical Beginning

1.5 Weakening/strengthening

1.5.1 Weakening/strengthening laws * to edX

* Watch Video on edX
* Watch Video on YouTube

When proving correctness of programs, the notion of one predicate being “stronger” or “weaker” than another
predicate will play a central role. This will become clear starting in Week 2. In this unit, you will learn what it means
for a predicate to be stronger or weaker and you will be equipped with some laws we call ”Weakening/strenghtening”
laws.

When two predicates E1 and E2 have the property that E1⇒ E2, the predicate E2 is said to be weaker (less
restrictive) than predicate E1. Equivalently, E1 is said to be stronger (more restrictive) than E2. Notice that this means
that any predicate is simultaneously weaker and stronger than itself.

How do we most systematically show that x≥ 3 is weaker than x = 5 using what we have learned before?

(x = 5)⇒ (x≥ 3)

⇔< algebra >

(x = 5)⇒ (x≥ 6)∨ (x = 5)∨ (x = 4)∨ (x = 3)

Now, at this point you may look at

(x = 5)⇒ (x≥ 6)∨ (x = 5)∨ (x = 4)∨ (x = 3)

and say ”Well, dah! Obviously this is TRUE”. However, to show it rigorously, you have to continue the proof:

(x = 5)⇒ (x≥ 6)∨ (x = 5)∨ (x = 4)∨ (x = 3)

⇔< implication; commutivity >

¬(x = 5)∨ ((x = 5)∨ (x≥ 6)∨ (x = 4)∨ (x = 3)) ⇔< associativity; excluded middle; associativity >

T ∨ ((x≥ 6)∨ (x = 4)∨ (x = 3))

⇔< ∨-simplification >

T

At the end of the next unit, we will equip you with a few new laws of logic that allow you to essentially say “Well,
dah” instead.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/1
https://www.youtube.com/watch?v=2PnfVvndTTU

1.5. Weakening/strengthening 37

1.5.2 Weakening/strengthening exercises * to edX

Homework 1.5.2.1 For each of the following, if applicable, indicate which statement is TRUE (by examination):

1. (a) 0≤ x≤ 10 is weaker than 1≤ x < 5.

(b) 0≤ x≤ 10 is stronger than 1≤ x < 5.

2. (a) x = 5∧ y = 4 is weaker than y = 4.

(b) x = 5∧ y = 4 is stronger than y = 4.

3. (a) x≤ 5∨ y = 3 is weaker than x = 5∧ y = 4.

(b) x≤ 5∨ y = 3 is stronger than x = 5∧ y = 4.

4. (a) T is weaker than F.

(b) T is stronger than F.

5. (a) (∀i|5≤ i≤ 10 : b(i+1)< b(i)) is weaker than (∀i|7≤ i≤ 10 : b(i+1)< b(i)).

(b) (∀i|5≤ i≤ 10 : b(i+1)< b(i)) is stronger than (∀i|7≤ i≤ 10 : b(i+1)< b(i)).

6. (a) x≤ 1 is weaker than x≥ 5.

(b) x≤ 1 is stronger than x≥ 5.

7. (a) x≤ 4 is weaker than 5 > x.

(b) x≤ 4 is stronger than 5 > x.

* SEE ANSWER
* DO EXERCISE ON edX

There are a few situations that we will encounter later in the course where understanding how specific predicates
are stronger than a slightly different predicate will be key to accurate reasoning. Let us first discuss these informally
after which we leave the formal proof as an exercise.

• If the expression E1∧E2 is true then obviously the expression E1 is true. So, E1∧E2 is a stronger predicate (is
more restrictive) than E1.

• If the expression E1 is true then obviously the expression E1∨E3 is true. So, E1 is a stronger predicate (is more
restrictive) than E1∨E3.

• If the expression E1∧E2 is true then obviously the expression E1 is true and hence E1∨E3 is true. So, E1∧E2
is a stronger predicate (is more restrictive) than E1∨E3.

While this is obvious, one really should prove it:

Homework 1.5.2.2 Use the Basic Equivalences to prove the following. (Do NOT use the weakening/strengthening
laws given in Figure 1.2, which we will discuss later.)

1. E1∧E2⇒ E1

2. E1⇒ E1∨E3

3. E1∧E2⇒ E1∨E3

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/

38 Week 1. A Logical Beginning

Weakening/ Strengthening: ((E1∧E2) ⇒ E1) ⇔ T

(E1 ⇒ (E1∨E3)) ⇔ T

((E1∧E2) ⇒ (E1∨E3)) ⇔ T

Figure 1.2: Weaking/strengthening laws.

Homework 1.5.2.3 Use the Basic Equivalences and/or the results from Homework 1.5.2.2 to prove that

E1∧E2⇒ (E1∨E3)∧E2.

* SEE ANSWER
* DO EXERCISE ON edX

The insights from these last two homeworks will become powerful tools as we prove programs correct. Together
we will call them Weakening/Strengthening Laws. They are summarized in Figure 1.2. These form a second set of
useful tautologies.

Homework 1.5.2.4 In Figure 1.2 we present three Weakening/Strengening Laws. This exercise shows that if you
only decide to remember one, it should be the last one.

1. Show that (E1 ∧E2)⇒ E1 is a special case of (E1 ∧E2)⇒ (E1 ∨E3).

2. Show that E1 ⇒ (E1 ∨E3) is a special case of (E1 ∧E2)⇒ (E1 ∨E3).

* SEE ANSWER
* DO EXERCISE ON edX

What you will find later is that it is (E1 ∧E2)⇒ (E1 ∨E3) becomes our tool of choice in many proofs.

Homework 1.5.2.5 For each of the following predicates pairs from Homework 1.5.2.1 use an equivalence style
proof, the Basic Logic Equivalences, and the Weakening/strengthening laws to prove which predicate is weaker:

1. 0≤ x≤ 10 and 1≤ x < 5.

2. x = 5∧ y = 4 and y = 4.

3. x≤ 5∨ y = 3 and x = 5∧ y = 4.

4. T and F.

5. (∀i|5≤ i≤ 10 : b(i+1)< b(i)) and (∀i|7≤ i≤ 10 : b(i+1)< b(i))

* SEE ANSWER
* DO EXERCISE ON edX

1.6 Enrichment

1.6.1 The Humble Programmer – Edsger W. Dijkstra * to edX

Edsger W. Dijkstra was one of the most influential computer scientists. His pioneering and visionary work greatly
influenced the material that underlies this course. You should start your journey by reading his ACM Turing Award
acceptance speech.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/17716ec3bfe74a5d8fc99981cd2a143a/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1

1.7. Wrapup 39

* ACM Turing Lecture 1972: “The Humble Programmer” by Edsger W. Dijkstra

A partial tape recording of the lecture can be found on

* YouTube

Unfortunately, it seems like some tapes were overwritten with music...
Notice that some find the title of Dijkstra’s Turing Award acceptance speech amusing. Here is an interesting quote

from Alan Kay:

“I don’t know how many of you have ever met Dijkstra, but you probably know that arrogance in computer
science is measured in nano-Dijkstras.”

1.6.2 Typesetting proofs with LATEX * to edX

* Watch Video on edX
* Watch Video on YouTube

1.6.3 More on logic * to edX

We have tried to give just enough logic background for the course to be self-contained. Here we list some resources if
you want to go beyond.

Some places where you can learn more about logic:

FREE!

Dr. Elaine Rich and Prof. Alan Cline created an online introductory course on logic for use at The University of Texas
at Austin titled “Fundamentals of Reasoning”. They have ported this course to edX ”Edge”, which is a platform where
unofficial courses are offered. They have graciously made it possible for you to try the first few chapters of this course,
which should give you a solid background in logic. You can try this course by going to

* https://edge.edx.org/courses/course-v1:UT+101+2017/about
(You will have to register for edge.edx.org and sign in.)

Some books to try! (Not free)

• David Gries, The Science of Programming (Monographs in Computer Science), Springer, 1987.

• David Gries and Fred B. Schneider, A Logical Approach to Discrete Math (Texts and Monographs in Computer
Science), Springer, 1994.

1.7 Wrapup

1.7.1 Additional exercises * to edX

There are no additional exercises this week. Skip and go on!

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.youtube.com/playlist?list=PLEED385A38DC5279F
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/2
https://www.youtube.com/watch?v=gwXEkvm1fok
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/68519dc908d041d0948d27759d1e9bd6/3
https://edge.edx.org/courses/course-v1:UT+101+2017/about
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1

40 Week 1. A Logical Beginning

1.7.2 Summary * to edX

Boolean operators

• not (negation, ¬);

• and (conjunction, ∧);

• or (disjunction, ∨);

• implies (implication,⇒);

• is equivalent to (equivalence,⇔).

For a list of logic symbols that includes LATEX symbols, you may want to consult Wikipedia’s * List of logic symbols
entry (https://en.wikipedia.org/wiki/List_of_logic_symbols).

not and or implies equivalent

p q ¬p p∧q p∨q p⇒ q p⇔ q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Precedence of Boolean operators

• First negate: ¬p∧q is the same as (¬p)∧q.

• Second, evaluate ∧: ¬p∧q⇒ r is the same as ((¬p)∧q)⇒ r.

• Third, evaluate ∨: ¬p∧q∨ r⇒ s is the same as (((¬p)∧q)∨ r)⇒ s.

• Fourth, evaluate⇒: t⇔¬p∧q∨ r⇒ s is the same as t⇔ ((((¬p)∧q)∨ r)⇒ s).

• Last evaluate⇔.

Predicates, tautologies, contradications

A predicate is a logical statement that may be TRUE or FALSE depending on the values of the variables that appear
in the statement.

A tautology is a predicate that evaluates to TRUE regardless of the choice of the variables in the predicate.

A contradiction is a predicate that evaluates to FALSE regardless of the choice of the variables in the predicate.

Basic Equivalences

The basic equivalences can be found in Figure 1.1 and by visiting the “Laws of Logic” tab in the LAFF-On edX course
navigation bar.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/0cb5e25d727146d5a83759466259ba6e/df72a8073bfa472d9bf47b305361b12f/1
https://en.wikipedia.org/wiki/List_of_logic_symbols
https://en.wikipedia.org/wiki/List_of_logic_symbols

1.7. Wrapup 41

The Principle of Mathematical Induction

The Principle of Mathematical Induction (weak induction) says that if one can show that

• (Base case) a property holds for k = kb; and

• (Inductive step) if it holds for k = K, where K ≥ kb, then it is also holds for k = K +1,

then one can conclude that the property holds for all integers k ≥ kb. Often kb = 0 or kb = 1.

Quantifiers

For all ... (∀i | R(i) : P(i)) stands for “For all i that satisfy the predicate R(i) the predicate P(i) holds.”

There exists ... (∃i | R(i) : P(i)) stands for “There exists an i that satisfies the predicate R(i) for which the predicate
P(i) holds.”

Sum ... (∑i | R(i) : E(i)) stands for “Sum expressions E(i) for all i that satisfy the predicate R(i).” More traditionally
this is denoted by ∑R(i) E(i).

Product ... (∏i | R(i) : E(i)) stands for “Multiply expressions E(i) for all i that satisfy the predicate R(i).” More
traditionally this is denoted by ∏R(i) E(i).

Splitting the range

Partition S into the subsets S0 and S1. Partitioning means that S0∪S1 = S and S0∩S1 =∅. Then

(∀k | k ∈ S : E(k)) ⇔ (∀k | k ∈ S0 : E(k)) ∧ (∀k | k ∈ S1 : E(k))

(∃k | k ∈ S : E(k)) ⇔ (∃k | k ∈ S0 : E(k)) ∨ (∃k | k ∈ S1 : E(k))

(∑k | k ∈ S : E(k)) = (∑k | k ∈ S0 : E(k)) + (∑k | k ∈ S1 : E(k))

(∏k | k ∈ S : E(k)) = (∏k | k ∈ S0 : E(k)) × (∏k | k ∈ S1 : E(k))

One point rule

(∀k | k ∈ {i} : P(k)) ⇔ P(i)

(∃k | k ∈ {i} : P(k)) ⇔ P(i)

(∑k | k ∈ {i} : E(k)) = E(i)

(∏k | k ∈ {i} : E(k)) = E(i).

Empty range

(∀k | k ∈∅ : P(k)) ⇔ T

(∃k | k ∈∅ : P(k)) ⇔ F

(∑k | k ∈∅ : E(k)) = 0
(∏k | k ∈∅ : E(k)) = 1.

Weakening/strengthening laws

The basic equivalences can be found in Figure 1.2 and by visiting the “Laws of Logic” tab in the LAFF-On edX course
navigation bar.

42 Week 1. A Logical Beginning

Week 2
Proving Programs Correct

2.1 Opening Remarks

2.1.1 Launch * to edX

* Watch Video on edX
* Watch Video on YouTube

In Week 1, you equipped yourself with a number of tools that you will now employ to prove program segments
correct.

In this launch, we want you to stretch yourself a bit and puzzle out how to add assertions about the state of
variables, in the form of predicates, to a code segment. Each assertion says something about what you expect to be
true at a given point in the code. With this, you can then argue about the correctness of the code.

Let us consider the simple loop given in pseudocode, that sums the elements of an array, b, that has n = size(b)
elements, where the indexing into the array starts at zero, meaning that the elements of b are referenced as b(0) through
b(n−1). The result is accumulated in variable s.

s := 0
k := 0
while k < n do

s := s+b(k)
k := k+1

endwhile

(Let’s not get distracted by the fact that this loop would often be written as a “for” loop. It is much easier to reason
about the correctness of a while loop.)

How might we reason about the correctness of such a code segment? We might start by identifying a predicate
that describes what must be TRUE about the variables before the code segment. This is called the precondition. In
the below annotated code we assume that n equals the size of array b and the precondition asserts that before the code
segment starts this size is nonnegative. We also want to add a predicate at the end of the code segment that describes
the desired state of the variables upon completion. This is called the postcondition, and in the below annotated code it
says that upon completion s equals the sum of the elements of b:

43

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/1
https://www.youtube.com/watch?v=JZUTbFlKDzo

44 Week 2. Proving Programs Correct

{
0≤ n

}
s := 0

k := 0

while k < n do

s := s+b(k)

k := k+1

endwhile{
s := (∑ i | 0≤ i < n : b(i))

}
The code segment is correct if, starting in a state that satisfies the precondition, the code segment completes (in a finite
amount of time to avoid, for example, infinite loops) in a state that satisfies the postcondition.

To reason about the correctness of the code segment, we now ask you to insert more assertions in form of predi-
cates.

Homework 2.1.1.1 Consider again the algorithm that sums the elements of array b, now given in Figure 2.1. Place
the following assertions in the correct place (the blank boxes) in the algorithm:

1. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n}

2. { s = 0∧0 = k ≤ n}

3. { s = 0∧0≤ n}

4. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧¬(k < n)}

5. { s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n}

6. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n}

* SEE ANSWER
* DO EXERCISE ON edX

In the following video, Robert misspeaks at 1:00. “...is k less than n. If not, then we enter the loop”, should be
“...is k less than n. If so, then we enter the loop”.

* Watch Video on edX
* Watch Video on YouTube

What we notice is how assertions about the state of (the values in) the variables are given as predicates. Each assertion
indicates that the values of the variables at that point in the code should be such that the predicate evaluates to TRUE.
If a predicate does not evaluate to TRUE, then there is something unexpected because either the code is wrong or the
predicate does not correctly describe what should be TRUE at that point in the code.

Since there is at least one assertion after each command, one can reason about whether the program is correct by
reasoning about the correctness of each individual command along the way.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/1
https://www.youtube.com/watch?v=X8ks5MQLe1E

2.1. Opening Remarks 45

{
0≤ n

}
s := 0

k := 0

{
s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n

}
while k < n do

s := s+b(k)

k := k+1

endwhile

{
s = (∑ i | 0≤ i < n : b(i))

}
Figure 2.1: Partially annotated algorithm for computing the sum of the elements of array b.

46 Week 2. Proving Programs Correct

Homework 2.1.1.2 Take the solution for the last homework and use it to convince someone (possibly yourself)
that the code segment is correct.

* SEE ANSWER
* DO EXERCISE ON edX

Convincing someone is not the same as proving the code segment correct. How often have you convinced yourself
that your code is correct only to later discover a bug? In this week, you will learn how to formally prove the correctness
of a program segment. This is a first step towards systematically deriving a program to be correct hand-in-hand with
its proof of correctness, which will be the topic of Week 3.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/

2.1. Opening Remarks 47

2.1.2 Outline Week 2 * to edX

2.1. Opening Remarks . 43
2.1.1. Launch * to edX . 43
2.1.2. Outline Week 2 * to edX . 47
2.1.3. What you will learn * to edX . 48

2.2. Tools for Reasoning About Correctness . 49
2.2.1. The Hoare triple * to edX . 49
2.2.2. The weakest precondition * to edX . 49
2.2.3. Proving the correctness of a Hoare triple * to edX . 51

2.3. Basic Commands . 52
2.3.1. The skip command * to edX . 52
2.3.2. The abort command * to edX . 53
2.3.3. Assignment to a simple variable * to edX . 54
2.3.4. Composition * to edX . 57
2.3.5. Simultaneous assignment * to edX . 59
2.3.6. Assignment to an array element * to edX . 60

2.4. The If Command . 63
2.4.1. Specification * to edX . 63
2.4.2. wp(“if”,R) * to edX . 63
2.4.3. The If Theorem * to edX . 65
2.4.4. A worksheet for proving an if command correct * to edX 69
2.4.5. The if-then-else command * to edX . 69

2.5. The While Command . 74
2.5.1. Specification * to edX . 74
2.5.2. Correctness * to edX . 74
2.5.3. The While Theorem * to edX . 75
2.5.4. Total correctness * to edX . 78
2.5.5. Don’t Panic * to edX . 81

2.6. Enrichment . 82
2.6.1. The do command * to edX . 82
2.6.2. Desirable properties of a language * to edX . 83
2.6.3. A conversation with Sir Tony Hoare * to edX . 86

2.7. Wrap Up . 87
2.7.1. Additional exercises * to edX . 87
2.7.2. Summary * to edX . 90

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/2

48 Week 2. Proving Programs Correct

2.1.3 What you will learn * to edX

Today, common practice is to show a program correct through testing. The issue with this is that while testing can
uncover errors, it cannot prove a program correct. After all, you may not have tested the cases for which the program
fails. This week equips you with the tools to provide definitive proofs of correctness. This is a first step towards
systematic derivation of correct programs.

Proving programs correct is foundational. It was studied by many, including several Turing Award winners. In this
week, we share our understanding of their work.

Upon completion of this week, you should be able to

• Annotate a program with assertions.

• Create and apply Hoare triples to reason about correctness of short program segments involving skip, abort, and
assignments.

• Evaluate the weakest precondition.

• Prove the correctness of a Hoare triple using the weakest precondition.

• Prove the correctness of various assignment commands.

• Prove correctness of an if command via the If Theorem.

• Prove correctness of an iterative command via the While Theorem.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/d5bc8ace2767485abe4fc49e70362ba9/3

2.2. Tools for Reasoning About Correctness 49

2.2 Tools for Reasoning About Correctness

2.2.1 The Hoare triple * to edX

* Watch Video on edX
* Watch Video on YouTube

The launch for this week motivates the notion of a Hoare triple, named after Sir Charles Antony Richard Hoare
(Sir Tony Hoare): Given predicates Q and R and command S, the Hoare triple

{Q}S{R}

holds (evaluates to TRUE) if the command S when started in a state for which Q evaluates to TRUE completes in
a finite amount of time in a state for which R evaluates to TRUE. For this triple, Q is the precondition and R is the
postcondition.

In other words, if Q and R describe the states in which we expect to be before and after the command, it only
executes as expected if the triple holds. This will give us a formal vehicle for reasoning about the correctness of
commands in a code segment.

We have encountered a number of Hoare triples in the launch for this week, when we annotated code with asser-
tions. There we saw{

Q
}

S{
R

}
or just

{Q}
S
{R}

or, if space on the page is an issue, {Q}S{R}.

2.2.2 The weakest precondition * to edX

* Watch Video on edX
* Watch Video on YouTube

While the Hoare triple formalizes how to assert that a code segment is correct, it is the definition of a weakest
precondition that allows one to prove that a code segment is correct. Importantly, it also facilitates goal-oriented
programming, as we will see starting in Week 3.

Before doing the following homework, you may want to review Section 1.5.1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//1
https://www.youtube.com/watch?v=UFGI0FKzS7c
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//2
https://www.youtube.com/watch?v=udu8pzrugIc

50 Week 2. Proving Programs Correct

Homework 2.2.2.1 By examination, decide whether the following Hoare triples hold (evaluate to TRUE) and
which of the predicates are stronger/weaker:

1. {x > 4}y := x+1{y > 5} TRUE/FALSE

2. {x = 10}y := x+1{y > 5} TRUE/FALSE
x = 10 is stronger than x > 4 TRUE/FALSE

3. {x = 5}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x = 5 TRUE/FALSE

4. {x≥ 5}y := x+1{y > 5} TRUE/FALSE
x > 4 is at least as weak as x≥ 5 TRUE/FALSE

5. {x = 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x = 4 TRUE/FALSE

6. {x≥ 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x≥ 4 TRUE/FALSE

7. {x > 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is at least as weak as x > 4 TRUE/FALSE

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.2.2.2 What do you notice about the relationship between the preconditions, P, that make the Hoare
triple {P}y := x+1{y > 5} TRUE and the predicate x > 4? Choose the correct answer:

a) Of all P for which the Hoare triple holds (evaluates to TRUE), x > 4 is the weakest.

b) Of all P for which the Hoare triple holds (evaluates to TRUE), x > 4 is the strongest.

c) Of all P for which the Hoare triple holds, y > 5 is the weakest.

d) No obvious relation.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

This motivates the fundamental question

“What is the set of all states such that the execution of y := x+1 results in a state where y > 5?”

or, equivalently,

“What predicate describes the set of all states such that the execution of the command y := x+1 in a state
described by that predicate will leave us in a state where y > 5 (after a finite amount of time)?”

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//2
https://www.youtube.com/watch?v=RjKJ2VCAX4c

2.2. Tools for Reasoning About Correctness 51

2.2.3 Proving the correctness of a Hoare triple * to edX

* Watch Video on edX
* Watch Video on YouTube

Let us look at this more generally. Consider the command S and let us assume that we would like to check whether
the code segment

{Q}
S
{R}

is correct. Now, what if we had this function, wp(“S”,R), that returns a predicate that describes all states for which
executing S leaves the variables (in a finite amount of time) in a state where R is true?

Definition 2.1 Given command S and postcondition R, the weakest precondition (which describes the set of all states
for which execution of command S completes in a finite amount of time is a state described by R) is given by wp(“S”,R).

We then know that

{Q}
S
{R}

holds (is correct) if and only if

{Q}
{wp(“S”,R)}
S
{R}

is correct. Why? Because only if we are in a state where wp(“S”,R) holds will S complete (in a finite amount of time)
in a state where R is TRUE.

What does this mean? If Q is true, it must imply that wp(“S”,R) is true. Thus, what this in turn means is that the
code segment {Q}S{R} is correct if and only if

Q⇒ wp(“S”,R).

In other words, wp(“S”,R) must be at least as weak as the predicate Q. This function that transforms R into a new
predicate is known as the weakest precondition function.

Notice

• Any Q such that {Q}S{R} is TRUE is a precondition so that command S completes in a finite amount of time
in a state described by predicate R.

• If P satisfies Q⇒ P then P is at least as weak as Q: P is no more restrictive than predicate Q.

• The weakest (least restrictive) predicate P such that {P}S{R} is TRUE describes the set of all states in which
statement S can be executed so that it completes, in a finite amout of time, in a state where R is TRUE.

• The wp is the function that takes the command S and the postcondition R as inputs, and returns a predicate that
describes the set of all states for which executing S completes (in a finite amount of time) in a state that satisfies
the postcondition R.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//3
https://www.youtube.com/watch?v=_G_nGVt8-tE

52 Week 2. Proving Programs Correct

It will take a bit of practice to fully understand and appreciate this.

Homework 2.2.3.1 For each of the below code segments, determine the weakest precondition (by examination):

1. wp(“x := y”,x = 5) =

2. wp(“x := x+1”,0≤ x≤ 1) =

3. wp(“x := y”,x = y) =

4. wp(“x := 4”,x = 5) =

* SEE ANSWER
* DO EXERCISE ON edX

In the next subsections, we use wp to precisely define commands in our pseudo language.

* Watch Video on edX
* Watch Video on YouTube

2.3 Basic Commands

In this section, we look at some simple commands that we encounter in our pseudo code and define the weakest
precondition for these.

2.3.1 The skip command * to edX

* Watch Video on edX
* Watch Video on YouTube

Homework 2.3.1.1 Consider the skip command, which simply doesn’t do anything:

{Q : ?}
skip
{R : x > 4}

From what state Q will the command skip finish (in a finite amount of time) in a state where x > 4 is TRUE? In
other words,

wp(“skip”,x > 4) =

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/eec0887c6cc9404c8ce6657533547c34//3
https://www.youtube.com/watch?v=blqv2vXybDQ
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://www.youtube.com/watch?v=dreF9nHBM6c
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/

2.3. Basic Commands 53

* Watch Video on edX
* Watch Video on YouTube

Homework 2.3.1.2 Building on the intuition from the last homework, give wp(“skip”,R) = for an arbitrary post-
condition R.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

2.3.2 The abort command * to edX

* Watch Video on edX
* Watch Video on YouTube

Homework 2.3.2.1 Consider the abort command, which aborts (which means execution does not reach the point
in the program after the abort command).

{Q : ?}
abort
{R : x > 4}

From what state Q will the command abort finish (in a finite amount of time) in a state where x > 4 is T? In other
words, evaluate

wp(“abort”,x > 4) =

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://www.youtube.com/watch?v=oXjSemm7qgY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/1
https://www.youtube.com/watch?v=tAwpo6iegHQ
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://www.youtube.com/watch?v=_CZ18pQRE3U
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://www.youtube.com/watch?v=xzUhVxbMDUY

54 Week 2. Proving Programs Correct

Homework 2.3.2.2 Building on the intuition from the last homework, evaluate

wp(“abort”,R) =

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

2.3.3 Assignment to a simple variable * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the code segment

{Q : x = 5}
S : y := x+1
{R : y > 3}

It is easy to informally argue that if x = 5 then then the assignment y := x+1 leaves one in a state where y > 3.
To be able to prove this systematically, we need to be able to compute wp(“y := x+ 1”,y > 3), which answers

the question of how to describe all states such that executing y := x+1 leaves us in a state where y > 3 holds. More
importantly, we need to expose a systematic way of taking an arbitrary postcondition R, and transforming it into the
weakest precondition for an arbitrary assignment.

Going back to our example, notice that after the assignment the predicate R : y > 3 holds. The expression x+ 1
was just assigned to y. Thus, only if (x+1)> 3 before the assignment will the assignment leave the program in a state
where y > 3.

This example leads us to the following definitions:

• The predicate valid(E) that returns TRUE if and only if the expression E is a valid expression; and

• The predicate Rx
(E) that equals the predicate R with all free occurrences of variable x replaced by the expression

(E). A free occurrence of a variable in a predicate is any occurrence of that variable that is not a variable for
a quantifier. In other words, a free occurrence of a variable in a predicate is any occurrence of that variable
that is not a bound (dummy) variable for a quantifier. The parentheses make sure that the order of operations is
properly preserved.

With this, the weakest precondition for assignment of the expression E to a variable x is given by

wp(“x := E”,R) = valid(E)∧Rx
(E).

Thus, in our example,

wp(“y := x+1︸ ︷︷ ︸
y := E

”,y > 3︸ ︷︷ ︸
R

) = valid(x+1︸︷︷︸
E

)∧ ((x+1)> 3)︸ ︷︷ ︸
Ry
(E)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/2
https://www.youtube.com/watch?v=G_xg6YbJc2E
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://www.youtube.com/watch?v=gc7X2qQObVc

2.3. Basic Commands 55

= T ∧ (x > 2)
= (x > 2).

Often, we will skip including valid(E) when E is obviously a valid expression.
For the exercises in this section, let us revisit the example from the launch and prove the various assignments

correct:

Example 2.2 Prove the following code segment correct:{
Q : 0≤ n

}
S : s := 0{

R : s = 0∧0≤ n
}

Proof: We need to prove that Q⇒ wp(“S”,R):

Q⇒ wp(“S”,R)

⇔< Instantiate S and R >

Q⇒ wp(“s := 0”,s = 0∧0≤ n)

⇔< Definition of wp(:=) >

Q⇒ (s = 0∧0≤ n)s
(0)

⇔< Instantiate Q; definition of Rs
(E) >

(0≤ n)⇒ (0 = 0∧0≤ n)

⇔< identity; commutativity; ∧-simplification;⇒-simplification >

T

where we skip valid(E) since 0 is obviously a valid expression.

In our answers, we wait as long as possible with instantiating Q, to save ourselves from having to repeatedly
write 0 ≤ n in each step. This can save you a lot of time, effort, and opportunities for accidently introducing a
“typo”.

Another way of organizing the thought process and proof for the last example is to insert wp(“S”,R) where it
should hold in the code segment:{

Q : 0≤ n
}

{
wp(“S”,R) : (0 = 0∧0≤ n)

}
S : s := 0{

R : s = 0∧0≤ n
}

from which we then conclude that Q⇒ (0 = 0∧ 0 ≤ n) must be shown to be TRUE since Q describes what initially
must be TRUE and wp(“S”,R) : (0 = 0∧0≤ n) describes what must be TRUE if command S is to leave the variables
in a state where R is TRUE.

56 Week 2. Proving Programs Correct

Homework 2.3.3.1 Prove the following code segment correct:{
Q : s = 0∧0≤ n

}
S : k := 0{

R : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n
}

Answer We need to prove that Q⇒ wp(“S”,R):

Q⇒ wp(“S”,R)

⇔< instantiate S and R >

Q⇒ wp(“k := 0”,s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n)

⇔< definition of wp(:=) >

Q⇒ (s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n)k
(0)

⇔< definition of Rk
(E) >

Q⇒ (s = (∑i | 0≤ i < 0 : b(i))∧0≤ 0≤ n)

⇔< instantiate Q; sum over empty range; algebra >

(s = 0∧0≤ n)⇒ (s = 0∧0≤ n)

⇔<⇒-simplification >

T

where we skip valid(E) since it is obviously a valid expression.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 2.3.3.2 Prove the following code segment correct:{
Q : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n

}
S : s := s+b(k){

R : s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n
}

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://www.youtube.com/watch?v=47WedJuzExI
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/3
https://www.youtube.com/watch?v=mELjQqUUpTA

2.3. Basic Commands 57

Now, consider the following problem:

wp(“i := 0”,(∀i|0≤ i < 5 : b(i) = 0))

A naive evaluation would yield

(∀i|0≤ i < 5 : b(i) = 0)i
(0) = (∀0|0≤ 0 < 5 : b(0) = 0)

which is obviously nonsense. The problem here is that in the predicate variabe i is a “bound variable” (dummy
variable) of the quantifier. Since it is a bound variable, it can be replaced by any other variable that does not occur in
the expression. If one replaces it with, for example, j, then

wp(“i := 0”,(∀i | 0≤ i < 5 : b(i) = 0)) = (∀ j | 0≤ j < 5 : b(j) = 0)i
(0)

= (∀ j | 0≤ j < 5 : b(j) = 0),

which does makes sense. The point: If a variable that is bound to a quantification in R appears in the assignment, then
the bound variable should be replaced with something that does not appear in the assignment before performing the
textual substitution.

2.3.4 Composition * to edX

* Watch Video on edX
* Watch Video on YouTube

Obviously, a program that consists of a single command, S, is not a very interesting program, especially since the
only commands we have introduced so far are skip, abort, and simple assignment. We will want to compose multiple
commands.

Consider the program that consists of two arbitrary commands

S0
S1

which we can also write more compactly as S0;S1, using the semi-colon to separate the commands being composed.
We would like to determine

wp(“S0;S1”,R).

Let us think about this, working backwards. The states from which executing S1 leaves one in a state where R is TRUE
is given by wp(“S1”,R). Thus, after executing S0 one must be in a state where wp(“S1”,R) is TRUE:

{Q}
S0
{wp(“S1”,R)}
S1
{R}

The predicate that describes the states from which executing S0 leaves one in a state where wp(“S1”,R) is TRUE is
described by wp(“S0”,wp(“S1”,R)). In other words, for the composed command S0;S1 to complete (in a finite amount
of time) in a state where R is TRUE, one must start in a state, P, that implies that wp(“S0”,wp(“S1”,R)) is TRUE:

{Q}
{wp(“S0”,wp(“S1”,R))}
S0
{wp(“S1”,R)}
S1
{R}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/4
https://www.youtube.com/watch?v=6XEpDVpre1s

58 Week 2. Proving Programs Correct

We conclude that

wp(“S0;S1”,R) = wp(“S0”,wp(“S1”,R)).

Obviously, this generalizes to composition of n commands:

wp(“S0;S1; · · · ;Sn−1”,R) = wp(“S0”,wp(“S1; · · · ;Sn−1”,R))
...

...
= wp(“S0”,wp(“S1”,wp(· · · ,wp(“Sn−1”,R) · · ·))).

Homework 2.3.4.1 Compute

1. wp(“i := i−1”, i≥ 0)

2. wp(“i := i+1”, i = j)

3. wp(“i := i+1; j := j+ i”, i = j)

4. wp(“i := 2i+1; j := j+ i”, i = j)

5. wp(“ j := j+ i; i := 2i+1”, i = j)

6. wp(“t := i; i := j; j := t”, i = î∧ j = ĵ)

7. wp(“i := 0;s := 0”,0≤ i < n∧ s = (∑ j|0≤ j < i : b(j))).

8. wp(“s := s+b(i); i := i+1”,0≤ i≤ n∧ s = (∑ j|0≤ j < i : b(j)))

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.3.4.2 As part of the launch, you informally argued the correctness of the code segment{
Q : 0≤ n

}
S0 : s := 0

S1 : k := 0{
R : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n)

}
where array b has size n with 0≤ n. Prove this code segment correct. (In the “Wrap Up” you find another exercise
related to the correctness of the program in the launch.)

* SEE ANSWER
* DO EXERCISE ON edX

In our assertions, we will often use ̂ to indicate a variable that is introduced to denote the “original contents”
of a variable without the ̂ . For example, in the below homework x̂ and ŷ are used to denote the original values
of variables x and y.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/

2.3. Basic Commands 59

Homework 2.3.4.3 Prove the following code segment, which swaps the values of variables x and y, correct.{
Q : (x = x̂)∧ (y = ŷ)

}
S0 : t := x

S1 : x := y

S2 : y := t{
R : (x = ŷ)∧ (y = x̂)

}
* SEE ANSWER

* DO EXERCISE ON edX

You may ask yourself “But how do I know if a code segment is not correct?”
Let’s look at the above example, but with the incorrect implementation:{

Q : (x = x̂)∧ (y = ŷ)
}

S0 : y := x

S1 : x := y{
R : (x = ŷ)∧ (y = x̂)

}
In this case,

wp(“S0;S1”,R) = wp(“S0”,wp(“x := y”,(x = ŷ)∧ (y = x̂)))

= wp(“y := x”,(y = ŷ)∧ (y = x̂))

= (x = ŷ)∧ (x = x̂)

and (x = x̂)∧ (y = ŷ) does not, in general, imply (x = ŷ)∧ (x = x̂)). In other words, something is wrong!

2.3.5 Simultaneous assignment * to edX

* Watch Video on edX
* Watch Video on YouTube

The assignment statement discussed in the last unit assigns an expression to a single variable. It is often convenient
to instead simultaneously assign multiple expressions to multiple, distinct variables as in

x,y,z := E0,E1,E2,

where x,y,z are three distinct variables and E0, E1, and E2 are distinct expressions. For arbitrary postcondition R, the
weakest precondition of this command is defined by

wp(“x,y,z := E0,E1,E2”,R) = Rx,y,z
(E0),(E1),(E2)

,

where Rx,y,z
(E0),(E1),(E2)

denotes simultaneous substitution of (E0) for every free occurence of x, (E1) for every free
occurrence of y, and (E2) for every free occurence of z.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/5
https://www.youtube.com/watch?v=0_9pIVvVmTI

60 Week 2. Proving Programs Correct

Homework 2.3.5.1 Evaluate

1. wp(“i := i+1; j := 2i”,2i = j)

2. wp(“ j := 2i; i := i+1”,2i = j)

3. wp(“i, j := i+1,2i”,2i = j)

* SEE ANSWER
* DO EXERCISE ON edX

One reason for using simultaneous assignment is that it simplifies (shortens) the proof, as is illustrated in the
following homework that achieves the same computation as was encountered in Homework 2.3.4.3:

Homework 2.3.5.2 Prove the following code segment correct. It swaps the values of variables x and y.

{Q : (x = x̂)∧ (y = ŷ)}
S : x,y := y,x
{R : (x = ŷ)∧ (y = x̂)}

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 2.3.5.3 Evaluate

1. wp(“i := 2i+ j; j := i+2 j+4”, i = j)

2. wp(“ j := i+2 j+4; i := 2i+ j”, i = j)

3. wp(“i, j := 2i+ j, i+2 j+4”, i = j)

* SEE ANSWER
* DO EXERCISE ON edX

2.3.6 Assignment to an array element * to edX

* Watch Video on edX
* Watch Video on YouTube

Assignment to an array element is a bit more complicated. In order to define the weakest precondition of an
assignment like b(i) := E , where E is an expression, we need to introduce a new notation

(b; i : E)

which equals a copy of array b, but with the ith entry set to the result of evaluating expression E . With this new
notation/function, the assignment

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/5
https://www.youtube.com/watch?v=AHUX_sXh9dc
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/6
https://www.youtube.com/watch?v=aGmaovzPCvo

2.3. Basic Commands 61

b(i) := E

can be thought of as the reassignment of the entire array

b := (b; i : E)

where (b; i : E) denotes the array b with the contents of only the ith element replaced with the value of expression E .
(There are examples in the video for this unit.) This allows us to define

wp(“b(i) = E”,R) = wp(“b = (b; i : E)”,R) = Rb
(b;i:E)

much like assignment to a simple variable. Now, strictly speaking, it needs to be also asserted that i is in the correct
range and that E is a valid expression:

wp(“b(i) = E”,R) = ((0≤ i < n)∧valid(E)∧Rb
(b;i;e)).

Often, we will implicitly assume the fact that i is in the range of the array and that E is a valid expression.
Let us check whether this has the desired effect by considering the following code segment that starts with all

elements of array b equaling the corresponding elements of array b̂ and then assigns E to b(i), finishing with the
assertion that all entries in b equal those in b̂, except for the ith one, which equals E . In other words, we check
whether the following Hoare triple holds:

{Q : 0≤ i < n∧ (∀k | 0≤ k < n : b(k) = b̂(k))}
b(i) := E
{R : 0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧b(i) = E}

Q⇒ wp(“b(i) := E”,R)

⇔< equivalent definition of := >

Q⇒ wp(“b := (b; i : E)”,R)

⇔< definition of weakest precondition of := >

Q⇒ Rb
(b;i:E)

⇔< instantiate R >

Q⇒ (0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧b(i) = E)b
(b;i:E)

⇔< definition of Rx
(E) >

Q⇒ (0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : (b; i : E)(k) = b̂(k))∧ (b; i : E)(i) = E)

⇔< definition of (b; i : E) >

Q⇒ (0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧E = E)

⇔< identity >

Q⇒ (0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧T)

⇔< instantiate Q >

(0≤ i < n∧ (∀k | 0≤ k < n : b(k) = b̂(k)))

⇒ (0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧T)

⇔< split range; ∧-simplification >

(0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))∧b(i) = b̂(i))

⇒ 0≤ i < n∧ (∀k | 0≤ k < n∧ k 6= i : b(k) = b̂(k))

⇔< weakening/strengthening >

T

62 Week 2. Proving Programs Correct

In other words, the Hoare triple holds and the assignment to an array operates as desired.

Notice that we aren’t consistent about using i versus k for the “bound variable” in a quantifier. This may cause
some confusion. On the other hand, this will happen in practice, so you might as well get used to it.

If i is not in the range of any quantifier in predicate R, then

wp(“b(i) = E”,R) = Rb(i)
(E)

by which we mean that (E) can simply be substituted in for each occurrence of b(i).

Homework 2.3.6.1 Prove the correctness of the following code segment. It might be part of a loop that scales the
elements of array b by scalar α 6= 0. The array b̂ is introduced to refer to the original contents of b and should not
be used in actual computation. You may skip checking if the expression being assigned is valid (since they clearly
are).{

Q : (∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k < n)
}

S : b(k) := α×b(k){
R : (∀i | 0≤ i < k+1 : b(i) = α× b̂(i))∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

}
* SEE ANSWER

* DO EXERCISE ON edX

Like for assignment to simple variables, one can perform simultaneous assignments to array elements. Like for
simple variables, the array elements to which we assign with a simultaneous assignment should be distinct.

Homework 2.3.6.2 Consider the following code segment that swaps the contents of b(i) and b(j).{
Q : (∀k | 0≤ k < n : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n)∧ i 6= j

}
b(i),b(j) := b(j),b(i) {R : (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n)}


Prove it correct.

* SEE ANSWER
* DO EXERCISE ON edX

In the above examples, the code would be correct even if i = j. Still, it is better to handle the case where i = j
separately in a program, to avoid inadvertent errors.

In Weeks 4-6 we will see many instances of simultaneous assignment to one and two dimensional arrays. You will
find out that we will always use the splitting of the range to isolate those elements that are being updated, so that we
never need the notation (b; i : E).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/15ea51b3919d47b7afa1b338c8dd28d5/

2.4. The If Command 63

2.4 The If Command

2.4.1 Specification * to edX

* Watch Video on edX
* Watch Video on YouTube

We are now ready to discuss the if command. It takes the following form:

if
G0→ S0
G1→ S1

...
Gk−1→ Sk−1

fi

Here

• is a separator to make the statement easier to parse.

• Each Gi→ Si should be interpreted as “if Gi then execute Si and jump to immediately after the fi”. The predicate
Gi is the guard for command Si and Gi→ Si a guarded command.

• When the if command is reached, it must be the case that at least one of the guards evaluates to TRUE.

• If more than one guard evaluates to true, the command associated with exactly one of these is executed. Which
one is not prescribed.

This last bullet means that our programs can be nondeterministic. That is, two guards may evaluate to TRUE and it
may not be predetermined which of the guarded commands is therefore executed. Regardless of the command that is
chosen, R must be satisfied upon completion by a correct if command.

2.4.2 wp(“if”,R) * to edX

* Watch Video on edX
* Watch Video on YouTube

Let us annotate this code segment some more, on our way to motivating how wp(“if”,R) is defined:

{wp(“if”,R)}
if

G0→{wp(“S0”,R)}S0{R}
G1→{wp(“S1”,R)}S1{R}
...

Gk−1→{wp(“Sk−1”,R)}Sk−1{R}
fi
{R}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/1
https://www.youtube.com/watch?v=NYjBIpOYSfM
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/2
https://www.youtube.com/watch?v=0syRTgwHVAY

64 Week 2. Proving Programs Correct

What does this mean? By examining this annotated code we can justify the following definition of the weakest
precondition for this generic if command:

wp(“if”,R) =

at least one guard must
evaluate to TRUE︷ ︸︸ ︷
(G0∨G1∨·· ·∨Gk−1) ∧

if Gi then Si may execute, in which case it
must start in a state that guarantees comple-
tion in a state where R holds.︷ ︸︸ ︷

(G0⇒ wp(“S0”,R))

∧ (G1⇒ wp(“S1”,R))
...

...

∧ (Gk−1⇒ wp(“Sk−1”,R)).

(2.1)

Here we say “if Gi then Si may execute,” because in the case where multiple guards are TRUE, only one command Si
is executed. Since we don’t know which one, they all must have the property that they leave the program in a state
where R is TRUE. Implicit in this definition is that each of the guards Gi must be well-defined, since otherwise the if
statement will abort. Equivalently, we can state (2.3) as

wp(“if”,R) =

at least one guard must
evaluate to TRUE︷ ︸︸ ︷

(∃i|0≤ i < k : Gi) ∧

if Gi then Si may execute, in which case it
must start in a state that guarantees comple-
tion in a state where R holds.︷ ︸︸ ︷

(∀i|0≤ i < k : Gi⇒ wp(“Si”,R)).

(2.2)

Example 2.3 Consider the following code segment.

if
x≥ 0 → z := x

x≤ 0 → z :=−x
fi

Prove that regardless of the original value of scalar x, it sets z to the absolute value of x.

Notice that this program is not deterministic in the sense that if x = 0 either z := x or z :=−x may be executed.

Proof: We must prove that

T ⇒ wp(“if”,z = abs(x))

2.4. The If Command 65

Notice that proving that T ⇒ p is TRUE is equivalent to proving that p is TRUE.

wp(“if”,z = abs(x))

⇔< Definition of if >

(x≥ 0∨ x≤ 0)︸ ︷︷ ︸
G0∨G1

∧ (x≥ 0⇒ wp(“z := x”,z = abs(x))︸ ︷︷ ︸
G0⇒ wp(S0,R)

∧ (x≤ 0⇒ wp(“z :=−x”,z = abs(x))︸ ︷︷ ︸
G1⇒ wp(“S1”,R)

⇔< definition of := >

(x≥ 0∨ x≤ 0)∧ (x≥ 0⇒ x = abs(x))∧ (x≤ 0⇒−x = abs(x))

⇔< algebra >

T ∧T ∧T

⇔< ∧ simplification ×2 >

T

Homework 2.4.2.1 In the above example, we use an intuitive understanding of the abs() function. We can refine
this by recognizing that z = abs(x) is equivalent to (x ≥ 0∧ z = x)∨ (x ≤ 0∧ z = −x) so that the code segment
becomes{

T
}

if

x≥ 0→ z := x

x≤ 0→ z :=−x

fi{
(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}
Prove this code segment correct.

* SEE ANSWER
* DO EXERCISE ON edX

2.4.3 The If Theorem * to edX

* Watch Video on edX
* Watch Video on YouTube

Let us now revisit the annotated if command

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/3
https://www.youtube.com/watch?v=s5Rg67dj0lM

66 Week 2. Proving Programs Correct

{Q}
if

G0→{Q∧G0}S0{R}
G1→{Q∧G1}S1{R}
...

Gk−1→{Q∧Gk−1}Sk−1{R}
fi
{R}

Assuming all guards are well-defined, we notice that we can break up the proof of correctness into parts:

• We know that Q must imply that at least one of the guards is TRUE:

Q⇒ (G0∨G1∨·· ·∨Gk−1).

• For each of the commands Si we must establish that

{Q∧Gi}Si{R}

holds or, equivalently, that
(Q∧Gi)⇒ wp(Si,R).

These observations can be stated as a theorem:

Theorem 2.4 (If Theorem) The annotated code segment

{Q}
if

G0→ S0
...
GK−1→ SK−1

fi
{Q}

is correct if and only if

• Q⇒ (∃i|0≤ i < K : Gi) and

• (∀i|0≤ i < K : Q∧Gi⇒ wp(Si,R))

In other words, under these conditions Q⇒ wp(“if”,R).

Recall from Unit 1.3.2 that in Homeworks 1.3.2.1 and 1.3.2.2 we proved

1. (p⇒ (q∧ r))⇔ ((p⇒ q)∧ (p⇒ r)).

2. (p⇒ (q⇒ r))⇔ (p∧q⇒ r).

Proof: (If Theorem) The proof uses the above insights:

Q⇒ wp(“if”,R)

⇔< definition of wp(“if”, R) >

Q⇒ (G0∨·· ·∨GK−1)∧ (G0⇒ wp(S0,R))∧·· ·∧ (GK−1⇒ wp(SK−1,R))

⇔< p⇒ q∧ r⇔ (p⇒ q)∧ (p⇒ r), several times >

(Q⇒ G0∨·· ·∨GK−1)∧ (Q⇒ (G0⇒ wp(S0,R)))∧·· ·∧ (Q⇒ (GK−1⇒ wp(SK−1,R)))

⇔< (p⇒ (q⇒ r))⇔ ((p∧q)⇒ r), several times >

(Q⇒ G0∨·· ·∨GK−1)∧ (Q∧G0⇒ wp(S0,R))∧·· ·∧ (Q∧GK−1⇒ wp(SK−1,R))

2.4. The If Command 67

The proof is completed by noting that to prove a conjunction to be TRUE, all you have to do is to prove each sub-
predicate in the conjunction to be TRUE.

The If Theorem allows us to break Q⇒ wp(“if”,R) into smaller, more manageable, pieces. Let us demonstrate
this by revisiting Homework 2.4.2.1:

{
T

}
if

x≥ 0→ z := x

x≤ 0→ z :=−x

fi{
(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}
To prove the correctness of this code segment, we employ the If Theorem and check

• Q⇒ G0∨·· ·∨Gk−1:

Q⇒ G0∨G1

⇔< instantiate >

T ⇒ x≥ 0∨ x≤ 0

⇔< algebra;⇒-simplification >

T

• Q∧G0⇒ wp(S0,R):

Q∧G0⇒ wp(S0,R)

⇔< instantiate >

T ∧ x≥ 0⇒ wp(“z := x”,(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x))

⇔< ∧-simplification, definition of := >

x≥ 0⇒ (x≥ 0∧ x = x)∨ (x≤ 0∧ x =−x)

⇔< algebra ×2 >

x≥ 0⇒ (x≥ 0∧T)∨ (x≤ 0∧ x = 0)

⇔< ∧-simplification; algebra >

x≥ 0⇒ x≥ 0∨ x = 0

⇔< weakening/strengthening >

T

• Q∧G1⇒ wp(“S1”,R): See Homework 2.4.3.1.

68 Week 2. Proving Programs Correct

Homework 2.4.3.1 Complete the proof of the correctness of{
T

}
if

x≥ 0→ z := x

x≤ 0→ z :=−x

fi{
(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}
from the last example.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 2.4.3.2 The following code segment sets m to the maximum of x and y. Use the If Theorem to prove
it correct.

{Q : T}
if

x≥ y → m := x

x≤ y → m := y
fi
{R : (x≥ y∧m = x)∨ (x≤ y∧m = y)}

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.4.3.3 The following code segment might be part of a loop that computes m, the minimum value in
array b:

{Q : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n}
if

b(i)≥ m → skip

b(i)≤ m → m := b(i)
fi
i := i+1
{R : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i≤ n}

Prove it correct.
* SEE ANSWER

* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/3
https://www.youtube.com/watch?v=lkFIRXkBhFE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/

2.4. The If Command 69

2.4.4 A worksheet for proving an if command correct * to edX

* Watch Video on edX
* Watch Video on YouTube

Once again, let’s revisit

{Q : T}
if

x≥ 0 → z := x

x≤ 0 → z :=−x
fi
{R : z = abs(x)}

Provided Q⇒ (x ≥ 0)∨ (x ≤ 0), we can view proving this correct as annotating the program: Starting with what we
know, given in Figure 2.2, we can fill in Q∧G0 and Q∧G1 , R , and wp(“S0”,R) and wp(“S1”,R) , yielding
Figure 2.3. This is a matter of inserting known predicates and evaluating the wp operator. What is left now is to check
whether

• Q⇒ G0∨G1 : ;

• Q∧G0 ⇒ wp(“S0”,R) ; and

• Q∧G1 ⇒ wp(“S1”,R) .

which, after proving these parts either by examination or via formal proof, leaves us with the completed “worksheet”
in Figure 2.4.

What this “worksheet” does is on the one hand illustrate more visually how the if Theorem relates to systematic
reasoning about the correctness of an if command and on the other hand structures this reasoning.

2.4.5 The if-then-else command * to edX

In practice, languages usually support a variant of the if command that we will call the if-then-else command, specified
by

if G
S0

else
S1

fi

It is equivalent to

if
G→ S0
¬G→ S1

fi

The important observation is that then automatically Q⇒G∨¬G since G∨¬G simplifies to TRUE by law of excluded
middle. As a result, that part of the If Theorem needs not be checked for the if-then-else command.

The worksheet for the if-then-else command is given in Figure 2.5.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/4
https://www.youtube.com/watch?v=EJ35LEBNO0A
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/5

70 Week 2. Proving Programs Correct

{
Q :

}
if

{Q⇒ G0∨G1 : }

G0→

{Q∧G0 : }{
Q∧G0 ⇒ wp(“S0”,R) ?

}
{wp(“S0”,R) : }

S0 :

{R : }

G1→

{Q∧G1 : }{
Q∧G1 ⇒ wp(“S1”,R) ?

}
{wp(“S1”,R) : }

S1 :

{R : }

fi{
R :

}
Figure 2.2: Recipe for checking the correctness of the if command.

2.4. The If Command 71

{
Q : T

}
if

{Q⇒ G0∨G1 : }

x≥ 0→

{Q∧G0 : T ∧ x≥ 0 }{
Q∧G0 ⇒ wp(“S0”,R) :

}
{wp(“S0”,R) : x = abs(x) }

S0 : z := x

{R : z = abs(x) }

x≤ 0→

{Q∧G1 : T ∧ x≤ 0 }{
Q∧G1 ⇒ wp(“S1”,R) :

}
{wp(“S1”,R) :−x = abs(x) }

S1 : z :=−x

{R : z = abs(x) }

fi{
R : z = abs(x)

}
Figure 2.3: Recipe for checking the correctness of the if command after filling in various parts.

72 Week 2. Proving Programs Correct

{
Q : T

}
if

{Q⇒ G0∨G1 : }

x≥ 0→

{Q∧G0 : T ∧ x≥ 0 }{
Q∧G0 ⇒ wp(“S0”,R) :

}
{wp(“S0”,R) : x = abs(x) }

S0 : z := x

{R : z = abs(x) }

x≤ 0→

{Q∧G1 : T ∧ x≤ 0 }{
Q∧G1 ⇒ wp(“S1”,R) :

}
{wp(“S1”,R) :−x = abs(x) }

S1 : z :=−x

{R : z = abs(x) }

fi{
R : z = abs(x)

}
Figure 2.4: Completed worksheet for checking the correctness of the if command.

2.4. The If Command 73

{
Q :

}
if G{

G∧Q :
}

{G∧Q⇒ wp(“S0”,R)? }{
wp(“S0”,R) :

}
S0 :{

R :
}

else{
¬G∧Q :

}
{¬G∧Q⇒ wp(“S1”,R)? }{

wp(“S1”,R) :
}

S1 :{
R :

}
fi R :


Figure 2.5: If-then-else worksheet.

74 Week 2. Proving Programs Correct

Homework 2.4.5.1 The following code segment sets m to the maximum of x and y with an if-then-else command.
Use Figure 2.5 to prove it correct.

{Q : T}
if x≥ y
m := x

else
m := y

fi
{R : (x≥ y∧m = x)∨ (¬(x≥ y)∧m = y)}

* SEE ANSWER
* DO EXERCISE ON edX

2.5 The While Command

2.5.1 Specification * to edX

* Watch Video on edX
* Watch Video on YouTube

In the launch for Week 2, we introduced the concept of a while command (loop):

while G do
S

endwhile

and discussed various annotations for an example. The loop continues to iterate until G evaluates to FALSE, at which
point control proceeds to the first statement after endwhile.

2.5.2 Correctness * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider again the example from the launch for this week, given in Figure 2.6. The predicate highlighted in yellow,
known as the loop invariant for this program, is fundamental to the proof of correctness of the loop, as we will now
see.

Inspired by the example, let us annotate the generic while loop:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/ff19289e91f7426aa6b718406de5c2e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/1
https://www.youtube.com/watch?v=1v2Un7qbi9U
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/2
https://www.youtube.com/watch?v=Uo6nYs7JNZ0

2.5. The While Command 75

{
Q

}
{

Pinv

}
while G do

{Pinv∧G }

S

{Pinv }

endwhile{
Pinv∧¬G

}
{

R
}

in preparation for a theorem regarding its correctness. Here Pinv represents the loop invariant for the loop. We notice
the following:

• Pinv holds before the loop.

• When the loop is entered the first time, no computation is performed between the assertion Pinv and the assertion
Pinv∧G at the top of the loop body. Thus, Pinv is true at the top of the loop body as well.

• If {Pinv ∧G}S{Pinv} holds, then we know that Pinv holds at the bottom of the loop body at the end of the first
iteration.

• We conclude that Pinv∧G is TRUE before the executions of the loop body and Pinv is true after execution of the
loop body for every iteration.

• If the loop guard evaluate to FALSE, then the loop stops executing, leaving the program in a state where Pinv is
still TRUE and G evaluates to FALSE, right after the loop.

• Now, if Pinv∧¬G implies R, then we can conclude that {Q}while{R} is TRUE, meaning that the loop correctly
computes R if entered in a state where Q is TRUE provided it can be shown that the loop terminates in a finite
amount of time.

The reader will notice that this is merely an application of the Principle of Mathematical Induction:

• The base case is that Pinv holds before the loop starts.

• The inductive step is the assumption that Pinv ∧G holds at the top of the loop body (for the kth iteration) and
the proof that shows Pinv holds at the bottom of the loop body (and hence at the top of the loop body in the next
iteration).

• By the Principle of Mathematical Induction, it holds at the top and the bottom of the loop for every iteration.

2.5.3 The While Theorem * to edX

* Watch Video on edX
* Watch Video on YouTube

The observations in the last unit motivate the following theorem:

Theorem 2.5 (While Theorem)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://www.youtube.com/watch?v=rNHI2d7RYa4

76 Week 2. Proving Programs Correct

{Q}
{Pinv}
while G do
{Pinv∧G}
S
{Pinv}

endwhile
{Pinv∧¬G}
{R}

Partial correctness:

• Q⇒ Pinv;

• {Pinv∧G}S{Pinv}; and

• Pinv∧¬G⇒ R

Complete correctness, in addition, for some bound function t:

• Pinv∧G⇒ t ≥ 0 and

• {Pinv∧G}t ′ := t;S{t < t ′}

Example 2.6 Prove the program in Figure 2.6 correct.

• Prove that the loop invariant is TRUE before the loop. In other words, show that the initialization α := 0;k := 0
puts the program in a state where Pinv is TRUE. This was established in Homework 2.3.4.2. Here we repeat the
answer to that exercise:

Q⇒ wp(“SI”,Pinv)

⇔< instantiate SI and Pinv >

Q⇒ wp(“k := 0;s := 0”,s = (∑i | 0≤ i < k : b(i))∧0≤ k ≤ n)

⇔< composition; definition of :=, twice >

Q⇒ 0 = (∑i | 0≤ i < 0 : b(i))∧0≤ 0≤ n)

⇔< sum over empty range; algebra >

Q⇒ (0 = 0∧0≤ n)

⇔< instantiate Q; algebra; ∧-simplification >

0≤ n⇒ 0≤ n

⇔<⇒-simplification >

T

• Prove that if the loop invariant holds at the beginning of an iteration (and hence the guard holds), then it holds
again at the end of that iteration: Pinv ∧G⇒ wp(“S”,Pinv). This was shown in Homework 2.7.1.1. Here we
repeat:

2.5. The While Command 77

Pinv∧G⇒ wp(“S”;Pinv)

⇔< instantiate >

(Pinv∧G)⇒ wp(“s := s+b(k);k := k+1”,s = (∑i | 0≤ i < k : b(i))

∧0≤ k ≤ n)

⇔< composition; definition of := >

(Pinv∧G)⇒ wp(“s := s+b(k)”,s = (∑i | 0≤ i < k+1 : b(i))

∧0≤ k+1≤ n)

⇔< definition of := >

(Pinv∧G)⇒ s+b(k) = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)

⇔< instantiate; algebra; split range >

(s = (∑k|0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n)

⇒ (s+b(k) = (∑i | 0≤ i < k : b(i))+b(k)∧0≤ k+1≤ n)

⇔< algebra >

(s = (∑i | 0≤ i < k : b(i))∧0≤ k < n)

⇒ (s = (∑i|0≤ i < k : b(i))∧−1≤ k < n)

⇔< algebra >

(s = (∑ j|1≤ j < i : b(j))∧0≤ k < n)

⇒ (s = (∑ j | 0≤ i < k : b(i))∧ (−1 = k∨0≤ k < n))

⇔< ∧-distributivity; weakening/strengthening >

T

• Prove that the fact that after the last iteration the loop invariant holds and the loop guard is FALSE implies that
the desired result has been computed: (Pinv∧¬(G))⇒ R

Pinv∧¬G⇒ R

⇔< instantiate >

(s = (∑i | 0≤ i < k : b(i))∧0≤ k ≤ n∧¬(k < n))⇒ R)

⇔< algebra >

(s = (∑i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k ≥ n)⇒ R)

⇔< algebra; instantiate R >

(s = (∑i | 0≤ i < k : b(i))∧0≤ k = n)⇒ (s = (∑i | 0≤ i < n : b(i)))

⇔< substitute k = n >

(s = (∑i | 0≤ i < n : b(i))∧0≤ k = n)⇒ (s = (∑i | 0≤ i < n : b(i))

⇔< weakening/strengthening >

T

78 Week 2. Proving Programs Correct

Homework 2.5.3.1 Prove the partial correctness of the following code segment that adds the elements in a(0 :
n−1) to b(0 : n−1) storing the result in c(0 : n−1) (assuming the sizes of all three arrays equal at least n):{

{Q : 0≤ n}
}

SI : k := 0

while k < n do

S : c(k) := a(k)+b(k);k := k+1

endwhile{
(R : ∀i | 0≤ i < n : c(i) = a(i)+b(i))

}
Use loop invariant Pinv : (∀i | 0≤ i < k : c(i) = a(i)+b(i))∧0≤ k ≤ n.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

2.5.4 Total correctness * to edX

* Watch Video on edX
* Watch Video on YouTube

Notice that in the example in the last unit we proved that if the loop completes, then we can conclude that it
computes the correct value. But how do we know it completes? For the example that computes the sum of the
elements of b we can informally reason that

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://www.youtube.com/watch?v=CgL8_sFc3ps
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://www.youtube.com/watch?v=6QTNRbILUzU
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://www.youtube.com/watch?v=VeU9JwPGblc
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/3
https://www.youtube.com/watch?v=4QH7d9c590Y
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://www.youtube.com/watch?v=WGXKmx1X3c4

2.5. The While Command 79

• Initially k = 0;

• Each time the loop body is executed, k is incremented; and

• The loop only continues to execute as long as k < n.

Hence, we can conclude that eventually the loop must terminate.
Let us formalize this. We define t, a function of some or all the variables encountered in the loop, to be the bound

function for the loop if t satisfies

• Pinv∧G⇒ (t ≥ 0); and

• {Pinv∧G} t ′ := t;S {t < t ′}.

The first condition says that the bound function is bounded below by zero. The second condition means that each time
through the loop t decreases in value.

Bounding t ≥ 0 is merely a choice. The lower bound could be any finite value. Strictly speaking t < t ′ is not
enough: t must decrease every time through the iteration by at least a positive constant, since otherwise it could
converge to zero without ever becoming less than zero.
The point is that the two conditions together force the number of iterations that are executed to be finite, which
means the loop completes in a finite amount of time. Why? The bound function can’t be bounded below and
decreased infinitely often by at least a positive constant. Thus, the loop must terminate.

The concept of the bound function and how to find it seems to give the novice trouble. Here is what you usually
do:

• Identify a variable that is systematically only incremented or only decremented every time an iteration of the
loop is executed. Often, this is the loop index.

• Create a function of that variable that has the property that

– The value of that function decreases every time an iteration of the loop is executed.

– The value remains nonnegative as long as the loop continues to execute.

In Example 2.6, we notice that k increases every time an iteration of the loop is executed. We also notice that it is
bounded by n because the loop guard is k < n. So, we can take the function t to equal (n− k). It decreases every time
an iteration of the loop is executed and it is bounded below: Then

• Pinv∧G⇒ (t ≥ 0):

Pinv∧ (k < n)⇒ ((n− k)≥ 0)

⇔< algebra >

Pinv∧ (k < n)⇒ (k ≤ n)

⇔< algebra >

Pinv∧ (k < n)⇒ ((k < n)∨ (k = n))

⇔< weakening/strengthening >

T

Notice that we chose t = n−k because then the guard G : k < n can be rewritten as n−k > 0 and hence n−k≥ 0.
Alternatively, we could have chosen t = n−k−1 in which case n−k > 0 implies that n−k−1≥ 0 (since n−k
only takes on integer values). Here one could have chosen instead t : 123n−123k+172 is also a bound function.
But there is an obvious benefit to keeping this function simple.

80 Week 2. Proving Programs Correct

• {Pinv∧G}t ′ := t;S{t < t ′}:

{Pinv∧G}t ′ := t;S{t < t ′}
⇔< definition >

(Pinv∧G)⇒ wp(“t ′ := t;S”, t < t ′)

⇔< Instantiate >

(Pinv∧G)⇒ wp(“t ′ := n− k;s = s+b(k);k := k+1”,n− k < t ′)

⇔< definition of := >

(Pinv∧G)⇒ wp(“t ′ := n− k;s = s+b(i)”,n− (k+1)< t ′)

⇔< definition of := >

(Pinv∧G)⇒ wp(“t ′ := n− k”,n− (k+1)< t ′)

⇔< definition of := >

(Pinv∧G)⇒ (n− (k+1)< n− k)

⇔< algebra >

(Pinv∧G⇒ (−1 < 0)

⇔< algebra >

(Pinv∧G)⇒ T

⇔<⇒-simplification >

T

Notice that we never had to instantiate Pinv∧G. This is often the case and can save you a lot of writing.

The discussion so far leads us to the checklist for a while command in Figure 2.7.

Some of you may have noticed that the condition for total correctness regarding bound function t decreasing at
every step is not quite good enough if the amount by which it decreases is not, for example, an integer. The
definition was proposed by people who focus on “discrete” problems.
A better definition of a bound function is t such that {Pinv ∧G} t ′ := t;S {t ′− t ≥ 1}. What this avoids is the
possibility that t ′− t becomes infinitesimally small, in which case the lower bound may never be reached.

2.5. The While Command 81

Homework 2.5.4.1 In Homework 2.5.3.1 you proved the partial correctness of the following code segment that
adds the elements in a(0 : n− 1) to b(0 : n− 1) storing the result in c(0 : n− 1) (assuming the sizes of all three
arrays equal at least n).{

{Q : 0≤ n}
}

SI : k := 0{
{Pinv : (∀i | 0≤ i < k : c(i) = a(i)+b(i))∧0≤ k ≤ n}

}
{
{t : n− k}

}
while k < n do

S : c(k) := a(k)+b(k);k := k+1

endwhile{
(R : ∀i | 0≤ i < n : c(i) = a(i)+b(i))

}
Prove in addition the total correctness of this code segment.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

2.5.5 Don’t Panic * to edX

* Watch Video on edX
* Watch Video on YouTube

As it says in the Hitchhiker’s Guide to the Galaxy:

“... the Hitchhiker’s Guide to the Galaxy itself has outsold the Encyclopedia Galactica because it is slightly
cheaper, and because it has the words ’DON’T PANIC’ in large, friendly letters on the cover.”

What you now start to appreciate is the line from Dijkstra’s * “The Humble Programmer”:

“But one should not first make the program and then prove its correctness, because then the requirement
of providing the proof would only increase the poor programmer’s burden.”

In the next week and subsequent weeks you will find out about the next observation in that essay:

“On the contrary: the programmer should let correctness proof and program grow hand in hand.”

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://www.youtube.com/watch?v=BaBaCiZTzL4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/4
https://www.youtube.com/watch?v=LgGy4tp7DQk
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/3b06a8399f014e369972cd288f9cf494/5
https://www.youtube.com/watch?v=eXKbOCt4Ju4
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

82 Week 2. Proving Programs Correct

We hope that by the end of the course you will find achieving this doable and valuable, motivated by important vector
and matrix computation.

2.6 Enrichment

2.6.1 The do command * to edX

A generization of the while command is the do command which is given by

do
G0→ S0
G1→ S1

...
GK−1→ SK−1

od

Like for the if command, each Gi→ Si is a guarded command, where Si is a candidate for execution if the guard Gi
evaluates to TRUE. If Gi is the only guard that evaluates to TRUE, then Si is executed. If multiple guards evaluate to
TRUE, then exactly one of the corresponding commands is executed. The loop continues to iterate until none of the
guards are true, at which point control proceeds to the first statement after do.

Let us assume that the do loop can be annotated as in Figure 2.8, in preparation for a theorem regarding the
correctness of a do loop. Here Pinv again denotes a loop invariant for the loop. To analyze the correctness of the loop
{Q}do {R} we notice the following:

• Pinv holds before the loop starts (at 2.),

• When the loop is entered the first time, no computation is performed before 3. is reached. Thus, Pinv is true there
too.

• The guarded commands in the loop body are such that regardless of which guard evaluates to TRUE and is
chosen, the execution of the corresponding command leaves the program again in a state where Pinv is TRUE.

• As a result, Pinv is TRUE before the executions of the loop body (at 3.) and after execution of the loop body (at
5.) for every iteration.

• If ever none of the loop guards evaluate to TRUE, then the loop stops executing, leaving the program in a state
where Pinv is still TRUE and G0∨·· ·∨GK−1 evaluates to FALSE, at 6.

• Now, if Pinv implies R, then we can conclude that {Q}do {R} is TRUE, meaning that this code segment is
correct.

Partial correctness

The observations in the last unit motivate the following theorem:

Theorem 2.7 (do Theorem, Partial Correctness)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/1

2.6. Enrichment 83

{Q}
{Pinv}
do

G0→{Pinv∧G0} S0{Pinv}
G1→{Pinv∧G1} S1{Pinv}

...
GK−1→{Pinv∧GK−1} SK−1{Pinv}

od
{Pinv∧¬(G0∨·· ·∨GK−1)}
{R}

If predicate Pinv satisfies

• Q⇒ Pinv;

• Pinv∧Gi⇒ wp(“Si”,Pinv), for i = 0, . . . ,K−1; and

• (Pinv∧¬(G0∨·· ·∨GK−1))⇒ R

then the code segment on the left correctly computes a state where R
is TRUE if the loop terminates.

Total correctness

Notice that in the example in the last unit we proved that if the loop completes, then we can conclude that it computes
the correct value. But how do we know it completes? For this example we can informally reason

• Initially k = 0.

• Each time the loop body is executed, k is incremented.

• The loop only continues to execute as long as k < n.

Hence, eventually the loop must terminate.
Let us formalize this. We define t, a function of some or all the variables encountered in the loop, to be the bound

function for the loop if t satisfies

• Pinv∧ (G0∨·· ·∨GK−1)⇒ (t ≥ 0); and

• {Pinv∧Gi} t ′ := t;Si {t < t ′}, for i = 0, . . . ,K−1.

The first condition says that the bound function is bounded below by zero. The second condition means that each time
through the loop t decreases in value.

The discussion leads us to the checklist for a do loop in Figure 2.9.

2.6.2 Desirable properties of a language * to edX

We keep repeating this, but let’s once again consider

wp(“S”,R)

and its interpretation:

wp(“S”,R) denotes the weakest predicate so that execution of S started in a state that satisfies this predicate
is guaranteed to terminate in a finite amount of time in a state that satisfies R.

Another way of saying this is

wp(“S”,R) denotes the set of states so that if the execution of S is started in any of these states, it is
guaranteed to terminate in a finite amount of time in a state such that R is TRUE.

Try to internalize these interpretations.
We will now reason that for a language with reasonable semantics, commands in that language should obey the

following properties. Afterwards, we will take these as axioms.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/2

84 Week 2. Proving Programs Correct

Law of Excluded Miracle. What if the predicate R is the state described by F (FALSE)? Let’s plug this into the
second interpretation:

wp(“S”,F) denotes the set of states so that if the execution of S is started in any of these states, it is
guaranteed to terminate in a finite amount of time in a state such that FALSE is TRUE.

Now, obviously there is no state that has this property. The predicate that describes “no states” is F (FALSE). We
conclude that

wp(“S”,F) = F

for all reasonably defined commands S. This is known as the Law of Excluded Miracle.

Law of Distributivity of Conjunction. Next, let us consider an arbitrary command S and postconditions Q and R.
Then

wp(“S”,Q)∧wp(“S”,R) = wp(“S”,Q∧R)

Why is this?
First, notice that we use = in the above statement because we think of wp as a function that transforms input to

output, and hence the output of the left-hand side equals the output of the right-hand side. But we can also think of the
left-hand side and the right-hand side as a predicate that describes a set of states, in which case the above becomes

wp(“S”,Q)∧wp(“S”,R)⇔ wp(“S”,Q∧R).

To prove this to be a tautology, we need to show that an arbitrary state in the set described by wp(“S”,Q)∧wp(“S”,R)
is also a state in the set described by wp(“S”,Q∧R), and visa versa.

wp(“S”,Q)∧wp(“S”,R)⇒ wp(“S”,Q∧R): If s satisfies wp(“S”,Q)∧wp(“S”,R) then it satisfies wp(“S”,Q) and
hence it has the property that if S is executed with state s then it will complete (in a finite amount of time) in
a state where Q is true. Similarly, s also satisfies wp(“S”,R) and hence it has the property that if S is executed
with state s then it will complete (in a finite amount of time) in a state where R is true. Thus, s has the property
that if S is executed with state s then it will complete (in a finite amount of time) in a state where Q and R are
true. This shows that s also satisfies wp(“S”,Q∧R).

wp(“S”,Q)∧wp(“S”,R)⇐ wp(“S”,Q∧R): If s satisfies wp(“S”,Q∧R) then it has the property that if S is executed
with state s then it will complete (in a finite amount of time) in a state where Q∧R is true. But that means it
completes (in a finite amount of time) in a state where Q is true and hence s also satisfies wp(“S”,Q). Similarly,
we can argue that it also satisfies wp(“S”,R). We conclude that it satisfies wp(“S”,Q)∧wp(“S”,R).

Law of Monotonicity. The Law of Monotonicity is given by

If Q⇒ R then wp(“S”,Q)⇒ wp(“S”,R).

Here is the way we will reason that a statement S in a reasonable language has this property.

• The definition of wp means the following Hoare triple (annotated code segment) evaluates to TRUE (is correct):

{wp(“S”,Q)}
S
{Q}

• The fact that Q⇒ R means that the following annotated code segment is also correct:

{wp(“S”,Q)}
S
{Q}
{R}

• Hence the Hoare triple

2.6. Enrichment 85

{wp(“S”,Q)}
S
{R}

evaluates to TRUE.

• But a Hoare triple {P}S{R} only evaluates to TRUE if its precondition, P, implies the weakest precondition
wp(“S”,R).

• Hence wp(“S”,Q)⇒ wp(“S”,R).

Law of Distributivity of Disjunction. Finally, we discuss Distributivity of Disjunction

(wp(“S”,Q)∨wp(“S”,R))⇒ wp(“S”,Q∨R)

The following exercise prepares us for the reasoning behind this axiom:

Homework 2.6.2.1 Prove that ((p⇒ r)∧ (q⇒ r))⇔ ((p∨q)⇒ r).
* SEE ANSWER

* DO EXERCISE ON edX

Here is the way we will reason that a statement S in a reasonable language obeys Distributivity of Disjunction:

• The definition of wp means the following Hoare triple (annotated code segment) evaluates to TRUE (is correct):

{wp(“S”,Q)}
S
{Q}

• We know from the Weakening/Strengthening Laws that Q⇒ Q∨R and hence

{wp(“S”,Q)}
S
{Q}
{Q∨R}

• Hence we conclude that the Hoare triple

{wp(“S”,Q)}
S
{Q∨R}

evaluates to T.

• But a Hoare triple only evaluates to TRUE if its precondition implies the weakest precondition.

• Hence,
wp(“S”,Q)⇒ wp(“S”,Q∨R).

• Similarly, we can conclude that
wp(“S”,R)⇒ wp(“S”,Q∨R).

• In other words,
(wp(“S”,Q)⇒ wp(“S”,Q∨R))∧ (wp(“S”,R)⇒ wp(“S”,Q∨R))

• By the last homework, this is equivalent to

(wp(“S”,Q)∨wp(“S”,R)⇒ wp(“S”,Q∨R)).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/

86 Week 2. Proving Programs Correct

Homework 2.6.2.2 Prove that the skip command satisfies the Laws of Excluded Miracle, Distributivity of Con-
junction, Monotonicity, and Distributed Disjunction.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.6.2.3 Prove that the abort command satisfies the Laws of Excluded Miracle, Distributivity of Con-
junction, Monotonicity, and Distributed Disjunction.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.6.2.4 Prove that the composition of commands satisfies the Laws of Excluded Miracle, Distributivity
of Conjunction, Monotonicity, and Distributed Disjunction.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.6.2.5 Prove that the if statement

if
G0→ S0
G1→ S1

fi

satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.
* SEE ANSWER

* DO EXERCISE ON edX

2.6.3 A conversation with Sir Tony Hoare * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/1d835bad224e474ebad422ac21a1957f/3
https://www.youtube.com/watch?v=scyQs9N7BKg

2.7. Wrap Up 87

2.7 Wrap Up

2.7.1 Additional exercises * to edX

Homework 2.7.1.1 Consider an array b of size n with 0≤ n, a scalar variable s, and the code segment{
Q : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k < n)

}
S0 : s := s+b(k)

S1 : k := k+1{
R : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n)

}
which may be part of a program that sums the entries in array b. Prove this code segment correct.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.7.1.2 Consider an array b with n elements (0≤ n), a scalar variable s, and the code segment

{Q : (s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n))}
S : s,k := s+b(k),k+1
{R : (s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k ≤ n))}

This code segment may be part of a program that sums the entries in array b. Prove this code segment correct.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 2.7.1.3 Prove the correctness of the following code segment. It swaps the contents of b(i) and b(j).
You may skip checking if the expressions being assigned are valid (since they clearly are).{

Q : (∀k | 0≤ k < n : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n)
}

t := b(i)

b(i) := b(j)

b(j) := t R : (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n)


* SEE ANSWER

* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/

88 Week 2. Proving Programs Correct

Homework 2.7.1.4 Prove the following code segment correct:

{(∀ j|0≤ j < i : m≥ b(j))}
if

b(i)≤ m → skip

b(i)≥ m → m := b(i)
fi
i := i+1
{(∀ j|0≤ j < i : m≥ b(j))}

* SEE ANSWER
* DO EXERCISE ON edX

Homework 2.7.1.5 The greatest common divisor (gcd) of two positive integers, x and y, is defined to be the largest
integer k that evenly divides both x and y. Let gcd(x,y) be the function that returns this integer. A property of this
function is that if x < y then gcd(x,y−x) = gcd(x,y) and if y < x then gcd(x−y,y) = gcd(x,y). Obviously, if x = y
then x = y = gcd(x,y).
Prove the partial correctness of the following program for computing gcd(x,y), returning the result in updated
variables x and y. (If you feel energetic, prove complete correctness!){

Q: (x = x̂)∧ (y = ŷ)∧ (x̂ > 0)∧ (ŷ > 0)
}

{
Pinv : (gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ)

}
{

t : abs(x+ y)
}

while x 6= y do

if

x < y−→ y := y− x

y < x−→ x := x− y

fi

endwhile{
x = y = gcd(x̂, ŷ)

}
* SEE ANSWER

* DO EXERCISE ON edX

Videos of the answer (9 videos)

Examples * Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=JWFQDvMndV4

2.7. Wrap Up 89

Overview * Watch Video on edX
* Watch Video on YouTube

Q⇒ Pinv
* Watch Video on edX
* Watch Video on YouTube

Pinv∧G⇒ B0∨B1
* Watch Video on edX
* Watch Video on YouTube

Pinv∧G∧B0

⇒ wp(“S0”,Pinv)

* Watch Video on edX
* Watch Video on YouTube

Pinv∧G∧B1

⇒ wp(“S1”,Pinv)

* Watch Video on edX
* Watch Video on YouTube

Pinv∧¬G⇒ R * Watch Video on edX
* Watch Video on YouTube

Bound function is

bounded below
* Watch Video on edX
* Watch Video on YouTube

Bound function

decreases
* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=FnPbogIN2IU
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=fazeFD16fhE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=oSvlmLNhc94
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=qNqH-jpcNzY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=XLnCYM3hc0I
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=SL65VwFfd8o
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=okSWZzKQiUg
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/1
https://www.youtube.com/watch?v=9aOiD3KgfSw

90 Week 2. Proving Programs Correct

2.7.2 Summary * to edX

Hoare triple

Given predicates Q and R and command S, the Hoare triple

{Q}S{R}

holds (evaluates to TRUE) if the command S when started in a state for which Q evaluates to TRUE completes in
a finite amount of time in a state for which R evaluates to TRUE. For this triple, Q is the precondition and R is the
postcondition.

Weakest precondition

Given command S and postcondition R, the weakest precondition (which describes the set of all states for which
execution of command S completes in a finite amount of time is a state described by R) is given by wp(“S”,R).

Proving a program segment correct

The Hoare triple {Q}S{R} holds (evaluates to TRUE) if and only if Q⇒ wp(“S”,R).
In other words, the annotated program {Q}S{R} is correct if and only if the Hoare triple {Q}S{R} holds, and if

and only if Q⇒ wp(“S”,R).

The skip command

wp(“skip”,R) = R.

The abort command

wp(“abort”,R) = F.

Textual substitution

Rx
(E)

equals the predicate R with all free occurrences of x replaced by (E).

Simple assignment

wp(“x := E”,R) = valid(E)∧Rx
(E).

Composition

wp(“S0;S1”,R) = wp(“S0”,wp(“S1”,R)).

Simultaneous assignment

wp(“x,y := E§,E†”,R) = valid(E)∧R x,y
(E§,Ey)

.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c6b0cdb1ccf34ed2b91e522e29213a50/57cbafca135c411187479e7246b25342/2

2.7. Wrap Up 91

Assignment to an array element

(b; i : E) equals the array b with the element indexed by i replaced with the result of evaluating the expression E .

wp(“b(i) = E”,R) = wp(“b = (b; i : E)”,R) = Rb
(b;i:E)

The If command

if
G0→ S0
G1→ S1

...
Gk−1→ SK−1

fi

wp(“if”,R) =

at least one guard must
evaluate to TRUE︷ ︸︸ ︷
(G0∨G1∨·· ·∨GK−1) ∧

if Gi then Si may execute, in which case it
must start in a state that guarantees comple-
tion in a state where R holds.︷ ︸︸ ︷

(G0⇒ wp(“S0”,R))

∧ (G1⇒ wp(“S1”,R))
...

...

∧ (GK−1⇒ wp(SK−1,R)).

(2.3)

If Theorem

The annotated code segment

{Q}
if

G0→ S0
...
GK−1→ SK−1

fi
{Q}

is correct if and only if

• Q⇒ (∃i|0≤ i < K : Gi) and

• (∀i|0≤ i < K : Q∧Gi⇒ wp(Si,R))

In other words, under these conditions Q⇒ wp(“if”,R).

92 Week 2. Proving Programs Correct

Recipe for checking correctness of if command

{
Q :

}
if

{Q⇒ G0∨G1 : }

G0→

{Q∧G0 : }{
Q∧G0 ⇒ wp(“S0”,R) ?

}
{wp(“S0”,R) : }

S0 :

{R : }

G1→

{Q∧G1 : }{
Q∧G1 ⇒ wp(“S1”,R) ?

}
{wp(“S1”,R) : }

S1 :

{R : }

fi{
R :

}

if-then-else command

if G
S0

else
S1

fi

2.7. Wrap Up 93

Recipe for checking correctness of if-then-else command

{
Q :

}
if G{

G∧Q :
}

{G∧Q⇒ wp(“S0”,R)? }{
wp(“S0”,R) :

}
S0 :{

R :
}

else{
¬G∧Q :

}
{¬G∧Q⇒ wp(“S1”,R)? }{

wp(“S1”,R) :
}

S1 :{
R :

}
fi R :



The while command

while G do
S

endwhile

94 Week 2. Proving Programs Correct

The While Theorem

{Q}
{Pinv}
while G do
{Pinv∧G}
S
{Pinv}

endwhile
{Pinv∧¬G}
{R}

Partial correctness:

• Q⇒ Pinv;

• {Pinv∧G}S{Pinv}; and

• Pinv∧¬G⇒ R

Complete correctness, in addition, for some bound function t:

• Pinv∧G⇒ t ≥ 0 and

• {Pinv∧G}t ′ := t;S{t < t ′}

2.7. Wrap Up 95

{
Q : 0≤ n

}
s := 0{

s = 0∧0≤ n
}

k := 0{
Pinv : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n

}
while k < n do{

Pinv ∧G : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n ∧k < n
}

s := s+b(k)

{s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n }

k := k+1{
Pinv : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n

}
endwhile{

Pinv ∧¬G : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n ∧¬(k < n)
}

{
R: s = (∑ i | 0≤ i < n : b(i))

}
Figure 2.6: Example from the launch.

96 Week 2. Proving Programs Correct

Checklist for a while command. Consider

{Q}
while G do

S
endwhile
{R}

with loop invariant Pinv and bound function t:

• Show that Pinv holds before the loop execution begins: Q⇒ Pinv.

• Show that if Pinv and G are TRUE at the beginning of an iteration, then Pinv is again TRUE at the end of the
iteration:
{Pinv∧G}S{Pinv} or, equivalently, Pinv∧G⇒ wp(S,Pinv).

• Show that if Pinv is TRUE and the loop guard is FALSE, then R holds: Pinv∧¬G⇒ R.

• To prove that the loop completes, show that for some bound function t

– Pinv∧G⇒ (t ≥ 0) and

– {Pinv∧G}t ′ := t;Si{t < t ′}.

We will annotate a typical loop like

{Q}
{Pinv :< loop invariant >}
{t :< bound function >}
while G do

S
endwhile
{R}

Figure 2.7: Check list for a while command.

1. {Q}
2. {Pinv}

do

3. {Pinv}

4.

G0 → {Pinv∧G0} S0 {Pinv}
G1 → {Pinv∧G1)} S1 {Pinv}

...

GK−1→ {Pinv∧GK−1)} SK−1 {Pinv}


Loop body

5. {Pinv}
od

6. {Pinv}∧¬(G0∨·· ·∨GK−1)

7. {R}

Figure 2.8: Annotated do loop.

2.7. Wrap Up 97

Checklist for a do loop of the form

{Q}
do

G0→ S0
G1→ S1

...
GK−1→ SK−1

od
{R}

with loop invariant Pinv and bound function t:

• Show that Pinv holds before the loop execution begins.

• Show that {Pinv∧Gi}Si{Pinv} holds for i = 0, . . . ,K−1.

• Show that Pinv∧¬(G0∨·· ·∨GK−1)⇒ R holds.

• Show that Pinv∧ (G0∨·· ·∨GK−1)⇒ (t ≥ 0).

• Show that {Pinv∧Gi}t ′ := t;Si{t < t ′} holds for i = 0, . . . ,K−1.

We will annotate a typical loop like

{Q}
{Pinv :< loop invariant >}
{t :< bound function >}
do

G0→ S0
G1→ S1

...
GK−1→ SK−1

od
{R}

Figure 2.9: Check list for do command.

98 Week 2. Proving Programs Correct

Week 3
Deriving Programs to be Correct

3.1 Opening Remarks * to edX

3.1.1 Launch * to edX

* Watch Video on edX
* Watch Video on YouTube

To get you in the right mind frame, we challenge you to develop a winning strategy for a very simple version of
the ancient game of Nim.

You start with an arbitrary number of pencils. (or sticks or stones or objects). Two players take turns removing up
to three pencils. The person who takes the last pencil(s) wins.

We found the following version of Nim online at wikimedia.org:

Play Nim.

Play it, where you make the first move (otherwise, the computer will win!).

• What is the winning strategy?

99

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://www.youtube.com/watch?v=5gBUm3LFvZA
https://upload.wikimedia.org/wikipedia/commons/4/4d/Subtraction_game_SMIL.svg
https://upload.wikimedia.org/wikipedia/commons/4/4d/Subtraction_game_SMIL.svg

100 Week 3. Deriving Programs to be Correct

• How did you figure this out?

• When did you notice that you were going to win or lose?

• Could you figure this out earlier to help guide your moves?

• Did you find that you used a backward analysis?

• How does this relate to goal-oriented programming?

• Can you find a “winning” invariant?

* Watch Video on edX
* Watch Video on YouTube

Another algorithm for summing the elements of an array. The purpose of the first launch in this section, the
game of Nim, was to have you notice that sometimes working linearly from beginning to end is not the best way to
approach a problem. A goal-oriented approach, by which we mean starting from where you want to end up, leads to
an easier development of a solution.

This suggests that maybe the systematic development of a correct program segment should start with the goal:
what is to be computed. Here we challenge you to revisit summing the elements in an array. This was also the goal
of the simple loop from the launch of Week 2 where we summed from the first to the last entries in the array. This
time, instead of giving you the program segment to prove correct, we challenge you to try to derive another algorithm
that instead sums the values in the array starting at the last element and ending at the first. This builds on what you
learned in Week 2, yet turns the process around. Think of how assertions might guide you toward commands. You
will notice that the algorithm you will derive is similar yet not the same algorithm as you saw before, in Week 2, since
the invariant is different.

It has been suggested that you may find it helpful to re-watch the video in the launch of Week 2 that explains the
previous algorithm. Then you may want to look at this homework side by side with the complete annotated code for
that previous algorithm (which is shown at 2:24 of the video).

In the below homework, you may want to consider these questions to help guide you:

• In what order do you insert the components?

• What do you insert first? Is it the loop guard? Why?

• What do you need to know before you find the loop guard?

• What do you need to know to find the initialization?

• What do you need to know to find the command in the loop?

• Can you suggest what might be a good flow to create assertions and commands for determining the code seg-
ment?

• Does it require starting at the top and working you way down?

• Did you get it right the first time?

• Before you checked, how confident were you that your pseudo code was correct?

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://www.youtube.com/watch?v=1SL9IkBH94U

3.1. Opening Remarks * to edX 101

Homework 3.1.1.1 Consider the problem of summing the elements of array b, as outlined in Figure 3.1. Place the
following assertions in the correct place (the blank boxes) in the algorithm. Some need to be inserted in multiple
places. Some are just there to confuse you (and not be used)

1. s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n

2. k < n

3. 0≤ k

4. 0 < k

5. s := 0

6. k = 0

7. k := n

8. s := s+b(k)

9. s := s+b(k−1)

* SEE ANSWER
* DO EXERCISE ON edX

• In what order did you insert the components?

• Did you get it right the first time?

• Before you checked, how confident were you that your pseudo code was correct?

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://www.youtube.com/watch?v=qB1fNTvNW20

102 Week 3. Deriving Programs to be Correct

{
0≤ n

}




while do




k := k−1




endwhile
{

s = (∑ i | 0≤ i < n : b(i))
}

Figure 3.1: Partially annotated alternative algorithm for computing the sum of the elements of array b.

3.1. Opening Remarks * to edX 103

3.1.2 Outline Week 3 * to edX

3.1. Opening Remarks * to edX . 99
3.1.1. Launch * to edX . 99
3.1.2. Outline Week 3 * to edX . 103
3.1.3. What you will learn * to edX . 104

3.2. Developing Simple Commands * to edX . 105
3.2.1. The skip command * to edX . 105
3.2.2. Assignment to simple variables * to edX . 105
3.2.3. Careful! * to edX . 108
3.2.4. Assignment to array elements * to edX . 112

3.3. Developing the if Command * to edX . 115
3.3.1. A general strategy * to edX . 115
3.3.2. A commonly encountered case * to edX . 118

3.4. Developing a While Command * to edX . 123
3.4.1. A worksheet for the while command * to edX . 123
3.4.2. Progress towards completion * to edX . 126
3.4.3. A priori determination of loop invariants * to edX . 128
3.4.4. Deriving the loop guard and initialization command * to edX 130
3.4.5. Deriving the loop body * to edX . 132

3.5. Examples * to edX . 138
3.5.1. Evaluating a polynomial * to edX . 138
3.5.2. At last, you write your first code! * to edX . 139

3.6. Enrichment * to edX . 143
3.6.1. A conversation with Prof. David Gries * to edX . 143
3.6.2. Dafny: a language and program verifier for functional correctness 143

3.7. Wrap Up * to edX . 143
3.7.1. Additional exercises * to edX . 143
3.7.2. Summary * to edX . 147
3.7.3. Why Dijkstra received the ACM Turing Award * to edX . 151

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/3

104 Week 3. Deriving Programs to be Correct

3.1.3 What you will learn * to edX

This week begins our journey to develop programs that are correct. Starting with the goal and annotating the pre-
condition and postcondition, we uncover strategies to find loop-based algorithms by first systematically deriving loop
invariants which then guide the development of the rest of the commands in the loop.

Upon completion of this week, you should be able to

• Use Hoare triples and weakest precondition to determine appropriate assignment commands.

• Reason and apply goal-oriented programming to develop short program segments involving skip, assignments,
and conditional branching.

• Develop loop-based algorithms using goal-oriented programming techniques given invariants.

• Determine various invariants for loops traversing one-dimensional arrays.

• Implement your first program.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/4e301dd2edfd496e87eb05688a2e3fc0/3

3.2. Developing Simple Commands * to edX 105

3.2 Developing Simple Commands * to edX

3.2.1 The skip command * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the code segment{
Q

}
S{

R
}

where the purpose of the game is to determine command S. If Q⇒ R (in other words, R is weaker than Q), then
replacing S with the skip command makes the code segment correct, since then Q⇒ wp(skip,R) is equivalent to
Q⇒ R, which we assumed evaluates to TRUE.

Consider the following to-be-derived code segment that increases counter c by one if x = 0. The precondition
indicates that x 6= 0. (This may be encountered, for example, as part of an if command.)

{Q : (x 6= 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? }

{wp(“S”,R) : }

S :

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

How do we systematically arrive upon the fact that S can be chosen to be the skip command? We check whether
Q⇒ R:

(x 6= 0)∧ (c = ĉ)︸ ︷︷ ︸
Q

⇒ (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ)︸ ︷︷ ︸
R

?

By weakening/strengthening (after commuting the disjunction), this implication is TRUE. Hence, S can be taken to be
the skip command:

{Q : (x 6= 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? YES! }

{wp(“S”,R) : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

S : skip

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

3.2.2 Assignment to simple variables * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://www.youtube.com/watch?v=DbmzSW6wMfU
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/2
https://www.youtube.com/watch?v=ERc2Ec6Kys8

106 Week 3. Deriving Programs to be Correct

Consider the following to-be-derived code segment that increases counter c by one if x = 0. The precondition
indicates that x = 0. We assume that x cannot change its value. (Again, this may be encountered, for example, as part
of an if command.)

{Q : (x = 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? }

{wp(“S”,R) : }

S :

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

The question is how to systematically determine command S.
We first will want to check whether the precondition implies the postcondition, in which case S can (and should)

equal skip. The unfortunate truth is that it doesn’t. We will comment further on this later in this unit.
Next, we notice that the problem specification said that x cannot change its value. By convention, ĉ cannot change

value either, because it is a “dummy variable” that is introduced to indicate the “original contents of c.” Thus, we
conclude that an expression, E must be assigned to c:

{Q : (x = 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? }

{wp(“S”,R) : }

S : c := E

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

where E is the expression that is to be determined. Now, we can further annotate this code segment with wp(“c :=
E”,R)

{Q : (x = 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? }
wp(“S”,R) : wp(“c := E”,(x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ))

⇔< definition of := >

(x = 0∧E = ĉ+1)∨ (x 6= 0∧E = ĉ)


S : c := E

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

and now we notice that E must be chosen so that Q⇒ wp(“c := E”,R):

(x = 0)∧ (c = ĉ)︸ ︷︷ ︸
Q

⇒ (x = 0∧E = ĉ+1)∨ (x 6= 0∧E = ĉ)︸ ︷︷ ︸
wp(“c := E”,R)

,

This guides us to choose E to equal c+1 since then

(x = 0)∧ (c = ĉ)︸ ︷︷ ︸
Q

⇒ (x = 0∧ c+1 = ĉ+1)∨ (x 6= 0∧ c+1 = ĉ)︸ ︷︷ ︸
wp(“c := c+1”,R)

,

which we notice is true by weakening/strengthening after subtracting +1 on both sides of (c+1 = ĉ+1). Hence we
conclude that the derived-to-be-correct code segment is given by

3.2. Developing Simple Commands * to edX 107

{Q : (x = 0)∧ (c = ĉ) }

{Q⇒ wp(“S”,R)? YES! }
wp(“S”,R) : wp(“c := c+1”,(x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ))

⇔< definition of := >

(x = 0∧ c+1 = ĉ+1)∨ (x 6= 0∧ c+1 = ĉ)


S : c := c+1

{R : (x = 0∧ c = ĉ+1)∨ (x 6= 0∧ c = ĉ) }

Notice that the precondition and postcondition for the command S prescribe what command S needs to be.

Let us briefly return to the question of how to determine that the skip command is not a correct choice for command
S. This is actually the wrong question. The right question is “What if we had tried to derive a command of the form
c := E for S in the previous unit?” The answer is that the expression E would have turned out to equal c. In other
words, S would have been the assignment c := c. But instead of assigning c to c, we might as well then insert the skip
command.

Homework 3.2.2.1 Systematically derive the expressions E0 and E1 that make the following code segment cor-
rect:{

Q : (s = ŝ)∧ (t = t̂)
}

s, t := E0,E1{
R : (s = t̂)∧ (t = ŝ)

}
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/2
https://www.youtube.com/watch?v=4GGCCwvERvk

108 Week 3. Deriving Programs to be Correct

Homework 3.2.2.2 Find the missing assignment to make the following program segment correct. It may be part
of a program that sets variable fac equal to (n−1)! = (n−1)× (n−2)×·· ·×2×1. (Check your results!){

Q : 0 < n
}

i, fac := n,?{
R : 1≤ i≤ n∧ fac = (∏ j | i≤ j < n : j)

}
a) i, fac := n,0

b) i, fac := n,1

c) i, fac := n,n

d) cannot be made to be correct

* SEE ANSWER
* DO EXERCISE ON edX

Homework 3.2.2.3 Find the missing assignment to make the following program segment correct. It may be part
of a program that coverts a binary representations (stored in array b) into a decimal number stored in y. (Check
your results!){

Q : y = (∑ j | i≤ j < n : b(j)×2 j)
}

y :=?

i := i−1{
R : y = (∑ j | i≤ j < n : b(j)×2 j)

}
a) y := b(i)×2i + y

b) y := b(i−1)×2i−1 + y

c) y := b(i+1)×2i+1 + y

d) cannot be made to be correct

* SEE ANSWER
* DO EXERCISE ON edX

3.2.3 Careful! * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the code segment

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/3
https://www.youtube.com/watch?v=gaYP2yjEetQ

3.2. Developing Simple Commands * to edX 109

{
T

}
k := k+1

y := E{
y = x(k)

}
where E is an expression to be determined so that the Hoare triple holds. Let us annotate:

{
T

}{
wp(“k := k+1;y := E”,y = x(k)) : E = x(k+1)

}
k := k+1{

wp(“y := E”,y = x(k)) : E = x(k)
}

y := E{
y = x(k)

}
We would conclude that we should choose expression E to equal x(k+1) because then

T ⇒ x(k+1) = x(k+1).

However, if we then insert y := x(k+1) we notice that

{
T

}{
wp(“k := k+1;y := x(k+1)”,y = x(k)) : x(k+2) = x(k+1)

}
k := k+1{

wp(“y := E”,y = x(k)) : x(k+1) = x(k)
}

y := x(k+1){
y = x(k)

}
which is NOT a correct code segment because

T ⇒ x(k+2) = x(k+1)

evaluates to TRUE only if x(k+2) = x(k+1).
What went wrong? The problem is that k appears in the expression E , and k is changed prior to the assignment

y := x(k+1). The way around this is to capture that E is a function of k:

{
T

}
k := k+1

y := E(k){
y = x(k)

}
where E(k) represents an expression that may depend on k and that is to be determined so that the Hoare triple holds.
Let us annotate:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1

110 Week 3. Deriving Programs to be Correct

{
T

}{
wp(“k := k+1;y := E(k)”,y = x(k)) : E(k+1) = x(k+1)

}
k := k+1{

wp(“y := E(k)”,y = x(k)) : E(k) = x(k)
}

y := E(k){
y = x(k)

}

We conclude that we should choose E(k+1) to equal x(k+1) and hence E(k) as x(k). Now let’s check:

{
T

}{
wp(“k := k+1;y := x(k)”,y = x(k)) : x(k+1) = x(k+1)

}
k := k+1{

wp(“y := x(k)”,y = x(k)) : x(k) = x(k)
}

y := x(k){
y = x(k)

}

which IS a correct code segment because

T ⇒ x(k+1) = x(k+1)

evaluates to TRUE.

We conclude that given Hoare triple{
Q

}
k := · · ·

y := ?{
R

}
where ? is to be determined, one should use E(k) if in the Hoare triple k appears on the left of an assignment
statement prior to the assignment to y. This generalizes if there are more assignments that precede the assignment
to be determined. Each variable that appears on the left of an assignment prior to the assignment to y should
appear as a parameter for expression E .

3.2. Developing Simple Commands * to edX 111

Homework 3.2.3.1 Find the missing assignment to make the following program segment correct. (Check your
results!){

Q : 0 < i < n
}

i, j := i+1,?{
R : j = n− i∧0≤ j < n

}
a) i, j := i+1,n− i

b) i, j := i+1,n− i+1

c) i, j := i+1,n− i−1

d) cannot be made to be correct

* SEE ANSWER
* DO EXERCISE ON edX

Homework 3.2.3.2 Find the missing assignment to make the following program segment correct. (Check your
results!){

Q : 0 < i < n
}

i := i+1

j :=?{
R : j = n− i∧0≤ j < n

}
a) j := n− i

b) j := n− i+1

c) j := n− i−1

d) cannot be made to be correct

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/

112 Week 3. Deriving Programs to be Correct

Homework 3.2.3.3 Find the missing assignment to make the following program segment correct. (Check your
results!){

Q : 0 < i < n
}

j :=?

i := i+1{
R : j = n− i∧0≤ j < n

}
a) j := n− i

b) j := n− i+1

c) j := n− i−1

d) cannot be made to be correct

* SEE ANSWER
* DO EXERCISE ON edX

3.2.4 Assignment to array elements * to edX

* Watch Video on edX
* Watch Video on YouTube

Assignment to array elements can in principle be made similarly systematic. It is the manipulation of the precon-
dition and postcondition that becomes a bit trickier. The reason is that, as we noticed last week when proving code
segments that involved assignment to arrays correct, “textual substitution” is greatly simplified if the array element be-
ing updated does not appear in a quantifier. For this reason, the range of the quantifier is split to expose that particular
element.

Let us consider an example where array x is added to array y, given in Figure 3.2, where command S is to be
determined. (How to get to this point will be discussed in the later section on how to systematically develop a loop.)

Recognizing that (0≤ k ≤ n)∧ (k < n) is equivalent to (0≤ k < n) we focus on

QS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k < n)


S:RS : (∀i | 0≤ i < k+1 : y(i) = ŷ(i)+ x(i))

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k+1≤ n)


In reasoning about what S should be, we notice the difference in ranges in the precondition and postcondition. To
reconcile these, we split ranges both in the precondition and the postcondition:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/4
https://www.youtube.com/watch?v=28Rp8tcCiHE

3.2. Developing Simple Commands * to edX 113

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧ (0≤ n)

}
k := 0{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n)
}

while k < n doPinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n)∧ (k < n)


S:wp(“k := k+1”,Pinv) : (∀i | 0≤ i < k+1 : y(i) = ŷ(i)+ x(i))

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k+1≤ n)


k := k+1{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n)
}

endwhile{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n) ∧¬(k < n)

}
{

(∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))
}

Figure 3.2: Add the values in array x to the corresponding values in array y. It is implicitly assumed that the values in
x do not change. Array ŷ is introduced to be able to refer to the original contents of y. It is implicitly assumed that the
arrays are of size n.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/ef0edfc7c20f4277b07f0545b13de531/1

114 Week 3. Deriving Programs to be Correct


QS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ y(k) = ŷ(k) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i))︸ ︷︷ ︸
(∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k < n)


S:RS :

(∀i | 0≤ i < k+1 : y(i) = ŷ(i)+ x(i))︷ ︸︸ ︷
(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i) ∧ (y(k) = ŷ(k)+ x(k))

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k+1≤ n)


We then notice that it is y(k) that changes value, so that S should have the form

S : y(k) := E ,

where E is some expression. If we also simplify 0≤ k+1≤ n we find thatQS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k < n)


S : y(k) := ERS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)+ x(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (−1≤ k < n)


Now, we can insert wp(“y(k) := E”,RS):QS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k < n)


{QS⇒ wp(“S”,RS)? }

wp(“y(k) := E”,RS) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (E = ŷ(k)+ x(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i))

∧(−1≤ k < n)


S : y(k) := ERS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)+ x(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (−1≤ k < n).


We notice that if we choose E to equal y(k)+ x(k), then

y(k)+ x(k)︸ ︷︷ ︸
E

= ŷ(k)+ x(k)

and, after cancelling x(k) on both sides, by weakening/strengthening QS ⇒ wp(“y(k) := y(k)+ x(k)”,RS) becomes
TRUE.

3.3. Developing the if Command * to edX 115

QS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k < n)


{QS⇒ wp(“S”,RS)? YES! }

wp(“y(k) := y(k)+ x(k)”,RS) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k)+ x(k) = ŷ(k)+ x(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i))

∧(−1≤ k < n)


S : y(k) := y(k)+ x(k)RS : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i))

∧ (y(k) = ŷ(k)+ x(k)) ∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (−1≤ k < n).



3.3 Developing the if Command * to edX

3.3.1 A general strategy * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider a prototypical if command that has been annotated:{
Q :

}
if

G0→

{G0∧Q : }

{G0∧Q⇒ wp(“S0”,R)? }

{wp(“S0”,R) : }

S0 :

{R : }

G1→

{G1∧Q) : }

{G1∧Q⇒ wp(“S1”,R)? }

{wp(“S1”,R) : }

S1 :

{R : }

· · ·

fi{
R :

}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://www.youtube.com/watch?v=AAaXq5VJqQ4

116 Week 3. Deriving Programs to be Correct

What do we know about the guards? Recall from the If Theorem that it must be the case that

Q⇒ G0∨G1∨·· ·∨GK−1,

where K equals the number of guarded commands in the if command. A straightforward strategy for determining the
guards is to keep adding new guards until Q⇒ G0∨G1∨·· ·∨GK−1. Every time a new guard Gi is chosen, we focus
on the (hopefully) simpler subproblem of determining command Si that makes the code segment

{Gi∧Q) : }

{Gi∧Q⇒ wp(“Si”,R)? }

{wp(“Si”,R) : }

Si :

{R : }

correct.

Let us illustrate this with the following example that sets variable z to the absolute value of x, where for now we
assume you understand the intuitive meaning of the absolute value function, abs(). Later we will more precisely define
it and see how this helps us find guards even more systematically.

Let’s guess a loop guard, G0 : x = −1 and place it in the if command recipe. After developing command S0, we
would arrive at

{
T

}
if

x =−1→

{Q∧G0 : T ∧ x =−1 }

{T ∧ x =−1⇒ wp(“S0”,R)? YES! }

{wp(“S0”,R) : 1 = abs(x) }

S0 : z = 1

{R : z = abs(x) }

fi{
R : z = abs(x)

}

We then check whether Q⇒ G0, which instantiates to T ⇒ x = −1 and conclude we need more guards. So, we add
the guards G1 : x = 1, G2 : x = 0 to arrive at

3.3. Developing the if Command * to edX 117

{
T

}
if

x =−1→

{Q∧G0 : T ∧ x =−1 }

{T ∧ x =−1⇒ wp(“S0”,R)? YES! }

{wp(“S0”,R) : 1 = abs(x) }

S0 : z = 1

{R : z = abs(x) }

x = 1→

{Q∧G1 : T ∧ x = 1 }

{T ∧ x = 1⇒ wp(“S1”,R)? YES! }

{wp(“S1”,R) : 1 = abs(x) }

S1 : z = 1

{R : z = abs(x) }

x = 0→

{Q∧G2 : T ∧ x = 0 }

{T ∧ x = 0⇒ wp(“S2”,R)? YES! }

{wp(“S2”,R) : 0 = abs(x) }

S2 : z = 0

{R : z = abs(x) }

fi{
R : z = abs(x)

}
Now, obviously we would have to create an infinite number of guards if we kept going this way. We need to be smarter.

The key is to be more explicit about expressing the postcondition R : z = abs(x). Instead, let’s use the definition of
the absolute value:

• If x is greater than or equal to zero, abs(x) = x.

• If x is less than or equal to zero, abs(x) =−x.

This can be expressed as the predicate

R : (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x).

Notice that it is fine to have the conditions x≥ 0 and x≤ 0 overlap, as long as the if command is derived to be correct.
We also notice that the guards are easily identified in the postcondition: x≥ 0 and x≤ 0.

After deriving S0 and S1 using the techniques from earlier this week, the if command recipe yields

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1

118 Week 3. Deriving Programs to be Correct

{
T

}
if

x≥ 0→

{Q∧G0 : T ∧ x≥ 0 }

{T∧ ≥ 0⇒ wp(“S0”,R)? YES! }

{wp(“S0”,R) : (x≥ 0∧ x = x)∨ (x≤ 0∧ x =−x) }

S0 : z = x

{R : (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x) }

x≤ 0→

{Q∧G0 : T ∧ x≤ 0 }

{T∧ ≥ 0⇒ wp(“S1”,R)? YES! }

{wp(“S1”,R) : (x≥ 0∧−x = x)∨ (x≤ 0∧−x =−x) }

S1 : z =−x

{R : (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x) }

fi{
R : (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}
The details of how to systematicallly derive Si for the code segment, given Q, Gi, and R:

{Gi∧Q) }

{Gi∧Q⇒ wp(“Si”,R)? }

{wp(“Si”,R) : }

Si

{R }

build upon what we know about how to derive simple commands. Still, it quickly becomes messy when the postcon-
dition is nontrivial. For this reason, we don’t focus on the general case in this course, treating a simpler (but common)
case instead, in the next unit.

One strategy, obviously, is to guess and to then check correctness. This is a perfectly reasonable strategy. Often,
the annotations guide one towards an educated guess.

3.3.2 A commonly encountered case * to edX

* Watch Video on edX
* Watch Video on YouTube

The postcondition for an if command can often be chosen or manipulated into a convenient format that makes the
identification of the guards and the derivation of the guarded commands simpler. In this unit we discuss one such case.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/2
https://www.youtube.com/watch?v=gWqcsCWuDyQ

3.3. Developing the if Command * to edX 119

Homework 3.3.2.1 Identify for each of the operations on the left the corresponding predicate that best expresses
it on the right.

1. z = abs(x)

2. z = min(x,y)

3. z = max(x,y)

4. z = abs(x− y)

5. Increment c by one if x≤ 0

a. (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)

b. (x≤ y∧ z = y)∨ (x≥ y∧ z = x)

c. (x≤ y∧ z = x)∨ (x≥ y∧ z = y)

d. (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

e. (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

What the examples from the last homework have in common is that the predicate that describes the operation to be
computed can be written as a disjunction of conjunctions: R has the form

(G0∧R0)∨ (G1∧R1)∨·· ·∨ (GK−1∧RK−1).

Now, each component in the disjunction is by itself stronger than R:

(G j ∧R j)⇒ (G0∧R0)∨ (G1∧R1)∨·· ·∨ (GK−1∧RK−1)

by weakening/strengthening. What this suggests is the specialized worksheet for this case given in Figure 3.3. Deriving
each guarded command S j now comes down to deriving the code segments

{G j ∧Q : }

{G j ∧Q⇒ wp(“S j”,G j ∧R j)? }

{wp(“S j”,G j ∧R j) : }

S j

{G j ∧R j : }

in that worksheet.

Example 3.1 Consider the Hoare triple{
Q : c = ĉ}

}
S :{

R : (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)
}

for the command S that increments c if x ≤ 0. Here, as usual, ĉ is a “dummy variable” introduced to denote the
contents of c at the beginning of the code segment. We assume that the contents of variable x will not be changed.

We use the insights in this unit to derive S. We verify that

(x≤ 0︸ ︷︷ ︸
G0

∧ c = ĉ+1︸ ︷︷ ︸
R0

)∨ (x > 0︸ ︷︷ ︸
G1

∧ c = ĉ︸ ︷︷ ︸
R1

).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/2
https://www.youtube.com/watch?v=pr81SttjGJo

120 Week 3. Deriving Programs to be Correct

{
Q :

}
{

Q⇒ G0 ∨G1 ∨·· ·∨GK−1?
}

if

G0→

{G0 ∧Q : }

{G0 ∧Q⇒ wp(“S0”,G0 ∧R0)? }

{wp(“S0”,G0 ∧R0) : }

S0 :

{G0 ∧R0 : }

G1→

{G1 ∧Q) : }

{G1 ∧Q⇒ wp(“S1”,G1 ∧R1)? }

{wp(“S1”,G1 ∧R1) : }

S1

{G1 ∧R1 : }

· · ·

{}

GK−1→

{GK−1 ∧Q) : }

{GK−1 ∧Q⇒ wp(“SK−1”,GK−1 ∧RK−1)? }

{wp(“SK−1”,GK−1 ∧RK−1) : }

SK−1 :

{GK−1 ∧RK−1 : }

fi{
R : (G0 ∧R0)∨ (G1 ∧R1)∨·· ·∨ (GK−1 ∧RK−1)

}

Figure 3.3: Worksheet for the case where R has the form (G0∧R0)∨ (G1∧R1)∨·· ·∨ (GK−1∧RK−1).

3.3. Developing the if Command * to edX 121

{
Q : c = ĉ

}
{

Q⇒ x≤ 0∨ x > 0? YES!
}

if

x≤ 0→

{G0∧Q : x≤ 0∧ c = ĉ }

{G0∧Q⇒ wp(“S0”,G0∧R0)? }

{wp(“S0”,G0∧R0) : x≤ 0∧E0 = ĉ+1 }

S0 : c = E0

{G0∧R0 : x≤ 0∧ c = ĉ+1 }

x > 0→

{G1∧Q : x > 0∧ c = ĉ }

{G1∧Q⇒ wp(“S1”,G1∧R1)? }

{wp(“S1”,G1∧R1) : x > 0∧E1 = ĉ }

S1 : c = E1

{G1∧R1 : x > 0∧ c = ĉ }

fi{
R : (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)

}

Figure 3.4: Partially completed worksheet for computing (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/1

122 Week 3. Deriving Programs to be Correct

{
Q : c = ĉ

}
{

Q⇒ x≤ 0∨ x > 0? YES!
}

if

x≤ 0→

{G0∧Q : x≤ 0∧ c = ĉ }

{G0∧Q⇒ wp(“S0”,G0∧R0)? YES! }

{wp(“S0”,G0∧R0) : x≤ 0∧ c+1 = ĉ+1 }

S0 : c = c+1

{G0∧R0 : x≤ 0∧ c = ĉ+1 }

x > 0→

{G1∧Q : x > 0∧ c = ĉ }

{G1∧Q⇒ wp(“S1”,G1∧R1)? YES! }

{wp(“S1”,G1∧R1) : x > 0∧ c = ĉ }

S1 : skip

{G1∧R1 : x > 0∧ c = ĉ }

fi{
R : (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)

}

Figure 3.5: Completed worksheet for computing (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ).

3.4. Developing a While Command * to edX 123

Thus, the postcondition has the desired format. Also Q→G0∨G1 since G0∨G1⇔ T . This allows us to fill out many of
the expressions in the worksheet, yielding Figure 3.4. There, we also indicate that S0 and S1 update c with expressions
E0 and E1, respectively. From the highlighted fields we deduce that E0 should equal c+1 (so that S0 equals c := c+1)
and thatE1 should equal c (so that S1 should equal c := c or, equivalently, skip). This is summarized in Figure 3.5.

Homework 3.3.2.2 Use Figure 3.6 to develop a code segment that computes z = min(x,y):{
Q : T}

}
S{

R : (x≤ y∧ z = x)∨ (x≥ y∧ z = y)
}

* SEE ANSWER
* DO EXERCISE ON edX

Homework 3.3.2.3 Use Figure 3.6 to develop a code segment that computes z = abs(x− y):{
Q : T}

}
S{

R : (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)
}

* SEE ANSWER
* DO EXERCISE ON edX

3.4 Developing a While Command * to edX

3.4.1 A worksheet for the while command * to edX

* Watch Video on edX
* Watch Video on YouTube

In Week 2 Section 2.5.1, we discussed how to prove a while loop correct. Let us now turn to how to derive a
typical while loop.

Consider the prototypical loop

where command SI initializes variables (we call this the initialization step), G is the loop guard, and S is the loop body.

The key is to turn the proof of correctness for a loop into a worksheet much like we created a worksheet for the if
command. This worksheet was hinted at in the launch for this week and is given by

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c339a566f9774aae994e4f74b6dcb30c/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://www.youtube.com/watch?v=BwSHbR-zY20

124 Week 3. Deriving Programs to be Correct

{
Q :

}
{

Q⇒ G0∨G1?
}

if

G0→{G0∧Q : }
{G0∧Q⇒ wp(“S0”,G0∧R0)? }{

wp(“S0”,G0∧R0) :
}

S0 :{G0∧R0 : }
G1→{

G1∧Q) :
}

{G1∧Q⇒ wp(“S1”,G1∧R1)? }{
wp(“S1”,G1∧R1) :

}
S1 :{G1∧R1 : }

fi{
R :

}

Figure 3.6: Worksheet for the case where R has the form (G0∧R0)∨ (G1∧R1).

3.4. Developing a While Command * to edX 125

SI
while G do

S
endwhile

{
Q :

}
SI{

Pinv

}
while G do

{Pinv ∧ G }

{wp(“S”,Pinv) }

S

{Pinv }

endwhile{
Pinv ∧ ¬(G)

}
{

R
}

Now, if we can a priori determine what Pinv is, then everything else in this loop is predetermined:

• We know that (Pinv∧¬G)⇒ R must be true. Thus, given Pinv and R we must determine a condition G that makes
this true. In other words, to determine G we focus on

{
Pinv ∧ ¬(G)

}
{

R
}

A careful reexamination of how to prove this given Pinv, R, and G in Week 2 tells us that weakening/strengthening
laws are usually provide insight into how to choose G.

• Given Q and Pinv we can deploy techniques discussed earlier in this week to derive the initialization command
SI . For this, we focus on deriving SI so that

{
Q :

}
SI{

Pinv

}
holds. This is a smaller subproblem and hopefully easier to tackle.

• Similarly, given Pinv and G we can deploy techniques previously discussed in this week to derive command S.
For this, we focus on deriving S so that

{
Pinv∧G :

}
S{

Pinv

}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

126 Week 3. Deriving Programs to be Correct

holds. Now, the naive solution would be to choose S : skip since

{
Pinv∧G :

}
S : skip{

Pinv

}

can be easily shown to always hold. However, we need to make progress towards completion since otherwise
the loop will never stop. It is this that forces S to be a more complicated command.

3.4.2 Progress towards completion * to edX

* Watch Video on edX
* Watch Video on YouTube

In this first part of the course, we mainly focus on algorithms that traverse one dimensional arrays in a systematic
way: either from the first element to the last or from the last element to the first. Which of these two cases applies can
be determined from the loop invariant. Because of this restriction, we can refine the worksheet further. Assuming the
variable that keeps track of where in the array we are is given by k, if the algorithm traverses from the first element to
the last, the worksheet becomes

{
Q

}
SI{

Pinv

}
while G do

{Pinv ∧ G }

{wp(“SU ;k := k+1”,Pinv) }

SU

{wp(“k := k+1”,Pinv) }

k := k+1

{Pinv }

endwhile{
Pinv ∧ ¬(G)

}
{

R
}

or

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/2
https://www.youtube.com/watch?v=vYD2UESq1eQ

3.4. Developing a While Command * to edX 127

{
Q

}
SI{

Pinv

}
while G do

{Pinv ∧ G }

{wp(“k := k+1;SU ”,Pinv) }

k := k+1

{wp(“SU ”,Pinv) }

SU

{Pinv }

endwhile{
Pinv ∧ ¬(G)

}
{

R
}

Here SU is the command that updates the pertinent variables. If on the other hand the algorithm traverses the array
from last to first (as in the example in the launch), the worksheet is given by

{
Q

}
SI{

Pinv

}
while G do

{Pinv ∧ G }

{wp(“SU ;k := k−1”,Pinv) }

SU

{wp(“k := k−1”,Pinv) }

k := k−1

{Pinv }

endwhile{
Pinv ∧ ¬(G)

}
{

R
}

or

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

128 Week 3. Deriving Programs to be Correct

{
Q

}
SI{

Pinv

}
while G do

{Pinv ∧ G }

{wp(“k := k−1;SU ”,Pinv) }

k := k−1

{wp(“SU ”,Pinv) }

SU

{Pinv }

endwhile{
Pinv ∧ ¬(G)

}
{

R
}

Notice that if k is part of the loop guard, it can be chosen to be part of the bound function t that is used to prove
complete correctness, which then guarantees completion of the loop. For this reason, we don’t bother with proving
complete correctness, since we know loops of the above structure will complete.

3.4.3 A priori determination of loop invariants * to edX

* Watch Video on edX
* Watch Video on YouTube

The insights in the last two units lead us to the conclusion that we need to systematically derive Pinv from precon-
dition Q and postcondition R. If we can do that, then we have a systematic way of deriving loop-based algorithms
since the other parts of the loop with systematically fall in place.

Let us go back and consider a loop that adds the contents of array x to those in array y in Figure 3.2, but let’s
pretend we don’t know what the loop should be. Let’s choose to progress through the arrays from first to last element.
We will implicitly assume that the arrays are of size n with 0≤ n. The precondition then becomes

Q : (∀i | 0≤ i < n : y(i) = ŷ(i)) ∧0≤ n

while the postcondition is given by

R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i)) .

It is from these two expressions that we now want to derive possible loop invariants.
In the worksheets discussed in the last unit, k becomes the index that keeps track of where in the arrays we are.

It tells us what parts of the array have been processed. To describe this with a predicate, we take quantifiers in the
precondition and postcondition, and split the ranges using this index: the precondition

Q : (∀i | 0≤ i < n : y(i) = ŷ(i)) ∧0≤ n

is split to yield
(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/3
https://www.youtube.com/watch?v=1Nbma5bFZjk

3.4. Developing a While Command * to edX 129

and the postcondition

R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))

is split to yield

(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n.

This systematic splitting of the ranges is the first step.
Now, as computation proceeds, we should make progress towards the result, which is given by the postcondition.

How can we construct a predicate that describes such progress? In other words, how can we extract a loop invariant
from the above information? A loop invariant should capture the partial progress towards the final result.

Let us consider possibilities derived from the precondition and postcondition, calling these candidates for loop
invariants (Candidates A through D):

Candidate Loop invariant Invariant

A
(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k ≤ n)

B
(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)

∧ (0≤ k ≤ n))
1

C
(∀i | 0≤ i < k : y(i) = ŷ(i) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i))

∧ (0≤ k ≤ n)
2

D
(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i))

∧ (0≤ k ≤ n))

Notice:

• Candidate A describes a loop invariant that says that as the loop progresses, y always contains its original
contents. Therefore, upon completing the loop, it will still contain its original contents. Obviously there is no
loop guard such that Pinv∧¬G⇒ R. It is not a valid loop invariant for this computation.

• Candidate B describes a loop invariant that says that as the loop progresses, the first k elements of y have been
updated with the final result, while the last n− k elements have not yet been updated. We will later argue that
there is a G such that Pinv∧¬G⇒ R and there is an initialization SI such that {Q}SI{Pinv} holds. It will result
in a correct algorithm that we will call (algorithmic) Variant 1, corresponding to the given (loop) Invariant 1.

• Candidate C describes a loop invariant that says that as the loop progresses, the last n− k elements of y have
been updated with the final result, while the first k elements have not yet been updated. Again, we will later
argue that there is a G such that Pinv∧¬G⇒ R and there is an initialization SI such that {Q}SI{Pinv} holds. It
will result in a correct algorithm that we will call Variant 2, corresponding to the given Invariant 2.

• Candidate D describes a loop invariant that says that as the loop progresses, y contains its final contents. Obvi-
ously, this means that before the loop starts, y must already have been initialized with the final contents. Given
that we intend for SI to only perform simple initializations, it is not a valid loop invariant for this computation.

We have systematically identified two viable loop invariants!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

130 Week 3. Deriving Programs to be Correct

3.4.4 Deriving the loop guard and initialization command * to edX

IMPORTANT. In the videos of Units 3.4.4 and 3.4.5, we discuss how to derive the loop for the case where the
algorithm marches through the vectors from the last element to the first element. We consider this to be the case
corresponding to (Loop) Invariant 2. At the end, in Homework 3.4.5.1, we have an exercise on the edX platform
that asks you to derive the algorithm that marches through the vectors from first to last (Invariant 1).
Here in the book in the same units, we discuss how to derive the loop for the case where the algorithm marches
through the vectors from the first element to the last element. In other words, Units 3.4.4 and 3.4.5 of the book
are a very thorough answer to Homework 3.4.5.1.
We suggest that you watch the videos, do Homework 3.4.5.1 in the online version of Unit 3.4.5, and then go
through the materials in the book. Alternatively, go through Units 3.4.4 and 3.4.5 in the book, do Homework
3.4.5.1 in the book, and then go back and watch the videos.

* Watch Video on edX
* Watch Video on YouTube

The discussion in the last unit left us with two viable loop invariants for updating an array y by adding the elements
of x to each of its elements. Let us pick Invariant 1 and use it to derive what remains of the loop. For now, we only
know the precondition Q, the postcondition R, and the loop invariant Pinv, as shown in Figure 3.7. What is left to
be determined are the loop guard G, the initialization command SI , how to update the loop index k, and the update
command SU .

We start by systematically determining the loop guard. What we know is that

Pinv∧¬G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n∧¬(G)

must imply

R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i)).

By examination, we deduce that choosing G as k < n has the desired property because then Pinv∧¬G becomes

(∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i)) ∧ (∀i | n ≤ i < n : y(i) = ŷ(i)) ∧ k = n,

which implies the postcondition by weakening/strengthening.
Next, we systematically derive the initialization, which must make the Hoare triple

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

}
{

wp(“SI”,Pinv) :
}

SI :{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

}

hold. Notice that if SI is chosen to set k := 0, then the first quantifier in the loop invariant has an empty range and
equals TRUE, meaning that the precondition implies that Pinv holds. More precisely:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/4
https://www.youtube.com/watch?v=9vw7fgHj6oo

3.4. Developing a While Command * to edX 131

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

}
{

wp(“SI”,Pinv) :
}

SI :{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

}
while G do{

Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧ G
}wp(“SU ;k := E(k)”,Pinv) :


SU :wp(“k := E(k)”,Pinv) :


k := E(k){
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

}
endwhile{

Pinv∧¬G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧ ¬(G)

}
{

R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))
}

Figure 3.7: Recipe for adding vector x to vector y after filling in Invariant 1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

132 Week 3. Deriving Programs to be Correct

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

}
 wp(“SI”,Pinv) :

T︷ ︸︸ ︷
(∀i | 0≤ i < 0 : y(i) = ŷ(i)+ x(i))

∧ (∀i | 0≤ i < n : y(i) = ŷ(i)) ∧0≤ 0≤ n


SI : k := 0{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n
}

holds.
Finally, we notice that initially k = 0 and eventually k = n. Thus, it makes sense to increment k := k+1 in the loop

body. With these insights, the worksheet is further filled out as illustrated in Figure 3.8.

3.4.5 Deriving the loop body * to edX

IMPORTANT. In the videos of Units 3.4.4 and 3.4.5, we discuss how to derive the loop for the case where the
algorithm marches through the vectors from the last element to the first element. We consider this to be the case
corresponding to (Loop) Invariant 2. At the end, in Homework 3.4.5.1, we have an exercise on the edX platform
that asks you to derive the algorithm that marches through the vectors from first to last (Invariant 1).
Here in the book in the same units, we discuss how to derive the loop for the case where the algorithm marches
through the vectors from the first element to the last element. In other words, Units 3.4.4 and 3.4.5 of the book
are a very thorough answer to Homework 3.4.5.1.
We suggest that you watch the videos, do Homework 3.4.5.1 in the online version of Unit 3.4.5, and then go
through the materials in the book. Alternatively, go through Units 3.4.4 and 3.4.5 in the book, do Homework
3.4.5.1 in the book, and then go back and watch the videos.

* Watch Video on edX
* Watch Video on YouTube

We now focus on the loop body:

{
Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

}
{wp(“SU ;k := k+1”,Pinv) : }

SU :

{wp(“k := k+1”,Pinv) : }

k := k+1{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

}
The insight we have is that the range of the first quantifier in Pinv expanded by one element in the current iteration, and
it is that element that is updated. For this reason, we split the range of that quantifier:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/5
https://www.youtube.com/watch?v=LZr-tiwrmr8

3.4. Developing a While Command * to edX 133

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

} wp(“SI”,Pinv) : (∀i | 0≤ i < 0 : y(i) = ŷ(i)+ x(i))

∧ (∀i | 0≤ i < n : y(i) = ŷ(i)) ∧0≤ 0≤ n


SI : k := 0 Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧0≤ k ≤ n


while k < n doPinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧0≤ k ≤ n

∧ k < n
wp(“SU ;k := k+1”,Pinv) :


SU :wp(“k := k+1”,Pinv) :


k := k+1Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧0≤ k ≤ n


endwhile{

Pinv∧¬G : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i)) ∧ (∀i | n ≤ i < n : y(i) = ŷ(i)) ∧ k = n
}

{
R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))

}
Figure 3.8: Recipe for adding vector x to vector y after determining Invariant 1, the loop guard G, the initialization
command SI , and the update of the loop index k := k+1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

134 Week 3. Deriving Programs to be Correct

{
Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

}
{wp(“SU ;k := k+1”,Pinv) : }

SU :

{wp(“k := k+1”,Pinv) : }

k := k+1
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

= (∀i | 0≤ i < k−1 : y(i) = ŷ(i)+ x(i)) ∧ y(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k ≤ n.


We can then compute

wp(“k := k+1”,Pinv) = (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.

We enter this into the loop body:

{
Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

}
{wp(“SU ;k := k+1”,Pinv) : }

SU :wp(“k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


k := k+1

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

= (∀i | 0≤ i < k−1 : y(i) = ŷ(i)+ x(i)) ∧ y(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k ≤ n.


Similarly, we can rewrite Pinv∧G to expose the same term in the quantifier:

(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n∧ k < n

becomes

(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k < n,

which we can enter in the derivation of the loop body:

3.4. Developing a While Command * to edX 135


Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

= (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k < n.


{wp(“SU ;k := k+1”,Pinv) : }

SU :wp(“k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


k := k+1

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

= (∀i | 0≤ i < k−1 : y(i) = ŷ(i)+ x(i)) ∧ y(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k ≤ n.


It now becomes obvious that y(k) must be updated as part of update command SU :


Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

= (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k < n.


{wp(“SU ;k := k+1”,Pinv) : }

SU : y(k) := Ewp(“k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


where E is an expression that is to be determined. We then compute wp(“SU ;k := k+1”,Pinv):


Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

= (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k < n.

wp(“SU ;k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ E = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


SU : y(k) := Ewp(“k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


and we notice that E = y(k)+ x(k). The fully annotated worksheet is given in Figure 3.9.

Homework 3.4.5.1 Derive the algorithm for adding array x to array y corresponding to Invariant 2 using the
worksheet in Figure 3.10.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/

136 Week 3. Deriving Programs to be Correct

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

} wp(“SI”,Pinv) : (∀i | 0≤ i < 0 : y(i) = ŷ(i)+ x(i)) ∧ (∀i | 0≤ i < n : y(i) = ŷ(i))

∧ 0≤ 0≤ n


SI : k := 0{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n
}

while k < n do
Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧k < n

= (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k < n.


wp(“SU ;k := k+1”,Pinv) :

(∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k)+ x(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


SU : y(k) := y(k)+ x(k)wp(“k := k+1”,Pinv) : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k+1≤ n.


k := k+1

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n

= (∀i | 0≤ i < k−1 : y(i) = ŷ(i)+ x(i)) ∧ y(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧ 0≤ k ≤ n.


endwhile{

Pinv∧¬G : (∀i | 0≤ i < k : y(i) = ŷ(i)+ x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)) ∧0≤ k ≤ n ∧ ¬(k < n)
}

{
R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))

}
Figure 3.9: Completed worksheet for adding vector x to vector y (Variant 1).

3.4. Developing a While Command * to edX 137

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

} wp(“SI”,Pinv) :


{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n
}

while do

Pinv∧G :
(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n∧



wp(“SU ;k := k−1”,Pinv) :


SU :

wp(“k := k−1”,Pinv) :


k := k−1{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n

}
endwhile{

Pinv∧¬G : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n ∧ ¬()

}
{

R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))
}

Figure 3.10: Blank worksheet for adding vector x to vector y (Variant 2).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/c0b1f49eacc641d48c210ae1ecfa13db/1

138 Week 3. Deriving Programs to be Correct

In Summary:

• Given a precondition and postcondition, we can derive loop invariants.

• Given a loop invariant and the postcondition, we can derive the loop guard.

• Given the precondition and a loop invariant, we can derive the initialization command.

• Given a loop invariant and an update to the loop index, we can derive the loop body.

All steps are prescribed by the precondition and the postcondition!

3.5 Examples * to edX

3.5.1 Evaluating a polynomial * to edX

* Watch Video on edX
* Watch Video on YouTube

In this section, we look at a really nice example through a sequence of exercises. It may be a trivial example at
first, too similar to previous examples and homeworks. But there is an interesting twist!

This exercise prepares you for the first programming exercise, in the next unit. Since we will use MATLAB to
implement the algorithm, we switch to assuming that “indexing starts at one”, meaning that the elements of an array p
are accessed as p(1), p(2), · · ·, p(n).

Now, consider the evaluation of a polynomial of degree n−1 with coefficients stored in array p of size n:

y = p(1)+ p(2)x+ p(3)x2 + · · ·+ p(n)xn−1

= (∑i | 1≤ i≤ n : p(i)xi−1).

Since there are n coefficients, the last term is p(n)xn−1 and a typical term is p(i)xi−1.
Now, let’s do what we did before, and partition the quantifier:

y = p(1)+ p(2)x+ · · ·+ p(k−1)xk−2︸ ︷︷ ︸
(∑i | 1≤ i < k : p(i)xi−1)

+ p(k)xk−1 + p(k+1)xk + · · ·+ p(n)xn−1︸ ︷︷ ︸
(∑i | k ≤ i≤ n : p(i)xi−1)

∧1≤ k ≤ n+1

= (∑i | 1≤ i < k : p(i)xi−1)+(∑i | k ≤ i≤ n : p(i)xi−1)∧1≤ k ≤ n+1

From this, we can derive two obvious loop invariants:

Invariant 1: y = (∑i | 1≤ i < k : p(i)xi−1)∧1≤ k ≤ n+1,

which leads to an (algorithmic) Variant 1 that updates something like

y := y+ p(k)× xk−1

k := k+1

in the loop body and

Invariant 2: y = (∑i | k ≤ i≤ n : p(i)xi−1)∧1≤ k ≤ n+1

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://www.youtube.com/watch?v=j8FgHEiHdj0

3.5. Examples * to edX 139

which leads to Variant 2 that updates something like

k := k−1

y := y+ p(k)× xk−1

in the loop body. (We don’t guarantee this is exactly correct. Remember that Dijkstra may be watching over your
shoulder, so you would want to derive the update.)

The problem with the two variants mentioned above is that in each iteration of the loop, xk−1 must be evaluated,
which could be expensive. If you have some experience programming, you may observe that it could be good to have
a variable, z, that holds xk−1 every time through the loop. But we don’t just guess at such things. We derive loop
invariants. How do we systematically derive these loop invariants? Observe that

y = (∑i | 1≤ i < k : p(i)xi−1)+(∑i | k ≤ i≤ n : p(i)xi−1)∧1≤ k ≤ n+1

= (∑i | 1≤ i < k : p(i)xi−1)+(∑i | k ≤ i≤ n : p(i)xi−k)× xk−1∧1≤ k ≤ n+1
= (∑i | 1≤ i < k : p(i)xi−1)+(∑i | k ≤ i≤ n : p(i)xi−k)× z∧ z = xk−1∧1≤ k ≤ n+1

which then yields two loop invariants

Invariant 3: y = (∑i | 1≤ i < k : p(i)xi−1)∧ z = xk−1∧1≤ k ≤ n+1,

which leads to Variant 3 that updates something like

y := y+ p(k)× z

k := k+1

z := z× x

in the loop body and

Invariant 4: y = (∑i | k ≤ i≤ n : p(i)xi−1)∧ z = xk−1∧1≤ k ≤ n+1,

which leads to Variant 4 that updates something like

k := k−1

y := y+ p(k)× z

z := z/x

Again, we are doing this “quick and dirty”. You will want to derive the details for the algorithms!
Now there is one more invariant hidden in the expression

y = (∑i | 1≤ i < k : p(i)xi−1)+(∑i | k ≤ i≤ n : p(i)xi−k)× z∧ z = xk−1∧1≤ k ≤ n+1,

namely

Invariant 5: y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1.

It is this loop invariant that we allude at in the video and that we want you to derive as algorithmic Variant 5 and that
you will implement as function EvaluatePolynomialVariant5, in the next unit.

3.5.2 At last, you write your first code! * to edX

“... in order to drive home the message that this introductory programming course
is primarily a course in formal mathematics, we see to it that the programming
language in question has not been implemented on campus so that students are
protected from the temptation to test their programs.” – Edsger W. Dijkstra *
EWD1036

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
http://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

140 Week 3. Deriving Programs to be Correct

In this course, we have yet to program a single line of real code! The reason is that we don’t believe one should
write programs unless one has been equipped to derive a program to be correct. And now you are ready!

The MATLAB Live Script mentioned in the next video can be found in Unit 3.5.2 on the edX platform. Follow the
directions in that unit for uploading it to your MATLAB Online account.

* Watch Video on edX
* Watch Video on YouTube

In the following exercises, you will develop the loop guard, the initialization, and the loop body of Variant 5
corresponding to Invariant 5

Invariant 5: y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1.

for computing the polynomial

y = p(1)+ p(2)x+ p(3)x2 + · · ·+ p(n)xn−1

= (∑i | 1≤ i≤ n : p(i)xi−1).

Homework 3.5.2.1 At the end of the last video, you were asked to derive the loop guard G from{
Pinv∧¬G : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧¬G

}
{

R : (∑i | 1≤ i≤ n : p(i)xi−1)
}

Indicate which of the following is a correct loop guard G (there may be more than one...)

a) 1 < k.

b) k < n.

c) k 6= 1.

d) k 6= n.

Enter a correct loop guard in the Live Script.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://www.youtube.com/watch?v=fh7sZwJUTy4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://www.youtube.com/watch?v=utFZOlyQhc8

3.5. Examples * to edX 141

Homework 3.5.2.2 At the end of the last video, you were asked to derive the initialization command

k =
y =

to make{
Q : 0 < n

}
k :=

y :={
Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
correct. Indicate which of the following is a correct initialization.
(There may be more than one...)

a) k := n

y := p(n)

b) k := n+1

y := 0

c) k := n

y := 1

d) k := 0

y := 0

Enter a correct initialization command in the Live Script.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://www.youtube.com/watch?v=-uFbvXoBozc

142 Week 3. Deriving Programs to be Correct

Homework 3.5.2.3 At the end of the last video, you were asked to derive the commands in the loop body

k = k−1
y =

to make{
Pinv∧G : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧1 < k

}
k := k−1

y :=???{
Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
correct. Indicate which of the following is the correct choice for updating y. Hint: derive it systematically!

a) k := k−1

y := p(k)× xk−1 + y

b) k := k−1

y := p(k)+ y× x

c) k := k−1

y := y+ p(k−2)× xk−1

d) k := k−1

y := y+ p(k)× x

Enter a correct update to y in the Live Script and enjoy getting the right answer the first time!
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

With these homeworks you have discovered what is known in the United States as Horner’s rule for evaluating a
polynomial. It is what in practice is done to efficiently evaluate a polynomial. You may want to read the * Wikipedia
entry for Horner’s method (Horner’s rule) (search for “Horner’s method”).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://www.youtube.com/watch?v=J76PWBfcrOY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/3eed0ebd46244af0a814f7d29af521e4/2
https://www.youtube.com/watch?v=ISadoRfWMm8
https://en.wikipedia.org/

3.6. Enrichment * to edX 143

3.6 Enrichment * to edX

3.6.1 A conversation with Prof. David Gries * to edX

* Watch Video on edX
* Watch Video on YouTube

3.6.2 Dafny: a language and program verifier for functional correctness

“Dafny is a programming language with built-in specification constructs. The Dafny static program veri-
fier can be used to verify the functional correctness of programs.”

We believe you will enjoy and appreciate learning about Microsoft’s Dafny language and program verifier. The
following more advanced example for that project is closely related to what you learned this Week: * The Verification
Corner: Loop Invariants. This may lead you to investigate this project more [LINK].

3.7 Wrap Up * to edX

3.7.1 Additional exercises * to edX

In the second part of the course, we will focus on operations from linear algebra, first with vectors (stored in one
dimensional arrays) and later with matrices (stored in two dimensional arrays). To get this started, we now apply what
we have learned to the dot product (also known as the inner product) operations.

The dot product of vectors x and y of size n is often written as xT y, which links the operation to that of computing
the matrix-matrix multiplication (product) of a row vector xT with a column vector y, viewed as 1× n and n× 1
matrices, respectively. If you are a bit fuzzy on this operation, you may want to visit units 1.4.3 and 1.6.1-1.6.3 of our
MOOC titled “Linear Algebra: Foundations to Frontiers” (LAFF) offered on edX.

The operation is defined by

xT y = (∑i | 1≤ i≤ n : x(i)× y(i)),

where we start indexing at one, since we will want to implement it again with MATLAB. (In Week 4, we will briefly
revert back to starting our indexing at zero as we introduce a notation that avoids indexing altogether.) If the result is
stored in variable d, the postcondition is given by

d = (∑i | 1≤ i≤ n : x(i)× y(i)).

Notice that

d = (∑i | 1≤ i < k : x(i)× y(i))+(∑i | k ≤ i≤ n : x(i)× y(i))∧1≤ k ≤ n+1

and also

d = (∑i | 1≤ i≤ k : x(i)× y(i))+(∑i | k < i≤ n : x(i)× y(i))∧0≤ k ≤ n.

The subtle difference is to which of the two parts the element indexed by k belongs.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/2e009502d11c4af594034eea6f027662/1
https://www.youtube.com/watch?v=vYgjonmJzcM
https://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Loop-Invariants
https://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Loop-Invariants
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://www.edx.org/course/linear-algebra-foundations-frontiers-utaustinx-ut-5-05x

144 Week 3. Deriving Programs to be Correct

Homework 3.7.1.1 Identify which of the following are valid loop invariants for deriving a loop that computes the
dot product:

a) d = (∑i | 1≤ i < k : x(i)× y(i))∧1≤ k ≤ n+1.

b) d = (∑i | k ≤ i≤ n : x(i)× y(i))∧1≤ k ≤ n+1.

c) d = (∑i | 1≤ i≤ k : x(i)× y(i))∧0≤ k ≤ n.

d) d = (∑i | k < i≤ n : x(i)× y(i))∧0≤ k ≤ n.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 3.7.1.2 For the loop invariant

d = (∑i | 1≤ i < k : x(i)× y(i))∧1≤ k ≤ n+1

derive a correct program for computing xT y. You will want to use the worksheet in Figure 3.11 for this exercise.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 3.7.1.3 Implement the program from the last exercise using the Live Script in

LAFFPfC −> Assignments −> Week3 −> matlab −> DotVariant1.mlx.

For additional instructions, see Homework 3.5.3.3 on the edX platform.
Make sure you get the right answer the first time!

* SEE ANSWER
* DO EXERCISE ON edX

There are actually eight algorithms that could result from the loop invariants in Homework 3.7.1.1: For each of the
four invariants, you can update (increment or decrement) k before updating d or after updating d:

k :=???
d :=???

or

d :=???
k :=???

It is actually instructional to derive all eight. For some programs, the update to d involves x(k) and y(k) and for others
it involves x(k− 1) and y(k− 1) or x(k+ 1) and y(k+ 1). You can actually predict from the loop invariant which of
these will happen. In Weeks 4-6 we abstract away from indexing details, and these distinctions disappear.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://youtu.be/Z8HZSr1R8tY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/

3.7. Wrap Up * to edX 145


Q :

 wp(“SI”,Pinv) :


SI : Pinv :


while do

Pinv∧G :
∧



wp(“SU ;k := k 1”,Pinv) :


SU :

wp(“k := k 1”,Pinv) :


k := k 1Pinv :


endwhile Pinv∧¬G : ∧ ¬()


R :


Figure 3.11: Blank worksheet.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1

146 Week 3. Deriving Programs to be Correct

Homework 3.7.1.4 For the loop invariant

d = (∑i | k < i≤ n : x(i)× y(i))∧0≤ k ≤ n

derive a correct program for computing xT y. You will want to use the worksheet in Figure 3.11 for this exercise.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 3.7.1.5 The prefix operation takes an array x(0 : n− 1) and overwrites it so that x(k) equals the sum
of all previous elements in the array, including x(k):

(∀i | 0≤ i < n : x(i) = (∑ j | 0≤ j ≤ i : x̂(j))).

The precondition would be
(∀i | 0≤ i < n : x(i) = x̂(i))∧1≤ n.

Use the worksheet in Figure 3.11 to derive a correct loop for this operation, leveraging the loop invariant

Pinv : (∀i | 0≤ i < k : x(i) = (∑ j | 0≤ j ≤ i : x̂(j)))∧ (∀i | k ≤ i < n : x(i) = x̂(i))∧1≤ k ≤ n.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 3.7.1.6 To compare and contrast the effort needed to derive an algorithm vs. the effort required to
prove an algorithm correct, consider the same prefix operation but for the case where the indexing of the array
starts with 1:

(∀i | 1≤ i≤ n : x(i) = (∑ j | 1≤ j ≤ i : x̂(j))).

The precondition would now be
(∀i | 1≤ i≤ n : x(i) = x̂(i))∧1≤ n.

Prove the following program correct:

{Q : (∀i | 1≤ i≤ n : x(i) = x̂(i))∧1≤ n}
k := 1
{Pinv : (∀i | 1≤ i≤ k : x(i) = (∑ j | 1≤ j ≤ i : x̂(j)))∧ (∀i | k < i≤ n : x(i) = x̂(i))
∧1≤ k ≤ n}

while k < n
x(k+1) := x(k+1)+ x(k)
k := k+1

endwhile
{R : (∀i | 1≤ i≤ n : x(i) = (∑ j | 1≤ j ≤ i : x̂(j)))}

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/

3.7. Wrap Up * to edX 147

3.7.2 Summary * to edX

Developing an arbitrary command

Choose S to satisfy the following worksheet:

{Q : }

{Q⇒ wp(“S”,R)? }

{wp(“S”,R) : }

S :

{R : }

Developing the skip command

Check if Q⇒ R:

{Q : }

{Q⇒ R? }

S : skip

{R : }

Developing a simple assignment

Choose E to satisfy the following worksheet:

{Q : }

{Q⇒ wp(“S”,R)? }

{wp(“S”,R) : }

S : x := E

{R : }

Developing a sequence of assignments

Choose E , E(x), E(x,y), etc., to satisfy the following worksheet:

{Q : }

{Q⇒ wp(“S”,R)? }

{wp(“S0;S1;S2”,R) : }

S0 : x := E

S1 : y := E(x)

S2 : z := E(x,y)

{R : }

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/2

148 Week 3. Deriving Programs to be Correct

Developing an assignment to an array element

Isolate (by splitting the range) what is different in quantifiers that occur in the precondition and postcondition. Com-
pare and contrast.

Developing an if command

Choose G0, G1, etc., until Q⇒ G0∧G1∧·· ·. For each Gi develop

{Gi∧Q : }

{Gi∧Q⇒ wp(“Si”,R)? }

{wp(“Si”,R) : }

Si :

{R : }

Complete worksheet:

{
Q :

}
{

Q⇒ G0∨G1∨·· ·?
}

if

G0→

{G0∧Q : }

{G0∧Q⇒ wp(“S0”,R)? }

{wp(“S0”,R) : }

S0 :

{R : }

G1→

{G1∧Q) : }

{G1∧Q⇒ wp(“S1”,R)? }

{wp(“S1”,R) : }

S1 :

{R : }

· · ·

fi{
R :

}

3.7. Wrap Up * to edX 149

Developing an if command (special case){
Q :

}
{

Q⇒ G0∨G1?
}

if

G0→{G0∧Q : }
{G0∧Q⇒ wp(“S0”,G0∧R0)? }{

wp(“S0”,G0∧R0) :
}

S0 :{G0∧R0 : }
G1→{

G1∧Q) :
}

{G1∧Q⇒ wp(“S1”,G1∧R1)? }{
wp(“S1”,G1∧R1) :

}
S1 :{G1∧R1 : }

fi{
R : (G0∧R0)∨ (G1∧R1)

}

Developing a while loop

For a loop over an array or multiple arrays, specified by postcondition R with one or more quantifiers:

• Determine a logical loop index.

• Split the quantifier(s) in R using the loop index.

• Determine one or more loop invariants from the resulting predicate by answering the question “What constitutes
partial progress towards the result.”

• Pick a loop invariant that results.

• Determine the loop guard.

• Determine an initialization step.

• Determine whether to increment or decrement the loop counter in the loop body and whether to do so at the top
or bottom of the loop body.

• Derive the remainder of the loop body.

Assuming the loop index is updated at the bottom of the loop body, use the worksheet given on the next page.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1

150 Week 3. Deriving Programs to be Correct


Q :

 wp(“SI”,Pinv) :


SI Pinv :


while do

Pinv∧G :
∧



wp(“SU ;k := k 1”,Pinv) :


SU :

wp(“k := k 1”,Pinv) :


k := k 1Pinv :


endwhile Pinv∧¬G : ∧ ¬()


R :


3.7. Wrap Up * to edX 151

3.7.3 Why Dijkstra received the ACM Turing Award * to edX

Dijkstra received the ACM Turing Award in 1972

“For fundamental contributions to programming as a high, intellectual challenge; for eloquent insistence
and practical demonstration that programs should be composed correctly, not just debugged into correct-
ness; for illuminating perception of problems at the foundations of program design.”

What you hopefully have noticed in this week is that the thought process behind developing different parts of a
program can be made remarkably systematic. Key is thinking about programs themselves in a structured way
(which is why the advent of “structured programming” in the late 1950s was so important). In this course, we
then structure goal-oriented programming with “worksheets” for different occasions.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/c1b4a3d8234f48a79b582357be36af60/8ef3e4fc55c74a738bee1fa05b74f706/3

152 Week 3. Deriving Programs to be Correct

Part II

Application

153

Week 4
Matrix-Vector Operations

4.1 Opening Remarks * to edX

4.1.1 Launch * to edX

“How do we convince people that in programming simplicity and clarity –in short: what
mathematicians call “elegance”– are not a dispensable luxury, but a crucial matter that
decides between success and failure?” – Dijkstra * EWD648 (1972)

* Watch Video on edX
* Watch Video on YouTube

In the first part of the course, we used operations over one-dimensional arrays for many of our examples. We now
revisit some of these operations as we introduce new notation, developed as part of our FLAME project, that will make
derivation of algorithms, in our experience, less cumbersome. The true power of the notation will be seen when we
discuss operations with matrices, later this week and in the remainder of the course.

Let us consider the dot product discussed in Section 3.5: Given vectors x and y of size n≥ 0, compute

d = xT y

= (∑i | 0≤ i < n : x(i)× y(i))

An annotated algorithm that resulted from the techniques we discussed is given in Figure 4.1.
What do we notice? The vectors (arrays) x and y are inherently partitioned into two subvectors (subarrays):

 xT

xB

=



x(0)
...

x(k−1)

x(k)
...

x(n−1)


and

 yT

yB

=



y(0)
...

y(k−1)

y(k)
...

y(n−1)


.

Here the T refers to the Top part of the vectors and the B refers to the Bottom part of the vectors. We pronounce xT
and xB as “x-top” and “x-bottom”, respectively.

155

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD648.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://www.youtube.com/watch?v=hKeFyzSoYB8

156 Week 4. Matrix-Vector Operations

{
(0≤ n)

}
k := 0

d := 0 d = (∀i | 0≤ i < k : x(i)× y(i))∧ (0≤ k ≤ n)


while k < n do d = (∀i | 0≤ i < k : x(i)× y(i))∧ (0≤ k ≤ n)∧ (k < n)


d := d + x(k)× y(k)

k := k+1 d = (∀i | 0≤ i < k : x(i)× y(i))∧ (0≤ k ≤ n)


endwhile d = (∀i | 0≤ i < k : x(i)× y(i))∧ (0≤ k ≤ n)∧¬(k < n)

 d = (∑i | 0≤ i < n : x(i)× y(i))


Figure 4.1: Annotated algorithm for computing d = xT y.

4.1. Opening Remarks * to edX 157

With this, we can express the quantifiers involved in the derivation of the loop invariant more concisely:

d = xT y︷ ︸︸ ︷
d =

 xT

xB

T  yT

yB


︷ ︸︸ ︷
d =

xT
T yT︷ ︸︸ ︷

(∑i | 0≤ i < k : x(i)× y(k)) +

xT
ByB︷ ︸︸ ︷

(∑i | k ≤ i < n : x(i)× y(k))

Now the condition (0≤ k ≤ n) can be made implicit, since the subvectors xT , xB, yT , and yB are inherently subvectors
of x and y.

Homework 4.1.1.1 Match the predicate on the left with the corresponding predicate on the right:

(1) d = (∑i | 0≤ i < n : x(i)× y(i)) (a) d = xT
ByB

(2) d = (∑i | 0≤ i < k : x(i)× y(i))

+ (∑i | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n

(b) d = xT y

(3) d = (∑i | 0≤ i < k : x(i)× y(i))∧0≤ k ≤ n (c) d = xT
T yT + xT

ByB

(4) d = (∑i | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n (d) d = xT
T yT

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.1.1.2 In the annotated algorithm for computing d = xT y in Figure 4.1, place the following expres-
sions where they can replace the quantifiers. Use your intuition!

• d = xT y

• x→

 xT

xB

 and y→

 yT

yB

, where xT and yT have no elements

• d = xT
T yT

* SEE ANSWER
* DO EXERCISE ON edX

The problem is that even if this new notation captures how we think of the vectors more concisely, it is not clear
how the indexing with k and the update d := d + x(k)× y(k) interacts with this notation. Furthermore, we would like
to move on to algorithms over two dimensional arrays. These are the topics we explore this week.

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://www.youtube.com/watch?v=Qdb-FKdSdvk

158 Week 4. Matrix-Vector Operations

4.1.2 Outline Week 4 * to edX

4.1. Opening Remarks * to edX . 155
4.1.1. Launch * to edX . 155
4.1.2. Outline Week 4 * to edX . 158
4.1.3. What you will learn * to edX . 159

4.2. A Farewell to Indices * to edX . 160
4.2.1. More notation * to edX . 160
4.2.2. Deriving algorithms with the FLAME notation * to edX . 162
4.2.3. Typesetting algorithms with FLAME notation and LATEX * to edX 167
4.2.4. Representing (FLAME) algorithms in code * to edX . 168
4.2.5. The AXPY operation * to edX . 168

4.3. Algorithms over two-dimensional arrays (matrices) * to edX . 169
4.3.1. Some algorithms for matrix-vector multiplication * to edX 169
4.3.2. But you get so much more... * to edX . 172
4.3.3. The rank-1 update * to edX . 173
4.3.4. Why do we want multiple algorithms? * to edX . 174

4.4. Enrichment * to edX . 176
4.4.1. Related reading * to edX . 176

4.5. Wrap Up * to edX . 176
4.5.1. Additional exercises * to edX . 176
4.5.2. Summary * to edX . 179

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2

4.1. Opening Remarks * to edX 159

4.1.3 What you will learn * to edX

This is it! We enter the frontier. Reasoning starting with the goal is definitely the way to go. The problem you may
have noticed in Week 3 is that indices get in the way. Before, indices were where you would make many of your
programming errors. Now, you still find that it is easy to make similar mistakes in the quantifiers. So, how do we get
rid of those pesky indices? The answer is to think in terms of “parts and whole,” representing progress through arrays
and loops utilizing regions instead of quantifiers. Through abstraction and special notation, we hide indices and expose
strategies for finding invariants. As before, the invariants then guide the development of loop-based algorithms. We
call this the FLAME approach.

Upon completion of this week, you should be able to

• Abstract away from indices.

• Use FLAME notation to express the goal (postcondition), find the Partitioned Matrix Expression (PME), de-
termine invariants corresponding to a PME, and, with a worksheet, derive loop-based algorithms involving
traversing in one dimension.

• Use the Spark webpage to translate from algorithms to MATLAB code.

• Utilize Live Script to embed proofs of correctness in the MATLAB code.

• Recognize the value of having a family of algorithms that compute the same operation.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/ac03f8bdaef349b597ca6351a23092fc/3

160 Week 4. Matrix-Vector Operations

4.2 A Farewell to Indices * to edX

4.2.1 More notation * to edX

* Watch Video on edX
* Watch Video on YouTube

In the first part of the course, we used operations over one dimensional arrays for many of our examples. We now
revisit one of the simplest such operations as we introduce new notation that will make derivation of algorithms, in our
experience, less cumbersome. The true power of the notation will be seen when we discuss operations with matrices,
later this week and in the remainder of the course.

Let us, again, consider the copying of vector x into vector y. The annotated algorithm that resulted from the
techniques we discussed in Part I is given in Figure 4.2.

What do we notice? The vectors (arrays) x and y (and ŷ) are inherently partitioned into two subvectors (subarrays):

 xT

xB

=



x(0)
...

x(k−1)

x(k)
...

x(n−1)


and

 yT

yB

=



y(0)
...

y(k−1)

y(k)
...

y(n−1)


.

Here the subscript T refers to the Top part of vectors and the subscript B refers to the Bottom part of vectors.
With this, we can express the loop invariant more concisely: yT

yB

=

 xT

ŷB


︷ ︸︸ ︷

yT = xT︷ ︸︸ ︷
(∀i | 0≤ i < k : y(i) = x(i)) ∧

yB = ŷB︷ ︸︸ ︷
(∀i | k ≤ i < n : y(i) = ŷ(i))

Now the constraint 0 ≤ k ≤ n can be made implicit, since the subvectors xT , xB, yT , and yB are inherently subvectors
of x and y. Also, since we now hide the indexing into the arrays, it does not matter whether the arrays start with x(0)
and y(0) or x(1) and y(1).

We will use the functions m(A) and n(A) to extract the number of rows and number of columns in matrix A,
respectively.

Thus, n = m(x) = m(y) in this example, viewing the vectors as column vectors and hence the special case of a matrix
with m(x) = m(y) elements.

Next, let us further annotate the algorithm with some of the details of the derivation/proof of the loop body, as
given on Page 183, where we already add some equivalent annotations using the new notation, consistent with what
you discovered in the launch for this week.

What one notices there (and in all of the examples in Part I that dealt with vectors) is that, when the loop proceeds
through arrays from first to last element, inherently the first element of the bottom part is involved in computation

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://www.youtube.com/watch?v=QCg0VQOUB8E

4.2. A Farewell to Indices * to edX 161

and inherently a term related to that element has to be split from a quantifier as part of the proof. This suggests the
following additional notation:


x0

χ1

x2

=



x(0)
...

x(k−1)

x(k)

x(k+1)
...

x(n−1)


and


y0

ψ1

y2

=



y(0)
...

y(k−1)

y(k)

y(k+1)
...

y(n−1)


,

where χ1 (Greek lower case letter “chi”) and ψ1 (Greek lower case letter “psi”) now represent the top elements of xB
and yB, respectively.

Homework 4.2.1.1 In the annotated algorithm on Page 183 for copying vector x into vector y insert the expressions
where they make sense. Use your intuition!

a)

 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2


b) m(yT)< m(y) (three places).

c)

 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2



d)


y0

ψ1

y2

=


x0

ψ̂1

ŷ2

.

e)


y0

ψ1

y2

=


x0

χ1

ŷ2


f) ψ1 := χ1

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Once one understands how the two notations are related, the annotated algorithm using only the suggested new
notation can be given more concisely, as in Figure 4.3.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://www.youtube.com/watch?v=zYrpGxnymsI

162 Week 4. Matrix-Vector Operations

After one then removes the annotations that are part of the proof, one is left with the algorithm.

x→

 xT

xB

 and y→

 yT

yB


where xT and yT are empty

while m(yT)< m(y) do xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2


where χ1 and ψ1 are scalars

ψ1 := χ1 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2


endwhile

This notation, which hides the details of indexing, is commonly known as the FLAME notation.

Homework 4.2.1.2 Modify the annotated algorithm in Figure 4.3 “in the obvious way” so that it copies x into y
from the last element to the first element. You may want to do so by printing Figure 4.4.

* SEE ANSWER
* DO EXERCISE ON edX

4.2.2 Deriving algorithms with the FLAME notation * to edX

* Watch Video on edX
* Watch Video on YouTube

Let us now revisit the computation of the dot product of vector x with vector y, and, using the FLAME notation,
systematically derive the algorithms to be correct. We change the operation slightly, computing α := xT y+α instead.
Notice this is a slight generalization since α can always be initialized to zero before executing the algorithm to compute
α := xT y. You may want to print the * blank worksheet so that you write the steps down as the explanation progresses
for better understanding.

We use the lower case Greek letter α (alpha) because we mostly reserve lower case Roman letters to denote
vectors and lower case Greek letters to denote scalars, as an added visual cue.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=U35wFnhwZt8
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf

4.2. A Farewell to Indices * to edX 163

Step 1. Precondition and postcondition

* Watch Video on edX
* Watch Video on YouTube

We start with the precondition
α = α̂,

where (as before) the α̂ is used to denote the original contents of variable α. Implicit is the fact that the two vectors
are of equal size: 0≤ m(x) = m(y). The postcondition is given by

α = xT y+ α̂.

Step 2. A priori determination of loop invariants

* Watch Video on edX
* Watch Video on YouTube

We by now know that one tends to move through vectors (arrays) systematically, from top to bottom or bottom to
top. At an intermediate point, one reasons about regions. So, at the top of the loop body, the vectors are in a state
where they have been partitioned as

x→

 xT

xB

 and y→

 yT

yB

 .

From the earlier units in this week, we recognize this as helping us when splitting the range of the quantifier.
If we substitute this into the postcondition

α = xT y+ α̂

we get

α =

 xT

xB

T  yT

yB

+ α̂

and, by applying what we know about the dot product of partitioned vectors, we find that

α = xT
T yT + xT

ByB + α̂. (4.1)

(If you are not comfortable with computing the dot product of partitioned vectors, we suggest you visit * Units
1.6.1-1.6.3 of LAFF.)

We call the expression in (??) the Partioned Matrix Expression (PME), where here a vector can be viewed as a
special case of a matrix. It is a recursive definition of the operation, in terms of the partitioned operands.

This then allows us to come up with loop invariants much like we did when we were explicitly indexing into arrays:

Invariant 1: α = xT
T yT + α̂.

(The dot product has proceeded to where α has been updated with the dot product of xT and yT , traversing the vectors
from first to last element.)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=UY2Wew_OuWE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=f1qKCt9ggVQ
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+1T2017/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+1T2017/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1

164 Week 4. Matrix-Vector Operations

Invariant 2: α = xT
ByB + α̂.

(The dot product has proceeded to where α has been updated with the dot product of xB and yB, traversing the vectors
from last to first element.)

For the remainder of the discussion, let us pick Invariant 1. This leads to the partial “worksheet” in Figure 4.5.

Step 3: Determine the loop guard

* Watch Video on edX
* Watch Video on YouTube

We know that (Pinv∧¬G)⇒ R has to hold. Given the loop invariant we chose, we find that

(α = xT
T yT + α̂∧¬G)⇒ (α = xT y+ α̂)

must hold. The choice G : m(xT)< m(x) has the desired property (since the fact that xT is a subvector of x implicitly
means that 0≤ m(xT)≤ m(x) is TRUE and m(yT) = m(xT) by design).

Step 4: Determine the initialization

* Watch Video on edX
* Watch Video on YouTube

The initialization step partitions the vectors, which takes the place of the initialization of a loop index. The
precondition is given by

α = α̂.

The initialization inherently has the form

x→

 xT

xB

 , y→

 yT

yB


and has to leave the so exposed subvectors in a state where the loop invariant holds

α = xT
T yT + α̂

preferably without performing any real computation. Now, we notice that if xT and yT are empty, then xT
T yT equals

zero (summation over the empty range!) and hence we conclude that after the initialization the loop invariant holds.
Obviously, here we are building on the intuition that we developed in Week 3. We could formally derive the initializa-
tion.

This yields the worksheet as given in Figure 4.6.

Step 5: Progressing through the vectors

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=ioCadpoHivw
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=RvJrAhCndyw
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=drbnB_mpyjI

4.2. A Farewell to Indices * to edX 165

Because xT is initially empty (and hence so is yT) and the loop guard tells us that eventually xT must be all of x, we
conclude that every time through the loop the top element of the bottom subvector should be moved to the bottom of
the top subvector, for each of the vectors x and y. This leads us to the repartitionings in Step 5a and 5b of Figure 4.7.

Step 6: State before the update

* Watch Video on edX
* Watch Video on YouTube

After Step 5a, the loop invariant is still true. We can use this to determine the values of the exposed parts of the
subvectors:  xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


means that

α = xT
T yT + α̂

is now expressed as

α = xT
0 y0 + α̂ .

This is sort of like splitting the range. Here
α = xT

T yT + α̂

represents
α = (∑ | 0≤ i < k : x(i)× y(i))+ α̂

which can also be written as

α = (∑ | 0≤ i < k : x(i)× y(i))+ (∑ | k ≤ i < n : 0)︸ ︷︷ ︸
0

+ α̂

where the second quantifier captured that for future iterations nothing has been added yet (hence the 0). This in turn
can then be expressed as

α = (∑i | 0≤ i < k : x(i)× y(i))+ (∑i | i = k : 0)︸ ︷︷ ︸
0

+ (∑i | k < i < n : 0)︸ ︷︷ ︸
0

+ α̂

at which point the implicit “splitting of the range” becomes apparent.

Step 7: State after the update

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=RSt6xWy7Pf8
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=IXzI3bRduBU

166 Week 4. Matrix-Vector Operations

Similarly, in Step 7 we need to fill in

wp(“

 xT

xB

←


x0

χ1

x2

 ;

 yT

yB

←


y0

ψ1

y2

”,α = xT
T yT + α̂) :

α =

 x0

χ1

T  y0

ψ1

+ α̂

⇔
α = α = xT

0 y0 +χ1×ψ1 +α̂

which captures that

α = (∑i | 0≤ i < k : x(i)× y(i))+ x(k)× y(k)+(∑i | k < i < n : 0)+ α̂

The worksheet is now as given in Figure 4.8.

Step 8: Update

* Watch Video on edX
* Watch Video on YouTube

One now examines{
α = xT

0 y0 + α̂

}

{
α = xT

0 y0 +χ1×ψ1 +α̂

}
to conclude that the assignment

α := χ1×ψ1 +α

does the trick. This leaves us with the completed worksheet in Figure 4.9.
This is like comparing the state in Step 6, expressed with indices,

α = (∑i | 0≤ i < k : x(i)× y(i))+ (∑i | i = k : 0)︸ ︷︷ ︸
0

+ (∑i | k < i < n : 0)︸ ︷︷ ︸
0

+ α̂

to the state in Step 7, expressed with indices:

α = (∑i | 0≤ i < k : x(i)× y(i))+ x(k)× y(k)+ (∑i | k < i < n : 0)︸ ︷︷ ︸
0

+ α̂

to conclude that we should update
α := x(k)× y(k)+α.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=DNe6mo5ULKc

4.2. A Farewell to Indices * to edX 167

Algorithm

* Watch Video on edX
* Watch Video on YouTube

Finally, erasing all annotations, we are left with the correct algorithm, given in Figure 4.10.

Homework 4.2.2.1 Use the * blank worksheet to derive Variant 2 for computing the “sapdot” opera-
tion α := xT y + α, the algorithm corresponding to Invariant 2. (In theory, this worksheet is also in
LAFFPfC/Resources/BlankWorksheet.pdf. In practice, you may want to put a copy there yourself, since the
one that is there is not quite the same.)

* SEE ANSWER
* DO EXERCISE ON edX

4.2.3 Typesetting algorithms with FLAME notation and LATEX * to edX

* Watch Video on edX
* Watch Video on YouTube

One drawback of how we present our algorithms with the FLAME notation is that it takes considerably more room
and time to write them down. To overcome this, we suggest using LATEX. In Week 0 you presumably installed a tool,
TeXstudio, for writing LATEX documents. (Alternatively, use ShareLaTeX.com online.)

Homework 4.2.3.1 Follow the instructions in the video to duplicate Figure 4.9.

• Download sapdot unb var1 ws.tex and place it in LAFFPfC/Assignments/Week4/LaTeX/.

• Also download color flatex.tex and place it in the same directory.

• If you use sharelatex.com you will want to upload these files there.

• Use the mentioned “Spark” webpage. You may want to bookmark it!

It seems like the Spark webpage sometimes doesn’t update correctly. You may have to close the window and restart
at that point. You may also have to click “Reset Form” and then reload... It is a quick and dirty implementation.
Dijkstra would not approve!

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.2.3.2 Typeset the algorithm from Homework 4.2.2.1. Download sapdot unb var2 ws.tex and
place it in LAFFPfC/Assignments/Week4/LaTeX/. Make sure you “march” through the vectors in the correct
direction!

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/2
https://www.youtube.com/watch?v=K5-9Fl5bqQo
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/4
https://www.youtube.com/watch?v=qhuGCbD-ZfY
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week4/LaTeX/sapdot_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week4/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week4/LaTeX/sapdot_unb_var2_ws.tex
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/

168 Week 4. Matrix-Vector Operations

4.2.4 Representing (FLAME) algorithms in code * to edX

* Watch Video on edX
* Watch Video on YouTube

We now have a new notation for expressing algorithms. The problem is that a correct algorithm still has to be
translated into correct code. Programming bugs can be easily introduced as part of that translation. To overcome this,
we will use an * Application Programming Interface (API) that allows the code to closely resemble the algorithm.

Homework 4.2.4.1 Place the Live Script SapdotUnbVar1LS.mlx in directory LAFFPfC/Week4/matlab/ and fol-
low the instructions in the video to translate the algorithm in Figure 4.10 into code using the FLAME@lab API.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 4.2.4.2 Translate the algorithm from Homework 4.2.2.1 into code starting with the Live Script in

Assignments/Week4/matlab/Sapdot unb var2 LS.mlx

Make sure you “march” through the vectors in the correct order.
* SEE ANSWER

* DO EXERCISE ON edX

4.2.5 The AXPY operation * to edX

* Watch Video on edX
* Watch Video on YouTube

There is a important operations that we will encounter in the remainder of this course: The AXPY (a lpha times
x p lus y) operation defined by

y := αx+ y .

It is an operation supported by the BLAS, discussed in an enrichment in this week.

Homework 4.2.5.1 Derive a Partitioned Matrix Expression (PME) for computing y := αx+ y.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://www.youtube.com/watch?v=-4LBefwcVwU
https://en.wikipedia.org/wiki/Application_programming_interface
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week4/matlab/SapdotUnbVar1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://www.youtube.com/watch?v=DPRU8riF8fI
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/6
https://www.youtube.com/watch?v=872hEk5F_5c
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/6
https://www.youtube.com/watch?v=LdoEDMU0mF0

4.3. Algorithms over two-dimensional arrays (matrices) * to edX 169

Homework 4.2.5.2 Derive two loop invariants (the first for marching through the vector x from first to last element
and the second for marching from last to first element) for the AXPY operation y := αx+ y.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 4.2.5.3 Using the Worksheet derive the algorithm, Variant 1, corresponding to Invariant 1.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.2.5.4 Typeset the worksheet and algorithm corresponding to Invariant 1. For this, start by down-
loading axpy unb var1 ws.tex into Assignments/Week4/LaTeX/.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.2.5.5 Download the Live Script AxpyUnbVar1LS.mlx into Assignments/Week4/matlab/ and use
it to translate Variant 1 into code. If you feel energetic, add the annotations that record the proof of correctness.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.2.5.6 If you feel energetic, repeat the last homeworks with Invariant 2.
* SEE ANSWER

* DO EXERCISE ON edX

4.3 Algorithms over two-dimensional arrays (matrices) * to edX

4.3.1 Some algorithms for matrix-vector multiplication * to edX

If you find yourself a bit rusty on the details of how matrix-vector multiplication works, you will want to check
out * Week 3 of LAFF. (Indeed, you may want to start in Week 2, since linear transformations may be even
more of a mystery.)

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/6
https://www.youtube.com/watch?v=qoyncSNF-po
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Week4/LaTeX/axpy_unb_var1_ws.tex
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week4/matlab/AxpyUnbVar1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/5cfe477e41d8458898cefe9e432fa213/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+1T2017/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://www.youtube.com/watch?v=iN0lRYynDq8

170 Week 4. Matrix-Vector Operations

Step 1: Precondition and postcondition

Let us consider simple matrix-vector multiplication: y :=Ax+y. (It is often convenient to add to the result vector rather
than just computing Ax. You can always set y to the zero vector before computing y := Ax+ y.) The precondition is
that

y = ŷ

(and a number of terms regarding the relative sizes of A, x, and y, which we typically keep in mind but don’t state
explicitly). The postcondition is

y = Ax+ ŷ.

Step 2: Deriving loop invariants

When discussing operations with vectors, the choice of how to partition the operands (vectors) was pretty clear. There
is only one way to partition these. For matrices, tracking through the matrix leads to three options:

1. Partition the matrix into a top part and bottom part:

A→

 AT

AB

 ;

2. Partition the matrix into a left part and right part:

A→
(

AL AR

)
.

Here we pronounce AL and AR as “A left” and “A right”.

3. Partition the matrix into quadrants:

A→

 AT L AT R

ABL ABR

 .

We will see uses for the last option later this week. Let’s focus on the first one.
For operations with vectors, we partitioned the vectors and then substituted the result into the precondition and

postcondition. It is actually the substitution into the postcondition that is usually most telling. Let us partition

A→

 AT

AB


and let us substitute this into the postcondition y = Ax+ ŷ:

y =

 AT

AB

x

︸ ︷︷ ︸ AT x

ABx


+ ŷ.

This tells us that in order to add the result of Ax to ŷ, producing y, we need to also partition y and ŷ: yT

yB

=

 AT x

ABx

+

 ŷT

ŷB



4.3. Algorithms over two-dimensional arrays (matrices) * to edX 171

which leaves us with  yT

yB

=

 AT x+ ŷT

ABx+ ŷB

 .

This expresses the desired final result in terms of the partitioned matrices. Some of you may recognize it also as a
recursive definition of matrix-vector multiplication. Hidden in our notation are nested quantifiers. We have dubbed
this expression the Partitioned Matrix Expression (PME) for this operation.

A loop invariant represents a partial computation toward the final result. It is from the PME that we can now
identify loop invariants:

Invariant 1:

 yT

yB

=

 AT x+ ŷT

ABx+ŷB

. Notice that we “struck out” ABx, which is still vaguely visible in light gray.

This represents computation that will happen in future iterations of the loop.

Invariant 2:

 yT

yB

=

 AT x+ŷT

ABx+ ŷB

. Here, we “struck out” AT x.

Steps 3-8: Deriving variants

Hint: Matrix A will be repartitioned

 AT

AB

→


A0

aT
1

A2

. Here aT
1 represents the top row of AB. We use lower case

Roman letters to denote column vectors. The T indicates it is a transposed column vector (making it a row) and here
it is really part of a variable or label that denotes the row, aT

1 , rather than that it indicates the transposition operation.
This is sometimes a cause for confusion. Experience tells us that you will get used to it!

Homework 4.3.1.1 Derive and typeset the worksheet and algorithm corresponding to Invariant 1. A partial LATEX
document can be found in

Assigments/Week4/LaTeX/gemv unb var1.tex.

What operation do you recognize in the update step of the loop body?
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.3.1.2 Translate the algorithm from the last homework into code starting with the Live Script in

Assignments/Week4/matlab/gemv unb var1 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.3.1.3 If you feel energetic, derive the worksheet and algorithm for Invariant 2, and implement it
starting with the Live Script in

Assignments/Week4/matlab/gemv unb var2 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/

172 Week 4. Matrix-Vector Operations

4.3.2 But you get so much more... * to edX

* Watch Video on edX
* Watch Video on YouTube

A second set of loop invariants results from partitioning A→
(

AL AR

)
. If we substitute this into the postcondi-

tion y = Ax+ ŷ, we notice that x must also be “conformally” partitioned:

y =
(

AL AR

) xT

xB


︸ ︷︷ ︸

ALxT +ARxB

+ ŷ,

By “conformally” we mean that the operation is well-defined. In this case this means that the number of columns in
AL matches the number of elements in xT . This tells us that this time y needs not be partitioned. Again, this expresses
the desired final result in terms of the partitioned matrix and vectors. Some of you may recognize it also as a recursive
definition of matrix-vector multiplication. Again, hidden in our notation are nested quantifiers. It is an alternative
PME for this operation.

A loop invariant represents a partial computation toward the final result. It is from the PME that we can now
identify loop invariants:

Invariant 3: y = ALxT +ARxB+ŷ. We “struck out” ARxB, which is still vaguely visible in light gray. This represents
computation that will happen in future iterations of the loop.

Invariant 4: y = ALxT+ARxB + ŷ. Here, we “struck out” ALxT .

Steps 3-8: Deriving variants

Hint: Matrix A will be repartitioned
(

AL AR

)
→
(

A0 a1 A2

)
. Here a1 represents the left-most column of AR.

Homework 4.3.2.1 Derive and typeset the worksheet and algorithm corresponding to Invariant 3. A partial LATEX
document can be found in

Assigments/Week4/LaTeX/gemv unb var3.tex.

What operation do you recognize in the update step of the loop body?
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.3.2.2 Translate the algorithm from the last homework into code starting with the Live Script in

Assignments/Week4/matlab/gemv unb var3 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/3
https://www.youtube.com/watch?v=TumaGS1aEcs
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/

4.3. Algorithms over two-dimensional arrays (matrices) * to edX 173

Homework 4.3.2.3 If you feel energetic, derive the worksheet and algorithm for Invariant 4, and implement it
starting with the Live Script in

Assignments/Week4/matlab/gemv unb var4 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

4.3.3 The rank-1 update * to edX

* Watch Video on edX
* Watch Video on YouTube

Another important operation in linear algebra is the rank-1 update: A := A+ xyT , where A is a matrix and x and y
are vectors. The reason for the name is that xyT is a matrix of rank at most one and it updates A. (For the linear algebra
inclined: Each column is a multiple of the vector x and each row is a multiple of the row vector yT . Hence there is at
most one linearly independent column which means the rank is at most one.) In the BLAS alphabet soup that is used
to name operations, this is known as a ge neral r ank-1 update (GER).

Homework 4.3.3.1 Derive two different PMEs for this operation. Hint: Partition A in two different ways.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.3.3.2 Derive and typeset the worksheet and algorithm corresponding to Invariant 1. A partial LATEX
document can be found in

Assigments/Week4/LaTeX/gemr unb var1.tex.

What operation do you recognize in the update step of the loop body?
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.3.3.3 Translate the algorithm from the last homework into code starting with the Live Script in

Assignments/Week4/matlab/ger unb var1 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.3.3.4 If you feel energetic, derive the worksheet and algorithm for Invariant 2, and implement it
starting with the Live Script in

Assignments/Week4/matlab/ger unb var2 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/5
https://www.youtube.com/watch?v=SAJagSQ2RVE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/

174 Week 4. Matrix-Vector Operations

Homework 4.3.3.5 Derive and typeset the worksheet and algorithm corresponding to Invariant 3. A partial LATEX
document can be found in

Assigments/Week4/LaTeX/ger unb var3.tex.

What operation do you recognize in the update step of the loop body?
* SEE ANSWER

* DO EXERCISE ON edX

Homework 4.3.3.6 Translate the algorithm from the last homework into code starting with the Live Script in

Assignments/Week4/matlab/ger unb var3 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 4.3.3.7 If you feel energetic, derive the worksheet and algorithm for Invariant 4, and implement it
starting with the Live Script in

Assignments/Week4/matlab/ger unb var4 LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

4.3.4 Why do we want multiple algorithms? * to edX

* Watch Video on edX
* Watch Video on YouTube

Notice that you derived the algorithm for computing matrix-vector multiplication without first trying a few prob-
lems to get the feel for the computation. That is goal-oriented programming: You derive from specification. For
matrix-vector multiplication, this yielded four algorithms, two of which are summarized in Figure 4.11. The FLAME
notation allows one to easily compare and contrast these algorithms.

Homework 4.3.4.1 Use GEMV UNB VAR1 to compute
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+


3

1

0

=

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/7
https://www.youtube.com/watch?v=QUoh5oaOnJs
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/

4.3. Algorithms over two-dimensional arrays (matrices) * to edX 175

Homework 4.3.4.2 Use GEMV UNB VAR3 to compute
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+


3

1

0

=

* SEE ANSWER
* DO EXERCISE ON edX

Now, MATLAB (as do many programming languages and software libraries used in high-performance scientific
computing) stores matrices in column-major order, which means that a matrix


1 −1 2

−2 2 0

−1 1 −2



is stored in memory by stacking columns:

1

−2

−1

−1

2

1

2

0

−2

Computation tends to be more efficient if one accesses memory contiguously. This means that an algorithm that
accesses A by columns often computes the answer faster than one that accesses A by rows. Other languages store
matrices in row-major order, which stores matrices by rows. In that case the algorithm that accesses the matrix by
rows is typically more efficient (will complete faster).

Homework 4.3.4.3 Which algorithm is likely more efficient when the matrix is stored in column-major order,
gemv unb var1 or gemv unb var3?
Which algorithm is likely more efficient when the matrix is stored in row-major order, gemv unb var1 or
gemv unb var3?

* SEE ANSWER
* DO EXERCISE ON edX

Why finding multiple algorithms is important will become progressively clearer as Weeks 5 and 6 unfold, espe-
cially when you spend some time with the enrichments.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/199154b9740c46dd87ea192099455715/

176 Week 4. Matrix-Vector Operations

4.4 Enrichment * to edX

4.4.1 Related reading * to edX

The Basic Linear Algebra Subprograms (BLAS) are an interface to linear algebra operations that are commonly used
in scientific computing libraries. The operations identified for this interface inlude some we have already discussed:
the dot product, the ”axpy” operation, matrix-vector multiplication and rank-1 update. Others you will learn about in
future weeks.

An overview of the BLAS can be found in

Robert van de Geijn and Kazushige Goto, ”BLAS (Basic Linear Algebra Subprograms)”, Encyclopedia
of Parallel Computing, Part 2, Pages 157-164. 2011.

If you don’t have access to this through your university’s library, read a draft of this article available from the LAFF-On
unit on edX.

The original papers, cited in that article, are

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, ”Basic Linear Algebra Subprograms for Fortran Usage,”
ACM Transactions on Mathematical Software, 5 (1979) 305-325.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, ”An Extended Set of FORTRAN Basic
Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, 14 (1988) 1-17.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I Duff, ”A Set of Level 3 Basic Linear Algebra Subpro-
grams,” ACM Transactions on Mathematical Software, 16 (1990) 1-17.

The style of coding that we use is at the core of our FLAME project and was first published in

John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn, ”FLAME: Formal
Linear Algebra Methods Environment,” ACM Transactions on Mathematical Software, 27 (2001) 422-
455.

Paolo Bientinesi, Enrique S. Quintana-Orti, and Robert A. van de Geijn, ”Representing linear algebra
algorithms in code: the FLAME application program interfaces,” ACM Transactions on Mathematical
Software, 31 (2005) 27-59.

These last two papers can be accessed for free by visiting http://www.cs.utexas.edu/˜flame/web/publications.
html.

4.5 Wrap Up * to edX

4.5.1 Additional exercises * to edX

In this unit, we give a large number of vector-vector (level-1 BLAS) and matrix-vector (level-2 BLAS) operations for
which you may want to try deriving algorithms. For the matrix-vector operations that involve symmetric or triangular
matrices, you may want to wait until after you have finished Section 5.2.

Level-1 BLAS (vector-vector) operations

SAPDOT.
Earlier this week, you already derived algorithms for the SAPDOT (scalar alpha plus dot product) operation:

α := xT y+α,

where x and y are column vectors. For completeness, you would want to derive algorithms for the cases where

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/521fe90445f2421c90ac1873061cfd17/1
http://www.cs.utexas.edu/~flame/web/publications.html
http://www.cs.utexas.edu/~flame/web/publications.html
http://www.cs.utexas.edu/~flame/web/publications.html
http://www.cs.utexas.edu/~flame/web/publications.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

4.5. Wrap Up * to edX 177

• x and y are both row vectors,

• x is a row vector and y is a column vector, and

• x is a column vector and y is a row vector.

We might want to name the resulting algorithms and functions SAPDOT CC UNB VARX(X, Y, ALPHA), SAPDOT CR UNB VARX(
x, y, alpha), SAPDOT RC UNB VARX(x, y, alpha), and SAPDOT RR UNB VARX(x, y, alpha), where CC, CR, RC, and
RR indicate whether x and y are column vector and/or row vectors. The X in VARX would then be replaced with a
variant number.

AXPY.
Earlier this week, you also already derived algorithms for the AXPY (alpha times x plus y) operation:

y := αx+ y,

where x and y are column vectors. For completeness, you would want to derive algorithms for the cases where

• x and y are both row vectors,

• x is a row vector and y is a column vector, and

• x is a column vector and y is a row vector.

We might want to name the resulting algorithms and functions
AXPY CC UNB VARX(ALPHA, X, Y), AXPY CR UNB VARX(ALPHA, X, Y),
AXPY RC UNB VARX(ALPHA, X, Y), and AXPY RR UNB VARX(ALPHA, X, Y).

COPY.
The COPY operation copies vector x into vector y:

y := x.

In the obvious way this might yield
functions COPY CC UNB VARX(X, Y), COPY CR UNB VARX(X, Y),
COPY RC UNB VARX(X, Y), and COPY RR UNB VARX(X, Y).

SWAP.
The SWAP operation swaps the contents of vectors x and y:

x,y := y,x.

In the obvious way this might yield
functions SWAP CC UNB VARX(X, Y), SWAP CR UNB VARX(X, Y),
SWAP RC UNB VARX(X, Y), and SWAP RR UNB VARX(X, Y).

fused SAPDOT/AXPY.
An operation that is at the core of what turns out to be the best implementation for symmetric matrix-vector

multiplication (mentioned below and the topic of Sections 5.1 and 5.2 in Week 5) is a fused SAPDOT/AXPY operation: y := αx+ y

β := xT z+β

where x, y, and z are vectors, and α and β are scalars. The goal is to find a variant that “marches” through the elements
of x only once. (Why will become clear in Week 5.) This might yield the function SAPDOT AXPY UNB VARX(ALPHA,
X, Y, Z, BETA).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

178 Week 4. Matrix-Vector Operations

Level-2 BLAS (matrix-vector) operations

These operations involve a matrix and one or more vectors. This time, you can assume that the vectors are column
vectors. The reason? If they are not, you can start by copying them into a column vector and/or finish by copying
the result from a column vector. Since that requires O(n) memory operations (where n is the size of the vector) and
the matrix-vector operation typically requires O(mn) floating point and memory operations, the cost of the copy is not
significant.

GEMV.
Earlier this week, you already derived algorithms for the GEMV (general matrix vector multiplication) operation:

y := Ax+ y,

where x and y are column vectors and A is a matrix of appropriate size. This is a special case of the operation that is
part of the BLAS, which includes all of the following operations:

y := αAx+βy

y := αAT x+βy.

(Actually, it includes even more if the matrix and vectors can be complex valued). The key is that matrix A not be
explicitly transposed because of the memory operations and/or extra space that would require. We suggest you ignore
α and β. This then yields the algorithms/functions GEMV N UNB VARX(A, X, Y) and GEMV T UNB VARX(A, X,
Y), where the N and T indicate whether A is not transposed or transposed.

GER.
Earlier this week, you already derived algorithms for the GER (general rank-one) update :

A := xyT +A,

where x and y are column vectors and A is a matrix of appropriate size. This yields the algorithms/function GER UNB VARX(A,
X, Y).

SYMV.
Week 5 starts with two sections on symmetric matrix-vector multiplication, y := Ax+ y where A is symmetric and

therefore only stored in the lower triangular part of A. Obviously, the matrix could instead be stored in the upper
trianglar part of A. The key is that the symmetric matrix A should not be explicitly formed. Instead, one computes
with the data where it is stored. . This then yields the algorithms/functions SYMV L UNB VARX(A, X, Y) and
SYMV U UNB VARX(A, X, Y), where the L and U indicate whether A is stored in the lower or upper triangular part of
A. You will find out that there are eight algorithmic variants for each of these cases.

You could try to derive them before you start Week 5! (We recommend you move on and then return to the
remainder of these operations if you want more practice.)

SYR.
If matrix A is symmetric, then so is the result of what is known as a symmetric rank-1 update (SYR): A :=

xxT +A. In this case, only the lower or upper triangular part of A needs to be stored and updated. This then yields the
algorithms/functions SYR L UNB VARX(X, A) and SYR U UNB VARX(X, A), where the L and U indicate whether
A is stored in the lower or upper triangular part of A.

SYR2.
Similarly, if matrix A is symmetric, then so is the result of what is known as a symmetric rank-2 update (SYR2):

A := xyT + yxT +A. Again, only the lower or upper triangular part of A needs to be stored and updated. This then
yields the algorithms/functions SYR2 L UNB VARX(X, Y, A) and SYR2 U UNB VARX(X, Y, A), where the L and U
indicate whether A is stored in the lower or upper triangular part of A.

4.5. Wrap Up * to edX 179

TRMV.
Another special case of matrix-vector multiplication is given by y := Ay, where A is (lower or upper) triangular. It

turns out that the output can overwrite the input vector y if the computation is carefully ordered. Actually, there is a
whole family of triangular matrix-vector multiplications:

y := Ly

y := LT y

y := Uy

y := UT y

where L is a lower triangular (possibly implicitly unit lower triangular) and U is an upper triangular (possibly implicitly
unit upper triangular). Here unit triangular means the diagonal elements of the matrix are implicitly ones (unit).
Implicit means the ones are not stored. This then yields the algorithms/functions

• TRMV LNN UNB VARX(L, Y) where LNN stands for lower triangular, no transpose, non unit diagonal,

• TRMV LNU UNB VARX(L, Y) where LNU stands for lower triangular, no transpose, unit diagonal,

• TRMV LTN UNB VARX(L, Y) where LTN stands for lower triangular, transpose, non unit diagonal,

• TRMV LTU UNB VARX(L, Y) where LTU stands for lower triangular, transpose, unit diagonal,

• TRMV UNN UNB VARX(L, Y) where UNN stands for upper triangular, no transpose, non unit diagonal,

• TRMV UNU UNB VARX(L, Y) where UNU stands for upper triangular, no transpose, unit diagonal,

• TRMV UTN UNB VARX(L, Y) where UTN stands for upper triangular, transpose, non unit diagonal,

• TRMV UTU UNB VARX(L, Y) where UTU stands for upper triangular, transpose, unit diagonal.

(You may want to wait until after Week 6 to do this operation.)

TRSV.
The final matrix-vector operation solves Ax = y where A is triangular, and the solution x overwrites y. We discuss

this operation in detail in Week 6.

4.5.2 Summary * to edX

As discussed in the “opener” of this week, algorithms over two dimensional arrays (matrices) are complicated by the
fact that they typically require double nested loops. This makes specifying the operation trickier and, if the algorithm
uses explicit indexing, the opportunity for error greater, even if one uses the techniques we discussed in Part I of the
course.

We are going to see how the FLAME notation comes to the rescue. But, in order to be able to hide the details
of indices, we need to review (briefly) how operations that involve matrices and vectors act when those matrices and
vectors are partitioned into submatrices and subvectors.

The good news is that we only need to be able to reason about matrices and vectors that are partitioned into
two parts (like the Top and Bottom we saw in the last section for vectors) or quadrants. What you need to know is
summarized in Figure 4.12.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2

180 Week 4. Matrix-Vector Operations

We previously discussed the convention that we usually use

• Lower case Greek letters for scalars.

• Lower case Roman letters for (column) vectors.

We now add the convention that we will use

• Upper case Roman letters for matrices.

4.5. Wrap Up * to edX 181

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

182 Week 4. Matrix-Vector Operations

{
(∀i | 0≤ i < n : y(i) = ŷ(i))∧ (0≤ n)

}
k := 0 (∀i | 0≤ i < k : y(i) = x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k ≤ n)


while k < n do(∀i | 0≤ i < k : y(i) = x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k ≤ n) ∧ (k < n)


y(k) := x(k)

k := k+1(∀i | 0≤ i < k : y(i) = x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k ≤ n)


endwhile (∀i | 0≤ i < k : y(i) = x(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i))

∧ (0≤ k ≤ n) ∧¬(k < n)

{
(∀i | 0≤ i < n : y(i) = x(i))

}
Figure 4.2: Annotated algorithm for copying x into y, from first element to last element.

4.5. Wrap Up * to edX 183

{
(∀i | 0≤ i < n : y(i) = ŷ(i))∧ (0≤ n) y = ŷ

}

k := 0 x→

 xT

xB

 and y→

 yT

yB

 where xT and yT are empty


(∀i | 0≤ i < k : y(i) = x(i))∧
(∀i | k ≤ i < n : y(i) = ŷ(i))∧ (0≤ k ≤ n)

 yT

yB

=

 xT

ŷB




while k < n do
Pinv ∧ (k < n) :

(∀i | 0≤ i < k : y(i) = x(i))∧
(∀i | k ≤ i < n : y(i) = ŷ(i))∧ (0≤ k ≤ n)

∧ (k < n)

 yT

yB

=

 xT

ŷB

∧



Pinv ∧ (k < n) with k term split off) :

(∀i | 0≤ i < k : y(i) = x(i)) ∧ ((y(k) = ŷ(k))∧
(∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n)∧ (k < n)


S : y(k) := x(k)

wp(“k := k+1”,Pinv) (with k term split off) :

(∀i | 0≤ i < k : y(i) = x(i))∧ (y(k) = x(k))

∧(∀i | k+1≤ i < n : y(i) = ŷ(i))∧ (0≤ k+1≤ n)


k := k+1

(∀i | 0≤ i < k : y(i) = x(i))∧
(∀i | k ≤ i < n : y(i) = ŷ(i))∧ (0≤ k ≤ n)

 yT

yB

=

 xT

ŷB




endwhile
(∀i | 0≤ i < k : y(i) = x(i))∧
(∀i | k ≤ i < n : y(i) = ŷ(i))∧ (0≤ k ≤ n)

∧¬(k < n)

 yT

yB

=

 xT

ŷB

∧¬()

{
(∀i | 0≤ i < n : y(i) = x(i)) y = x

}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

184 Week 4. Matrix-Vector Operations

{
y = ŷ

}
x→

 xT

xB

 and y→

 yT

yB


where xT and yT are empty
 yT

yB

=

 xT

ŷB




while m(yT)< m(y) do
 yT

yB

=

 xT

ŷB

∧ (m(yT)< m(y))

 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2


where χ1 and ψ1 are scalars
 yT

yB

=

 xT

ŷB

 with split range:


y0

ψ1

y2

=


x0

ψ̂1

ŷ2




ψ1 := χ1wp(“

 xT

xB

 :=


x0

χ1

x2

 ;

 yT

yB

 :=


y0

ψ1

y2

”,

 yT

yB

=

 xT

ŷB

) :


y0

ψ1

y2

=


x0

χ1

ŷ2




 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2



 yT

yB

=

 xT

ŷB

 
endwhile
 yT

yB

=

 xT

ŷB

∧¬(m(yT)< m(y))

{
y = x

}

Figure 4.3: Annotated algorithm for copying x into y from the first element to the last element, using the FLAME
notation.

4.5. Wrap Up * to edX 185

{
y = ŷ

}

where


while do


where








endwhile
{

y = x
}

Figure 4.4: Blank worksheet for Homework 4.2.1.2.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

186 Week 4. Matrix-Vector Operations

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

2
{

α = xT
T yT + α̂

}
3 while m(xT)< m(x) do

2,3
{

α = xT
T yT + α̂∧m(xT)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

6
{

α = xT
0 y0 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = xT
0 y0 + α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

T yT + α̂
}

endwhile

2,3
{

α = xT
T yT + α̂∧¬(m(xT)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.5: Partial derivation of algorithm for computing α := xT y+α after Step 2.

4.5. Wrap Up * to edX 187

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

2
{

α = xT
T yT + α̂

}
3 while m(xT)< m(x) do

2,3
{

α = xT
T yT + α̂∧m(xT)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

6
{

α = xT
0 y0 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = xT
0 y0 + α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

T yT + α̂
}

endwhile

2,3
{

α = xT
T yT + α̂∧¬(m(xT)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.6: Partial derivation of algorithm for computing α := xT y+α after Step 4.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

188 Week 4. Matrix-Vector Operations

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

2
{

α = xT
T yT + α̂

}
3 while m(xT)< m(x) do

2,3
{

α = xT
T yT + α̂∧m(xT)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

6
{

α = xT
0 y0 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = xT
0 y0 + α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

T yT + α̂
}

endwhile

2,3
{

α = xT
T yT + α̂∧¬(m(xT)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.7: Partial derivation of algorithm for computing α := xT y+α after Step 5.

4.5. Wrap Up * to edX 189

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

2
{

α = xT
T yT + α̂

}
3 while m(xT)< m(x) do

2,3
{

α = xT
T yT + α̂∧m(xT)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

6
{

α = xT
0 y0 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = xT
0 y0 +χ1×ψ1 +α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

T yT + α̂
}

endwhile

2,3
{

α = xT
T yT + α̂∧¬(m(xT)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.8: Partial derivation of algorithm for computing α := xT y+α after Step 7.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

190 Week 4. Matrix-Vector Operations

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

2
{

α = xT
T yT + α̂

}
3 while m(xT)< m(x) do

2,3
{

α = xT
T yT + α̂∧m(xT)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

6
{

α = xT
0 y0 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = xT
0 y0 +χ1×ψ1 +α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

T yT + α̂
}

endwhile

2,3
{

α = xT
T yT + α̂∧¬(m(xT)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.9: Completed worksheet for computing α := xT y+α.

4.5. Wrap Up * to edX 191

Algorithm: α := xT y+α

x→

 xT

xB

 , y→

 yT

yB


where xT has 0 rows, yT has 0 rows

while m(xT)< m(x) do xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 element, ψ1 has 1 element

α := χ1×ψ1 +α xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.10: Algorithm for computing α := xT y+α from first element to last element.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

192 Week 4. Matrix-Vector Operations

Algorithm: y := GEMV UNB VAR1(A,x,y)

A→

 AT

AB

 , y→

 yT

yB


where AT has 0 rows, yT has 0 rows

while m(AT)< m(A) do AT

AB

→


A0

aT
1

A2

 ,

 yT

yB

→


y0

ψ1

y2


where a1 has 1 row, ψ1 has 1 row

ψ1 := aT
1 x+ψ1 AT

AB

←


A0

aT
1

A2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := GEMV UNB VAR3(A,x,y)

A→
(

AL AR

)
, x→

 xT

xB


where AL has 0 columns, xT has 0 rows

while n(AL)< n(A) do

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→


x0

χ1

x2


where a1 has 1 column, χ1 has 1 row

y := χ1a1 + y

A→
(

AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←


x0

χ1

x2


endwhile

Figure 4.11: Variants 1 (top) and 3 (bottom) for computing y := Ax+ y in FLAME notation.

4.5. Wrap Up * to edX 193

Consider vectors x and y that are partitioned like x→

 xT

xB

 and y→

 yT

yB

, and matrices A, B, and C that have

been partitioned like A→

 AT

AB

, B→
(

BL BR

)
, and C →

 CT L CT R

CBL CBR

. Then, provided the sizes of the

matrices and vectors are conformal (sizes match correctly),

xT =

 xT

xB

T

=
(

xT
T xT

B

)
AT =

 AT

AB

T

=
(

AT
T AT

B

)

BT =
(

BL BR

)T
=

 BT
L

BT
R

 CT =

 CT L CT R

CBL CBR

T

=

 CT
T L CT

BL

CT
T R CT

BR


Ax =

 AT

AB

x =

 AT x

ABx

 xT B = xT
(

BL BR

)
=
(

xT BL xT BR

)

Bx =
(

BL BR

) xT

xB

= BLxT +BRxB xT A =
(

xT
T xT

B

) AT

AB

= xT
T AT + xT

BBB

Cx =

 CT L CT R

CBL CBR

 xT

xB

=

 CT LxT +CT RxB

CBLxT +CBRxB


xTC =

(
xT

T xT
B

) CT L CT R

CBL CBR

=
(

xT
TCT L + xT

BCBL xT
TCT R + xT

BCBR

)
 xT

xB

yT =

 xT yT

xByT

 x

 yT

yB

T

=
(

xyT
T xyT

B

)
 xT

xB

 yT

yB

T

=

 xT

xB

(yT
T yT

B

)
=

 xT yT
T xT yT

B

xByT
T xByT

B


Figure 4.12: Summary of partitioned matrix-vector multiplication and rank-1 update (outer product).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1

194 Week 4. Matrix-Vector Operations

Week 5
Matrix-Matrix Operations

5.1 Opening Remarks * to edX

5.1.1 Launch * to edX

* Watch Video on edX
* Watch Video on YouTube

In order to truly appreciate what the FLAME notation and API bring to the table, it helps to look at a programming
problem that on the surface seems straightforward, but turns out to be trickier than expected. When programming with
indices, coming up with an algorithm turns out to be relatively simple. But, when the goal is to, for example, access
memory in a favorable pattern, finding an appropriate algorithm is sometimes more difficult.

In this launch, you experience this by executing algorithms from last week by hand. Then, you examine how
these algorithms can be implemented with for loops and indices. The constraint that the matrices are symmetric is
then added into the mix. Finally, you are asked to find an algorithm that takes advantage of symmetry in storage yet
accesses the elements of the matrix in a beneficial order. The expectation is that this will be a considerable challenge.

Homework 5.1.1.1 Compute 
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+


3

1

0

=

using algorithmic Variant 1 given in Figure 5.1.
* SEE ANSWER

* DO EXERCISE ON edX

In Figure 5.1 we show Variant 1 for y := Ax+y in FLAME notation and below it, in Figure 5.2, a more traditional
implementation in MATLAB. To understand it easily, we use the convention that the index i is used to keep track of
the current row. In the algorithm expressed with FLAME notation this would be aT

1 . The j index is then used for the
loop that updates

ψ1 := aT
1 x+ψ1,

which you hopefully recognize as a dot product (or, more precisely, a sapdot) operation.

195

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://www.youtube.com/watch?v=eN4gSJ2HfPs
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/

196 Week 5. Matrix-Matrix Operations

Algorithm: y := GEMV UNB VAR1(A,x,y)

A→

 AT

AB

 , y→

 yT

yB


where AT has 0 rows, yT has 0 elements

while m(AT)< m(A) do AT

AB

→


A0

aT
1

A2

 ,

 yT

yB

→


y0

ψ1

y2


where aT

1 is a row, ψ1 is a scalar

ψ1 := aT
1 x+ψ1 AT

AB

←


A0

aT
1

A2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 5.1: Variant 1 for computing y := Ax+ y in FLAME notation.

function [y_out] = MatVec1(A, x, y)
% Compute y := A x + y

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that x is a vector size n and y is a
% vector of size m...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for i = 1:m

for j=1:n
y_out(i) = A(i,j) * x(j) + y_out(i);

end
end

end

LAFFPfC/Assignments/Week5/matlab/MatVec1.m

Figure 5.2: Function that computes y := Ax+ y, returning the result in vector y out.
.

5.1. Opening Remarks * to edX 197

function [y_out] = MatVec1(A, x, y)
% Compute y := A x + y

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that x
is a vector size n and y is a

% vector of size m...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for i = 1:m

for j=1:n
y_out(i) = A(i,j) * x(j) +

y_out(i);
end

end

end

LAFFPfC/Assignments/Week5/matlab/MatVec1.m

function [y_out] = SymMatVec1(A, x, y)
% Compute y := A x + y, assuming A is

symmetric and stored in lower
% triangular part of array A.

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that m
= n, x is a vector size n and y is a

% vector of size n...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for i = 1:n

for j=1:i
y_out(i) = A(i,j) * x(j) +

y_out(i);
end
for j=i+1:n

y_out(i) = A(j,i) * x(j) +
y_out(i);
end

end

end

LAFFPfC/Assignments/Week5/matlab/SymMatVec1.m

Figure 5.3: Functions that compute y := Ax+y, returning the result in vector y out. On the right, matrix A is assumed
to be symmetric and only stored in the lower triangular part of array A.

Homework 5.1.1.2 Download the Live Script MatVec1LS.mlx into Assignments/Week5/matlab/ and follow
the directions in it to execute function MatVec1.

* SEE ANSWER
* DO EXERCISE ON edX

Now, if m = n then matrix A is square and if the elements indexed with i, j and j, i are equal (A(i, j) = A(j, i)) then
it is said to be a symmetric matrix.

Homework 5.1.1.3 Knowing that the matrix is symmetric, compute
1 ? ?

−2 2 ?

−1 1 −2




2

−1

1

+


3

1

0

=

using algorithmic Variant 1 given in Figure 5.1.
* SEE ANSWER

* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/MatVec1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/

198 Week 5. Matrix-Matrix Operations

Homework 5.1.1.4 Download the Live Script SymVec1LS.mlx into Assignments/Week5/matlab/ and follow
the directions in it to change the given function to only compute with the lower triangular part of the matrix.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

Now, MATLAB stores matrices in column-major order, which means that a matrix
1 −1 2

−2 2 0

−1 1 −2


is stored in memory by stacking columns:

1

−2

−1

−1

2

1

2

0

−2

Computation tends to be more efficient if one accesses memory contiguously. This means that an algorithm that
accesses A by columns often computes the answer faster than one that accesses A by rows.

In a linear algebra course you should have learned that,
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+


3

1

0

= (2)


1

−2

−1

+(−1)


−1

2

1

+(1)


2

0

−2

+


3

1

0



=






3

1

0

+(2)


1

−2

−1


+(−1)


−1

2

1


+(1)


2

0

−2


 ,

which is exactly how Variant 3 for computing y := Ax + y, given in Figure 5.4, proceeds. It also means that the
implementation in Figure 5.2 can be rewritten as the one in Figure 5.5. The two implementations in Figures 5.2
and 5.5 differ only in the order of the loops indexed by i and j.

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymVec1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://www.youtube.com/watch?v=exc_bExzfYQ
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://www.youtube.com/watch?v=gC1flFIYCtw

5.1. Opening Remarks * to edX 199

Algorithm: y := GEMV UNB VAR3(A,x,y)

A→
(

AL AR

)
, x→

 xT

xB


where AL has 0 columns, xT has 0 rows

while n(AL)< n(A) do

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→


x0

χ1

x2


where a1 has 1 column, χ1 has 1 row

y := χ1a1 + y

A→
(

AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←


x0

χ1

x2


endwhile

Figure 5.4: Variant 3 for computing y := Ax+ y in FLAME notation.

function [y_out] = MatVec3(A, x, y)
% Compute y := A x + y

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that x is a vector size n and y is a
% vector of size m...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for j = 1:n

for i=1:m
y_out(i) = A(i,j) * x(j) + y_out(i);

end
end

end

LAFFPfC/Assignments/Week5/matlab/MatVec3.m

Figure 5.5: Function that computes y := Ax+ y, returning the result in vector y out.
.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1

200 Week 5. Matrix-Matrix Operations

Homework 5.1.1.5 Knowing that the matrix is symmetric, compute
1 ? ?

2 −2 ?

−2 1 3




1

−1

1

+


1

2

3

=

using algorithmic Variant 3 given in Figure 5.4.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 5.1.1.6 Download the Live Script * SymVec3LS.mlx into Assignments/Week5/matlab/ and follow
the directions in it to change the given function to only compute with the lower triangular part of the matrix.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 5.1.1.7 Which algorithm for computing y := Ax+ y casts more computation in terms of the columns
of the stored matrix (and is therefore probably higher performing)?

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Now we get to two exercises that we believe demonstrate the value of our notation and systematic derivation of
algorithms. They are surprisingly hard, even for an experts. Don’t be disappointed if you can’t work it out! The
answer comes later in the week.

Homework 5.1.1.8 (Challenge) Download the Live Script SymMatVecByColumnsLS.mlx into
Assignments/Week5/matlab/ and follow the directions in it to change the given function to only com-
pute with the lower triangular part of the matrix and only access the matrix by columns. (Not sort-of-kind-of as in
SymMatVec3.mlx.)

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.1.1.9 (Challenge) Find someone who knows a little (or a lot) about linear algebra and convince this
person that the answer to the last exercise is correct. Alternatively, if you did not manage to come up with an
answer for the last exercise, look at the answer to that exercise and convince yourself it is correct.

* SEE ANSWER
* DO EXERCISE ON edX

The point of these last two exercises is:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymVec3LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://www.youtube.com/watch?v=S3FvHdQAZus
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://www.youtube.com/watch?v=GFTYAt2iFxM
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymMatVecByColumnsLS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/

5.1. Opening Remarks * to edX 201

• It is difficult to find algorithms with specific (performance) properties even for relatively simple operations. The
problem: the traditional implementation involves a double nested loop, which makes the application of what
you learned in Week 3 bothersome.

• It is still difficult to give a convincing argument that even a relatively simple algorithm is correct, even after you
have completed Week 2. The problem: proving a double loop correct.

One could ask “But isn’t having any algorithm to compute the result good enough?” The graph in Figure 5.6 illustrates
the difference in performance of the different implementations (coded in C). The implementation that corresponds to
SymMatVecByColumns is roughly five times faster than the other implementations. It demonstrates there is a definite
performance gain that results from picking the right algorithm.

What you will find next is that the combination of our new notation and the application of systematic derivation
provides the solution, in Unit 5.2.6.

While we discuss efficiency here, implementing the algorithms as we do in MATLAB generally means they don’t
execute particularly efficiently. If you execute A * x in MATLAB, this is typically translated into a call to
a high-performance implementation. But implementing it yourself in MATLAB, as loops or with our FLAME
API, is not particularly efficient. We do it to illustrate algorithms. One would want to implement these same
algorithms in a language that enables high-performance, like C. We have a FLAME API for C as well.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1

202 Week 5. Matrix-Matrix Operations

Figure 5.6: Execution time (top) and speedup (bottom) as a function of matrix size for the different implementations
of symmetric matrix-vector multiplication.

5.1. Opening Remarks * to edX 203

5.1.2 Outline Week 5 * to edX

5.1. Opening Remarks * to edX . 195
5.1.1. Launch * to edX . 195
5.1.2. Outline Week 5 * to edX . 203
5.1.3. What you will learn * to edX . 204

5.2. Partitioning matrices into quadrants * to edX . 205
5.2.1. Background * to edX . 205
5.2.2. Example: Deriving algorithms for symmetric matrix-vector multiplication * to edX 205
5.2.3. One complete derivation * to edX . 210
5.2.4. Other variants * to edX . 213
5.2.5. Visualizing the different algorithms * to edX . 214
5.2.6. Which variant? * to edX . 215

5.3. Matrix-matrix multiplication * to edX . 217
5.3.1. Background * to edX . 217
5.3.2. Matrix-matrix multiplication by columns * to edX . 218
5.3.3. Matrix-matrix multiplication by rows * to edX . 219
5.3.4. Matrix-matrix multiplication via rank-1 updates * to edX 220
5.3.5. Blocked algorithms * to edX . 221

5.4. Symmetric matrix-matrix multiplication * to edX . 223
5.4.1. Background * to edX . 223
5.4.2. Deriving the first PME and corresponding loop invariants * to edX 224
5.4.3. Deriving unblocked algorithms corresponding to PME 1 * to edX 225
5.4.4. Blocked Algorithms * to edX . 229
5.4.5. Other blocked algorithms * to edX . 233
5.4.6. A second PME * to edX . 233

5.5. Enrichment * to edX . 234
5.5.1. The memory hierarchy * to edX . 234
5.5.2. The GotoBLAS matrix-matrix multiplication algorithm * to edX 234
5.5.3. The PME and loop invariants say it all! * to edX . 234

5.6. Wrap Up * to edX . 235
5.6.1. Additional exercises * to edX . 235
5.6.2. Summary * to edX . 237

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2

204 Week 5. Matrix-Matrix Operations

5.1.3 What you will learn * to edX

While the FLAME notation has allowed us to abstract away from those nasty indices, so far the operations used to
illustrate this have been simple enough that they could have been derived with the techniques from Week 3. We now
see that the FLAME notation facilitates the derivation of families of algorithms for progressively more complicated
operations with matrices and vectors, yielding some algorithms that are not easily found without it.

Upon completion of this week, you should be able to

• Multiply with partitioned matrices to take advantage of special structure.

• Derive partitioned matrix expressions for matrix-vector and matrix-matrix operations.

• Recognize that a particular operation can have several PMEs each with multiple loop invariants.

• Enumerate candidate loop invariants for matrix operations from their PMEs and eliminate loop invariants that
do not show promise.

• Accomplish a complete derivation and implementation of an algorithm.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/214cf9d76d1b43b3ba83590f6ac70d8f/3

5.2. Partitioning matrices into quadrants * to edX 205

5.2 Partitioning matrices into quadrants * to edX

5.2.1 Background * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the matrix-vector operation Ax where A and x are of appropriate sizes so that this multiplication makes
sense. Partition

A→

 AT L AT R

ABL ABR

 , and x→

 xT

xB

 .

Then

Ax =

 AT L AT R

ABL ABR

 xT

xB

=

 AT LxT +AT RxB

ABLxT +ABRxB


provided xT and xB have the appropriate size for the subexpressions to be well-defined.

Now, if A is symmetric, then A = AT . For the partitioned matrix this means that AT L AT R

ABL ABR

T

=

 AT
T L AT

BL

AT
T R AT

BR


If AT L is square (and hence so is ABR since A itself is), then we conclude that

• AT
T L = AT L and hence AT L is symmetric.

• AT
BR = ABR and hence ABR is symmetric.

• AT R = AT
BL and ABL = AT

T R. Thus, if AT R is not stored, one can compute with AT
BL instead. Notice that one need

not explicitly transpose the matrix. In MATLAB the command A′ ∗ x will compute AT x.

Hence, for a partitioned symmetric matrix where AT L is square, one can compute with

 AT L AT
BL

ABL ABR

 if AT R is not

available (e.g., is not stored) or

 AT L AT R

AT
T R ABR

 if ABL is not available (e.g., is not stored). In the first case,

Ax =

 AT L AT R

ABL ABR

 xT

xB

=

 AT L AT
BL

ABL ABR

 xT

xB

=

 AT LxT +AT
BLxB

ABLxT +ABRxB

 .

5.2.2 Example: Deriving algorithms for symmetric matrix-vector multiplication * to edX

* Watch Video on edX
* Watch Video on YouTube

The operation we wish to implement is mathematically given by y := Ax+ y, where A is a symmetric matrix (and
hence square) and only the lower triangular part of matrix A can be accessed, because (for example) the strictly upper
triangular part is not stored.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://www.youtube.com/watch?v=ZgXalfvWWAA
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://www.youtube.com/watch?v=K-6McgsfZFU

206 Week 5. Matrix-Matrix Operations

Step 1: Precondition and postcondition

We are going to implicitly remember that A is symmetric and only the lower triangular part of the matrix is stored. So,
in the postcondition we simply state that y = Ax+ ŷ is to be computed.

Step 2: Deriving loop invariants

Since matrix A is symmetric, we want to partition

A→

 AT L AT R

ABL ABR


where AT L is square since then, because of the symmetry of A, we know that

• AT L and ABR are symmetric,

• AT R = AT
BL, and

• if we partition

x→

 xT

xB

 and y→

 yT

yB


then entering the partitioned matrix and vectors into the postcondition y = Ax+ ŷ yields

 yT

yB

 =

 AT L AT R

ABL ABR

 xT

xB

+

 ŷT

ŷB


=

 AT LxT +AT RxB + ŷT

ABLxT +ABRxB + ŷB


=

 AT LxT +AT
BLxB + ŷT

ABLxT +ABRxB + ŷB

 since AT R is not to be used.

This last observation gives us our PME for this operation:

 yT

yB

=

 AT LxT +AT
BLxB + ŷT

ABLxT +ABRxB + ŷB

 .

5.2. Partitioning matrices into quadrants * to edX 207

Homework 5.2.2.1 Below on the left you find four loop invariants for computing y := Ax+ y where A has no
special structure. On the right you find four loop invariants for computing y := Ax+ y when A is symmetric and
stored in the lower triangular part of A. Match the loop invariants on the right to the loop invariants on the left
that you would expect maintain the same values in y before and after each iteration of the loop. (In the video, we
mentioned asking you to find two invariants. We think you can handle finding these four!)

(1)

 yT

yB

=

 ŷT

ABx+ ŷB

 (a)

 yT

yB

=

 AT LxT+AT
BLxB + ŷT

ABLxT+ABRxB + ŷB



(2)

 yT

yB

=

 AT x+ ŷT

ŷB

 (b)

 yT

yB

=

 AT LxT +AT
BLxB+ŷT

ABLxT +ABRxB + ŷB



(3) y = ALxT + ŷ (c)

 yT

yB

=

 AT LxT +AT
BLxB+ŷT

ABLxT +ABRxB+ŷB



(4) y = ARxB + ŷ (d)

 yT

yB

=

 AT LxT +AT
BLxB + ŷT

ABLxT+ABRxB+ŷB


* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

Now, how do we come up with possible loop invariants? Each term in the PME is either included or not. This
gives one a table of candidate loop invariants, given in Figure 5.7. But not all of these candidates will lead to a valid
algorithm. In particular, any valid algorithm must include exactly one of the terms AT LxT or ABRxB. The reasons?

• Since AT L and ABR must be square submatrices, when the loop completes one of them must be the entire matrix
A while the other matrix is empty. But that means that one of the two terms must be included in the loop
invariant, since otherwise the loop invariant, together with the loop guard becoming false, will not imply the
postcondition.

• If both AT LxT and ABRxB are in the loop invariant, there is no simple initialization step that places the variables
in a state where the loop invariant is TRUE. Why? Because if one of the two matrices AT L and ABR is empty,
then the other one is the whole matrix A, and hence the final result must be computed as part of the initialization
step.

We conclude that exactly one of the terms AT LxT and ABRxB can and must appear in the loop invariant, leaving us with
the loop invariants tabulated in Figure 5.8.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://www.youtube.com/watch?v=2z43MWSUS2U
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/2
https://www.youtube.com/watch?v=-ympO4C2CAo

208 Week 5. Matrix-Matrix Operations

AT LxT AT
BLxB ABLxT ABRxB

 yT

yB

=

A No No No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


B Yes No No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


C No Yes No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


D Yes Yes No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


E No No Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


F Yes No Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


G No Yes Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


H Yes Yes Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


I No No No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


J Yes No No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


K No Yes No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


L Yes Yes No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


M No No Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


N Yes No Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


O No Yes Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


P Yes Yes Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB



Figure 5.7: Candidates for loop-invariants for y := Ax+ y where A is symmetric and only its lower triangular part is
stored.

5.2. Partitioning matrices into quadrants * to edX 209

PME:

 yT

yB

=

 AT LxT +AT
BLxB + ŷT

ABLxT +ABRxB + ŷB

.

AT LxT AT
BLxB ABLxT ABRxB

 yT

yB

= Invariant #

Yes No No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 1

Yes Yes No No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 2

Yes No Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 3

Yes Yes Yes No

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 4

No Yes Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 5

No Yes No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 6

No No Yes Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 7

No No No Yes

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 8

Figure 5.8: Loop-invariants for y := Ax+ y where A is symmetric and only its lower triangular part is stored.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1

210 Week 5. Matrix-Matrix Operations

5.2.3 One complete derivation * to edX

In this unit, we continue the derivation started in Unit 5.2.2, with the loop invariant

Invariant 1:

 yT

yB

=

 AT LxT + ŷT

ŷB

 .

Homework 5.2.3.1 You may want to derive the algorithm corresponding to Invariant 1 yourself, consulting the
video if you get stuck. Some resources:

• The * blank worksheet.

• Download * symv unb var1 ws.tex and place it in LAFFPfC/Assignments/Week5/LaTeX/. You will
need * color flatex.tex as well in that directory.

• The * Spark webpage.

Alternatively, you may want to download the completed worksheet (with intermediate steps later in the PDF) *
symv unb var1 ws answer.pdf and/or its source * symv unb var1 ws answer.tex.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Step 3: Determining the loop-guard.

The condition

Pinv∧¬G ≡ (

 yT

yB

=

 AT LxT + ŷT

ŷB

)∧¬G

must imply that
R : y = Ax+ ŷ

holds. The loop guard m(AT L)< m(A) has the desired property.

Step 4: Initialization.

When we derived the PME in Step 2, we decided to partition the matrices like

A→

 AT L AT R

ABL ABR

 , x→

 xT

xB

 , and y→

 yT

yB

 .

The question now is how to choose the sizes of the submatrices and vectors so that the precondition

y = ŷ

implies that the loop invariant  yT

yB

=

 AT LxT + ŷT

ŷB


holds after the initialization (and before the loop commences). The initialization

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/3
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.tex
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/3
https://www.youtube.com/watch?v=q76mK89pGZ4

5.2. Partitioning matrices into quadrants * to edX 211

A→

 AT L AT R

ABL ABR

 , x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, and xT and yT have 0 elements, has the desired property.

Step 5: Progressing through the matrix and vectors.

We now note that, as part of the computation, AT L, xT and yT start by containing no elements and must ultimately
equal all of A, x and y, respectively. Thus, as part of the loop in Step 5a, the top elements of xB and yB are exposed by

 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2

 .

They are added to xT and yT with

 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2

 .

Similarly, rows of A are exposed  AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


and “moved”, in Step 5b,  AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 .

Step 6: Determining the state after repartitioning.

This is where things become less than straight forward. The repartitionings in Step 5a do not change the contents of
y: it is an “indexing” operation. We can thus ask ourselves the question of what the contents of y are in terms of the
newly exposed parts of A, x, and y. We can derive this state, Pbefore, via textual substitution: The repartitionings in
Step 5a imply that

AT L = A00 AT R =
(

a01 A02

)
ABL =

 aT
10

A20

 ABR =

 α11 aT
12

a21 A22

 ,

xT = x0

xB =

 χ1

x2

 , and
yT = y0

yB =

 ψ1

y2

 .

If we substitute the expressions on the right of the equalities into the loop invariant, we find that yT

yB

=

 AT LxT + ŷT

ŷB



https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1

212 Week 5. Matrix-Matrix Operations

becomes 
y0 ψ1

y2


=


A00x0 + ŷ0 ψ̂1

ŷ2




and hence 
y0

ψ1

y2

=


A00x0 + ŷ0

ψ̂1

ŷ2


Step 7: Determining the state after moving the thick lines.

The movement of the thick lines in Step 5b means that now

AT L =

 A00 a01

aT
10 α11

 AT R =

 A02

aT
12


ABL =

(
A20 a21

)
ABR = A22

,
xT =

 x0

χ1


xB = x2

, and
yT =

 y0

ψ1


yB = y2

.

If we substitute the expressions on the right of the equalities into the loop invariant we find that yT

yB

=

 AT LxT + ŷT

ŷB


becomes 

 y0

ψ1


y2

=


 A00 (aT

10)
T

aT
10 α11

 x0

χ1

+

 ŷ0

ψ̂1


ŷ2

 ,

where we recognize that due to symmetry a01 = (aT
10)

T and hence .
y0

ψ1

y2

=


A00x0 +(aT

10)
T χ1 + ŷ0

aT
10x0 +α11χ1 + ψ̂1

ŷ2


Step 8: Determining the update.

Comparing the contents in Step 6 and Step 7 now tells us that the state of y must change from
y0

ψ1

y2

=


A00x0 + ŷ0

ψ̂1

ŷ2


to 

y0

ψ1

y2

=


A00x0 +(aT

10)
T χ1 + ŷ0

aT
10x0 +α11χ1 + ψ̂1

ŷ2

 ,

5.2. Partitioning matrices into quadrants * to edX 213

which can be accomplished by updating

y0 := χ1(aT
10)

T + y0

ψ1 := aT
10x0 +α11χ1 +ψ1.

5.2.4 Other variants * to edX

It is important to build fluency and contrast a number of different algorithmic variants so you can discover patterns.
So, please take time for the next homework!

Homework 5.2.4.1 Derive algorithms for Variants 2-8, corresponding to the loop invariants in Figure 5.8. (If you
don’t have time to do all, then we suggest you do at least Variants 2-4 and Variant 8). Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symv unb var2 ws.tex, * symv unb var2 ws.tex,
* symv unb var3 ws.tex, * symv unb var4 ws.tex,
* symv unb var5 ws.tex, * symv unb var6 ws.tex,
* symv unb var7 ws.tex, * symv unb var8 ws.tex.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/4
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws.tex
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/

214 Week 5. Matrix-Matrix Operations

Homework 5.2.4.2 Match the loop invariant (on the left) to the “update” in the loop body (on the right):

Invariant 1:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (a) y0 := χ1a01 + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

Invariant 2:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (b) ψ1 := α11χ1 +aT
21x2+ ψ1

y2 := χ1a21+ y2

Invariant 3:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (c) y0 := χ1(aT
10)

T + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

Invariant 4:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (d) ψ1 := aT
10x0 +α11χ1 +aT

21x2 +ψ1

Invariant 8:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (e) y0 := χ1(aT
10)

T + y0

ψ1:=aT
10x0 +α11χ1 +ψ1

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.2.4.3 Derive algorithms for Variants 2-8, corresponding to the loop invariants in Figure 5.8. (If you
don’t have time to do all, then we suggest you do at least Variants 2-4 and Variant 8). Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symv unb var2 ws.tex, * symv unb var2 ws.tex,
* symv unb var3 ws.tex, * symv unb var4 ws.tex,
* symv unb var5 ws.tex, * symv unb var6 ws.tex,
* symv unb var7 ws.tex, * symv unb var8 ws.tex.

* SEE ANSWER
* DO EXERCISE ON edX

5.2.5 Visualizing the different algorithms * to edX

Let us reexamine the symmetric matrix-vector multiplication

y := Ax+ y,

where only the lower triangular part of symmetric matrix A is stored.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws.tex
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/5

5.2. Partitioning matrices into quadrants * to edX 215

The PME for this operation is  yT

yB

=

 AT LxT +AT
BLxB + ŷT

ABLxT +ABRxB + ŷB

 .

Consider

A =


α0,0 ? ? ?

α1,0 α1,1 ? ?

α2,0 α2,1 α2,2 ?

α3,0 α3,1 α3,2 α3,3

 , x =


χ0

χ1

χ2

χ3

 , and y =


ψ0

ψ1

ψ2

ψ3

 .

Then all the calculations that need to be performed are given by

α0,0χ0 +α1,0χ1 +α2,0χ2 +α3,0χ3 +ψ̂0

α1,0χ0 +α1,1χ1 +α2,1χ2 +α3,1χ3 +ψ̂1

α2,0χ0 +α2,1χ1 +α2,2χ2 +α3,2χ3 +ψ̂2

α3,0χ0 +α3,1χ1 +α3,2χ2 +α3,3χ3 +ψ̂3

Now, consider again the PME, color coded for the different parts of the matrix yT

yB

=

 AT LxT+AT
BLxB + ŷT

ABLxT+ABRxB + ŷB

 .

Let us consider what computations this represents when AT L is 2×2 for our 4×4 example:

α0,0χ0 +α1,0χ1 +α2,0χ2 +α3,0χ3 +ψ̂0

α1,0χ0 +α1,1χ1 +α2,1χ2 +α3,1χ3 +ψ̂1

α2,0χ0 +α2,1χ1 +α2,2χ2 +α3,2χ3 +ψ̂2

α3,0χ0 +α3,1χ1 +α3,2χ2 +α3,3χ3 +ψ̂3

With this color coding, how the different algorithms perform computation is illustrated in Figure 5.9.

5.2.6 Which variant? * to edX

Figure 5.10 summarizes all eight loop invariants for computing y := Ax+ y for the case where A is symmetric and
stored in the lower triangular part of the matrix. In this figure, the algorithms corresponding to Invariants 1-4 move
through matrix A from the top-left to bottom-right while the algorithms corresponding to Invariants 5-8 move through
matrix A from the bottom-right to top-left. To the right of the invariants is the update to y that is in the loop body
of the resulting algorithm. Interestingly, for each algorithmic variant that moves through the matrix from top-left to
bottom-right, there is a corresponding variant that moves from the bottom-right to the top-left that results in the same
update to vector y.

There is a clear link between the two loop invariants that yield the same update, if you look at how each pair differs
and how the differences relate to the PME. In one of the enrichments, we point you to recent research that explains
what you observe.

Homework 5.2.6.1 We now return to the launch for this week and the question of how to find an algorithm for
computing y := Ax+y, where A is symmetric and stored only in the lower triangular part of A. Consult Figure 5.10
to answer the question of which invariant(s) yield an algorithm that accesses the matrix by columns.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/bef878ba81e04e048b01970101c033f8/

216 Week 5. Matrix-Matrix Operations

L
oop-invariant1

L
oop-invariant2

L
oop-invariant3

L
oop-invariant4


yTyB 

= 
A

T
L xT

+
A

TB
L xB

+
ŷT

A
B

L xT
+

A
B

R xB
+

ŷB  
yTyB 

= 
A

T
L xT

+
A

TB
L xB

+
ŷT

A
B

L xT
+

A
B

R xB
+

ŷB  
yTyB 

= 
A

T
L xT

+
A

TB
L xB

+
ŷT

A
B

L xT
+

A
B

R xB
+

ŷB  
yTyB 

= 
A

T
L xT

+
A

TB
L xB

+
ŷT

A
B

L xT
+

A
B

R xB
+

ŷB 
α

0
,0

χ
0 +

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1 +

α
2,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0,0

χ
0 +

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3,0

χ
3 +

ψ̂
0

α
1,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3,1

χ
3 +

ψ̂
1

α
2,0

χ
0 +

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3,2

χ
3 +

ψ̂
2

α
3,0

χ
0 +

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3,3

χ
3 +

ψ̂
3

α
0
,0

χ
0
+

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0
+

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0
+

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0
+

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0
+

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3,0

χ
3 +

ψ̂
0

α
1
,0

χ
0
+

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3,1

χ
3 +

ψ̂
1

α
2
,0

χ
0
+

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3,2

χ
3 +

ψ̂
2

α
3
,0

χ
0
+

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3,3

χ
3 +

ψ̂
3

α
0,0

χ
0
+

α
1
,0

χ
1 +

α
2,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1,0

χ
0
+

α
1
,1

χ
1 +

α
2,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2,0

χ
0
+

α
2
,1

χ
1 +

α
2,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3,0

χ
0
+

α
3
,1

χ
1 +

α
3,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0
+

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0
+

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0
+

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0
+

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1
+

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1
+

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1
+

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1
+

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1
+

α
2
,0

χ
2 +

α
3,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1
+

α
2
,1

χ
2 +

α
3,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1
+

α
2
,2

χ
2 +

α
3,2

χ
3 +

ψ̂
2

α
3,0

χ
0 +

α
3
,1

χ
1
+

α
3
,2

χ
2 +

α
3,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1
+

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1
+

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1
+

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1
+

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1
+

α
2
,0

χ
2 +

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1
+

α
2
,1

χ
2 +

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1
+

α
2
,2

χ
2 +

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1
+

α
3
,2

χ
2 +

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1,0

χ
1 +

α
2
,0

χ
2
+

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1,1

χ
1 +

α
2
,1

χ
2
+

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2,1

χ
1 +

α
2
,2

χ
2
+

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3,1

χ
1 +

α
3
,2

χ
2
+

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1 +

α
2
,0

χ
2
+

α
3,0

χ
3 +

ψ̂
0

α
1,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2
+

α
3,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2
,2

χ
2
+

α
3,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3
,2

χ
2
+

α
3,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1 +

α
2
,0

χ
2
+

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2
+

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2
,2

χ
2
+

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3
,2

χ
2
+

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1,0

χ
1 +

α
2
,0

χ
2
+

α
3
,0

χ
3 +

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2
+

α
3
,1

χ
3 +

ψ̂
1

α
2
,0

χ
0 +

α
2,1

χ
1 +

α
2
,2

χ
2
+

α
3
,2

χ
3 +

ψ̂
2

α
3
,0

χ
0 +

α
3,1

χ
1 +

α
3
,2

χ
2
+

α
3
,3

χ
3 +

ψ̂
3

α
0
,0

χ
0 +

α
1,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3
+

ψ̂
0

α
1
,0

χ
0 +

α
1,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3
+

ψ̂
1

α
2
,0

χ
0 +

α
2,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3
+

ψ̂
2

α
3
,0

χ
0 +

α
3,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3
+

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3
+

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3
+

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3
+

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3
+

ψ̂
3

α
0
,0

χ
0 +

α
1
,0

χ
1 +

α
2,0

χ
2 +

α
3
,0

χ
3
+

ψ̂
0

α
1
,0

χ
0 +

α
1
,1

χ
1 +

α
2,1

χ
2 +

α
3
,1

χ
3
+

ψ̂
1

α
2
,0

χ
0 +

α
2
,1

χ
1 +

α
2,2

χ
2 +

α
3
,2

χ
3
+

ψ̂
2

α
3
,0

χ
0 +

α
3
,1

χ
1 +

α
3,2

χ
2 +

α
3
,3

χ
3
+

ψ̂
3

α
0
,0

χ
0 +

α
1,0

χ
1 +

α
2
,0

χ
2 +

α
3
,0

χ
3
+

ψ̂
0

α
1
,0

χ
0 +

α
1,1

χ
1 +

α
2
,1

χ
2 +

α
3
,1

χ
3
+

ψ̂
1

α
2
,0

χ
0 +

α
2,1

χ
1 +

α
2
,2

χ
2 +

α
3
,2

χ
3
+

ψ̂
2

α
3
,0

χ
0 +

α
3,1

χ
1 +

α
3
,2

χ
2 +

α
3
,3

χ
3
+

ψ̂
3

Figure
5.9:

Illustration
of

how
com

putation
proceeds

w
hen

com
puting

y
:=

A
x
+

y
w

here
A

is
sym

m
etric

and
stored

in
the

low
er

triangular
partof

A
.

T
he

shaded
region

show
s

the
com

putation
thatis

perform
ed

in
the

indicated
iteration.

5.3. Matrix-matrix multiplication * to edX 217

Loop invariants Update
Invariant 1: AT LxT+ AT

BLxB+ŷT

ABLxT+ABRxB+ŷB


Invariant 5: AT LxT+ AT

BLxB+ŷT

ABLxT+ABRxB+ŷB

 y0 := χ1(aT
10)

T + y0

ψ1 :=aT
10x0+ α11χ1 +ψ1

Invariant 2: AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


Invariant 6: AT LxT+ AT

BLxB+ŷT

ABLxT+ABRxB+ŷB

 ψ1 := aT
10x0 +α11χ1 +aT

21x2 +ψ1

Invariant 3: AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


Invariant 7: AT LxT+ AT

BLxB+ŷT

ABLxT+ABRxB+ŷB

 y0 :=χ1(aT
10)

T + y0

ψ1 := α11χ1+ψ1

y2 := χ1a21+ y2

Invariant 4: AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB


Invariant 8: AT LxT+ AT

BLxB+ŷT

ABLxT+ABRxB+ŷB

 ψ1 :=α11χ1+aT
21x2 +ψ1

y2 := χ1a21+ y2

Figure 5.10: Summary of loop invariants for computing y := Ax+ y, where A is symmetric and stored in the lower
triangular part of the matrix. To the right is the update to y in the derived loop corresponding to the invariants.

5.3 Matrix-matrix multiplication * to edX

5.3.1 Background * to edX

For details on why this operation is defined the way it is and practice with this operation, you may want to consult
Weeks 4-5 of Linear Algebra: Foundations to Frontiers (LAFF). Here we give the briefest of reviews.

Given matrices C, A, and B of sizes m×n, m×k, and k×n, respectively, view these matrices as the two-dimensional
arrays that represent them:

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
...

γm−1,0 γm−1,1 · · · γm−1,n−1

 ,A =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,k−1

 ,

and

B =


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

βk−1,0 βk−1,1 · · · βk−1,n−1

 .

Then the result of computing C := AB sets

γi, j :=
k−1

∑
p=0

αi,p×βp, j (5.1)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1

218 Week 5. Matrix-Matrix Operations

for all 0≤ i < m and 0≤ j < n. In the notation from Weeks 1-3 this is given as

(∀i | 0≤ i < m : (∀ j | 0≤ j < n : γi, j = (∑p | 0≤ p < k : αi,p×βp, j))),

which gives some idea of how messy postconditions and loop invariants for this operation might become using that
notation.

Now, if one partitions matrices C, A, and B into submatrices:

C =


C0,0 C0,1 · · · C0,N−1

C1,0 C1,1 · · · C1,N−1
...

...
...

CM−1,0 CM−1,1 · · · CM−1,N−1

 ,A =


A0,0 A0,1 · · · A0,K−1

A1,0 A1,1 · · · A1,K−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,K−1

 ,

and

B =


B0,0 B0,1 · · · B0,N−1

B1,0 B1,1 · · · B1,N−1
...

...
...

BK−1,0 BK−1,1 · · · BK−1,N−1

 ,

where Ci, j, Ai,p, and Bp, j are mi×n j, mi× kp, and kp×n j, respectively, then

Ci, j :=
k−1

∑
p=0

Ai,pBp, j.

The computation with submatrices (blocks) mirrors the computation with the scalars in Equation 5.1:

Ci, j :=
k−1

∑
p=0

Ai,pBp, j versus γi, j :=
k−1

∑
p=0

αi,pβp, j.

Thus, to remember how to multiply with partitioned matrices, all you have to do is to remember how to multiply with
matrix elements except that Ai,p×Bp, j does not necessarily commute. We will often talk about the constraint on how
matrix sizes must match up by saying that the matrices are partitioned conformally.

There are special cases of this that will be encountered in the subsequent discussions:

(
AL AR

) BT

BB

 = ALBT +ARBB, AT

AB

B =

 AT B

ABB

 , and

A
(

BL BR

)
=
(

ABL ABR

)
.

5.3.2 Matrix-matrix multiplication by columns * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/2
https://www.youtube.com/watch?v=PcDptdfuoGU

5.3. Matrix-matrix multiplication * to edX 219

To arrive at a first PME for computing C := AB+C, we partition matrix B by columns:

B→
(

BL BR

)
.

After placing this in the postcondition C = AB+Ĉ, we notice that C must be conformally partitioned, yielding(
CL CR

)
= A

(
BL BR

)
+
(

ĈL ĈR

)
.

But what we learned in the last unit is that then(
CL CR

)
=
(

ABL +ĈL ABR +ĈR

)
.

This is the sought-after PME:

• PME 1:
(

CL CR

)
=
(

ABL +ĈL ABR +ĈR

)
.

Homework 5.3.2.1 Identify two loop invariants from PME 1.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 5.3.2.2 Derive Variant 1, the algorithm corresponding to Invariant 1, in the answer to the last home-
work. Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive
an unblocked algorithm).
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var1 ws.tex

• * GemmUnbVar1LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.3.2.3 If you feel energetic, repeat the last homework for Invariant 2.
* SEE ANSWER

* DO EXERCISE ON edX

5.3.3 Matrix-matrix multiplication by rows * to edX

* Watch Video on edX
* Watch Video on YouTube

To arrive at a second PME (PME 2) for computing C := AB+C, we partition matrix A by rows:

A→

 AT

AB

 .

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/3
https://www.youtube.com/watch?v=4QlmNQV5G78

220 Week 5. Matrix-Matrix Operations

After placing this in the postcondition C = AB+Ĉ, we notice that C must be conformally partitioned.

Homework 5.3.3.1 Identify a second PME (PME 2) that corresponds to the case where A is partitioned by rows.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 5.3.3.2 Identify two loop invariants from this second PME (PME 2). Label these Invariant 3 and
Invariant 4.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.3.3.3 Derive Variant 3, the algorithm corresponding to Invariant 3, in the answer to the last home-
work. Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive
an unblocked algorithm).
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var3 ws.tex

• * GemmUnbVar3LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.3.3.4 If you feel energetic, repeat the last homework for Invariant 4,
* SEE ANSWER

* DO EXERCISE ON edX

5.3.4 Matrix-matrix multiplication via rank-1 updates * to edX

* Watch Video on edX
* Watch Video on YouTube

To arrive at the third PME for computing C := AB+C, we partition matrix A by columns:

A→
(

AL AR

)
.

After placing this in the postcondition C = AB+Ĉ, what other matrix must be conformally patitioned?

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/3
https://www.youtube.com/watch?v=11xwIv4LRDY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar3LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://www.youtube.com/watch?v=0OpDuLBE81U

5.3. Matrix-matrix multiplication * to edX 221

Homework 5.3.4.1 Identify a third PME that corresponds to the case where A is partitioned by columns.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 5.3.4.2 Identify two loop invariants from PME 3. Label these Invariant 5 and Invariant 6.
* SEE ANSWER

* DO EXERCISE ON edX

Homework 5.3.4.3 Derive Variant 5, the algorithm corresponding to Invariant 5, in the answer to the last home-
work. Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive
an unblocked algorithm).
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var5 ws.tex

• * GemmUnbVar5LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.3.4.4 If you feel energetic, repeat the last homework for Invariant 6.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

5.3.5 Blocked algorithms * to edX

* Watch Video on edX
* Watch Video on YouTube

In the discussions so far, we always advanced the algorithm one row and/or column at a time:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://www.youtube.com/watch?v=ix5TvFeWV5Q
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar5LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/4
https://www.youtube.com/watch?v=z99Dm3vzXC8
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/5
https://www.youtube.com/watch?v=4vNtGI5B1_E

222 Week 5. Matrix-Matrix Operations

Variant Step 5a Step 5b

1
(

BL BR

)
→
(

B0 b1 B2

)
, · · ·

(
BL BR

)
←
(

B0 b1 B2

)
, · · ·

2
(

BL BR

)
→
(

B0 b1 B2

)
, · · ·

(
BL BR

)
←
(

B0 b1 B2

)
, · · ·

3

 AT

AB

→


A0

aT
1

A2

, · · ·

 AT

AB

←


A0

aT
1

A2

, · · ·

4

 AT

AB

→


A0

aT
1

A2

, · · ·

 AT

AB

←


A0

aT
1

A2

, · · ·

5
(

AL AR

)
→
(

A0 a1 A2

)
, · · ·

(
AL AR

)
←
(

A0 a1 A2

)
, · · ·

6
(

AL AR

)
→
(

A0 a1 A2

)
, · · ·

(
AL AR

)
←
(

A0 a1 A2

)
, · · ·

As will become clear in the enrichment for this week, exposing a block of columns or rows allows one to “block” for
performance:

Variant Step 5a Step 5b

1
(

BL BR

)
→
(

B0 B1 B2

)
, · · ·

(
BL BR

)
←
(

B0 B1 B2

)
, · · ·

2
(

BL BR

)
→
(

B0 B1 B2

)
, · · ·

(
BL BR

)
←
(

B0 B1 B2

)
, · · ·

3

 AT

AB

→


A0

A1

A2

, · · ·

 AT

AB

←


A0

A1

A2

, · · ·

4

 AT

AB

→


A0

A1

A2

, · · ·

 AT

AB

←


A0

A1

A2

, · · ·

5
(

AL AR

)
→
(

A0 A1 A2

)
, · · ·

(
AL AR

)
←
(

A0 A1 A2

)
, · · ·

6
(

AL AR

)
→
(

A0 A1 A2

)
, · · ·

(
AL AR

)
←
(

A0 A1 A2

)
, · · ·

Such algorithms are usually referred to as “blocked algorithms,” explaining why we referred to previous algorithms
encountered in the course as “unblocked algorithms.”

5.4. Symmetric matrix-matrix multiplication * to edX 223

Homework 5.3.5.1 Derive Variants 1, 3, and 5, the algorithms corresponding to Invariant 1, 3, and 5.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm blk var1 ws.tex, * gemm blk var3 ws.tex * gemm blk var5 ws.tex

• * GemmBlkVar1LS.mlx , * GemmBlkVar3LS.mlx , * GemmBlkVar5LS.mlx

* SEE ANSWER
* DO EXERCISE ON edX

Homework 5.3.5.2 If you feel energetic, also derive Blocked Variants 2, 4, and 6.
* SEE ANSWER

* DO EXERCISE ON edX

5.4 Symmetric matrix-matrix multiplication * to edX

5.4.1 Background * to edX

* Watch Video on edX
* Watch Video on YouTube

(Throughout: notice the parallel between this material and that for symmetric matrix-vector multiplication.)
Consider the matrix-matrix operation AB where A and B are of appropriate sizes so that this multiplication makes

sense. Partition

A→

 AT L AT R

ABL ABR

 , and B→

 BT

BB

 .

Then

AB =

 AT L AT R

ABL ABR

 BT

BB

=

 AT LBT +AT RBB

ABLBT +ABRBB


provided BT and BB have the appropriate size for the subexpressions to be well-defined.

Recall from Unit 5.2.1 that if A is symmetric, then A = AT . For the partitioned matrix this means that AT L AT R

ABL ABR

T

=

 AT
T L AT

BL

AT
T R AT

BR


If AT L is square (and hence so is ABR since A itself is), then we conclude that

• AT
T L = AT L and hence AT L is symmetric.

• AT
BR = ABR and hence ABR is symmetric.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar5LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/883b28909ff843af82c71d1defdea8e5/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://www.youtube.com/watch?v=00zKBbuzH10

224 Week 5. Matrix-Matrix Operations

• AT R = AT
BL and ABL = AT

T R.

Thus, for a partitioned symmetric matrix where AT L is square, one can compute with

 AT L AT
BL

ABL ABR

 if AT R is not

available (e.g., is not stored) or

 AT L AT R

AT
T R ABR

 if ABL is not available (e.g., is not stored). In the first case,

AB =

 AT L AT R

ABL ABR

 BT

BB

=

 AT L AT
BL

ABL ABR

 BT

BB

=

 AT LBT +AT
BLBB

ABLBT +ABRBB

 .

5.4.2 Deriving the first PME and corresponding loop invariants * to edX

* Watch Video on edX
* Watch Video on YouTube

The operation we wish to implement is mathematically given by C := AB+C, where A is a symmetric matrix (and
hence square) and only the lower triangular part of matrix A can be accessed, because (for example) the strictly upper
triangular part is not stored.

Step 1: Precondition and postcondition

We are going to implicitly remember that A is symmetric and only the lower triangular part of the matrix is stored. So,
in the postcondition we simply state that C = AB+Ĉ is TRUE.

Step 2: Deriving loop-invariants

Since matrix A is symmetric, we want to partition

A→

 AT L AT R

ABL ABR


where AT L is square because then, because of the symmetry of A, we know that

• AT L and ABR are symmetric,

• AT R = AT
BL, and

• if we partition

B→

 BT

BB

 and C→

 CT

CB


then entering the partitioned matrices into the postcondition C = AB+Ĉ yields CT

CB

 =

 AT L AT R

ABL ABR

 BT

BB

+

 ĈT

ĈB



https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/2
https://www.youtube.com/watch?v=VMIT6t3riQc

5.4. Symmetric matrix-matrix multiplication * to edX 225

=

 AT LBT +AT RBB +ĈT

ABLBT +ABRBB +ĈB


=

 AT LBT +AT
BLBB +ĈT

ABLBT +ABRBB +ĈB

 (since AT R is not to be used).

This last observation gives us our first PME for this operation:

PME 1:

 CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ABRBB +ĈB

 .

Homework 5.4.2.1 Create a table of all loop invariants for PME 1, disgarding those for which there is no viable
loop guard or initialization command. You may want to start with Figure 5.11. The gray text there will help you
decide what to include in the loop invariant.

* SEE ANSWER
* DO EXERCISE ON edX

5.4.3 Deriving unblocked algorithms corresponding to PME 1 * to edX

In this unit, we work out the details for Invariant 4, yielding unblocked Variant 4.

Step 3: Determining the loop-guard.

The condition

Pinv∧¬G ≡

 CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ĈB

∧¬G

must imply that
R : C = AB+Ĉ

holds.
We can choose G as m(AT L)< m(A) or, equivalently because the partitioning of the matrices must be conformal,

m(CT)< m(C) or m(BT)< m(B).

Step 4: Initialization.

When we derived the PME in Step 2, we decided to partition the matrices like

A→

 AT L AT R

ABL ABR

 , B→

 BT

BB

 , and C→

 CT

CB

 .

The question now is how to choose the sizes of the submatrices and vectors so that the precondition

C = Ĉ

implies that the loop-invariant  CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ĈB



https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/3

226 Week 5. Matrix-Matrix Operations

PME:

 CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ABRBB +ĈB

.

AT LBT AT
BLBB ABLBT ABRBB

 CT

CB

=

Yes No No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 1

Yes Yes No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 2

Yes No Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 3

Yes Yes Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 4

No Yes Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 5

No Yes No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 6

No No Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 7

No No No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 8

Figure 5.11: Table for Homework 5.4.2.1, in which to identify loop-invariants for C := AB+C where A is symmetric
and only its lower triangular part is stored.

5.4. Symmetric matrix-matrix multiplication * to edX 227

holds after the initialization (and before the loop commences).
This leads us to the initialization step

A→

 AT L AT R

ABL ABR

 ,B→

 BT

BB

 ,C→

 CT

CB


where AT L is 0×0 and BT and CT have no rows.

Step 5: Progressing through the matrices.

We now note that, as part of the computation, AT L, BT and CT start by containing no elements and must ultimately
equal all of A, B and C, respectively. Thus, as part of the loop, rows must be taken from BB and CB and must be added
to BT and CT , respectively, and the quadrant AT L must be expanded every time the loop executes:

Step 5a:

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 BT

BB

→


B0

bT
1

B2

 ,

 CT

CB

→


C0

cT
1

C2


and

Step 5b:

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 BT

BB

←


B0

bT
1

B2

 ,

 CT

CB

←


C0

cT
1

C2

 .

Step 6: Determining the state after repartitioning.

This is where things become less straightforward. The repartitionings in Step 5a do not change the contents of C: it is
an “indexing” operation. We can thus ask ourselves the question of what the contents of C are in terms of the newly
exposed parts of A, B, and C. We can derive this state, Pbefore, via textual substitution: The repartitionings in Step 5a
imply that

AT L = A00 AT R =
(

a01 A02

)
ABL =

 aT
10

A20

 ABR =

 α11 aT
12

a21 A20

 ,

BT = B0

BB =

 bT
1

B2

 , and
CT =C0

CB =

 cT
10

C20

 .

If we substitute the expressions on the right of the equalities into the loop-invariant we find that CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ĈB


becomes 

C0 cT
1

C2


=


(A00)(B0)+

 aT
10

A20

T  bT
1

B2

+Ĉ0 aT
10

A20

B0 +

 ĉT
1

Ĉ2




and hence 

C0

cT
1

C2

=


A00B0 +(aT

10)
T bT

1 +AT
20B2 +Ĉ0

aT
10B0 + ĉT

1

AT
20B0 +Ĉ2



https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1

228 Week 5. Matrix-Matrix Operations

Step 7: Determining the state after moving the lines.

The movement of the lines in Step 5b means that now

AT L =

 A00 a01

aT
10 α11

 AT R =

 A02

aT
12


ABL =

(
A20 a21

)
ABR = A22

,
BT =

 B0

bT
1


BB = B2

, and
CT =

 C0

cT
1


CB =C2

.

If we substitute the expressions on the right of the equalities into the loop-invariant we find that CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ĈB


becomes 

 C0

cT
1


C2

=



 A00 (aT
10)

T

aT
10 α11

 B0

bT
1

+
(

A20 a21

)T
B22 +

 Ĉ0

ĉT
1


(

A20 a21

) B0

bT
1

+Ĉ2


where we recognize that due to symmetry a01 = (aT

10)
T and hence


C0

cT
1

C2

=


A00B0 +(aT

10)
T bT

1 +AT
20B2 +Ĉ0

aT
10B0 +α11bT

1 +aT
21B2 + ĉT

1

A20B0 +a21bT
1 + Ĉ2



Step 8: Determining the update.

Comparing the contents in Step 6 and Step 7 now tells us that the state of C must change from
C0

cT
1

C2

=


A00B0 +(aT

10)
T bT

1 +AT
20B2 +Ĉ0

aT
10B0 + ĉT

1

AT
20B0 +Ĉ2


to 

C0

cT
1

C2

=


A00B0 +(aT

10)
T bT

1 +AT
20B2 +Ĉ0

aT
10B0 +α11bT

1 +aT
21B2 + ĉT

1

A20B0 +a21bT
1 + Ĉ2

 ,

which can be accomplished by updating

cT
1 := α11bT

1 +aT
12B2 + cT

1

C2 := a21bT
1 +C2

5.4. Symmetric matrix-matrix multiplication * to edX 229

Homework 5.4.3.1 Derive as many unblocked algorithmic variants as you find useful.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symm l unb var1 ws.tex, * symm l unb var2 ws.tex,
* symm l unb var3 ws.tex, * symm l unb var4 ws.tex,
* symm l unb var5 ws.tex, * symm l unb var6 ws.tex,
* symm l unb var7 ws.tex, * symm l unb var8 ws.tex.

• * SymmLUnbVar1LS.mlx, * SymmLUnbVar2LS.mlx,
* SymmLUnbVar3LS.mlx, * SymmLUnbVar4LS.mlx,
* SymmLUnbVar5LS.mlx, * SymmLUnbVar6LS.mlx,
* SymmLUnbVar7LS.mlx, * SymmLUnbVar8LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

5.4.4 Blocked Algorithms * to edX

* Watch Video on edX
* Watch Video on YouTube

We now discuss how to derive a blocked algorithm for symmetric matrix-matrix multiplication. Such an algorithm
casts most computation in terms of matrix-matrix multiplication. If the matrix-matrix multiplication achieves high
performance, then so does the blocked symmetric matrix-matrix multiplication (for large problem sizes).

Step 1: Precondition and postcondition

Same as for the unblocked algorithms!
We are going to implicitly remember that A is symmetric and only the lower triangular part of the matrix is stored.

So, in the postcondition we simply state that C = AB+Ĉ is to be computed.

Step 2: Deriving loop-invariants

Same as for the unblocked algorithms!

We continue with Invariant 1:

 CT

CB

=

 AT LBT +ĈT

ĈB

.

Step 3: Determining the loop-guard.

Same as for the unblocked variants!

Step 4: Initialization.

Same as for the unblocked variants!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar6LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar7LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar8LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/4
https://www.youtube.com/watch?v=dWAwoG0rK6w

230 Week 5. Matrix-Matrix Operations

This leads us to the initialization step

A→

 AT L AT R

ABL ABR

 ,B→

 BT

BB

 ,C→

 CT

CB


where AT L is 0×0 and BT and CT have no rows.

Step 5: Progressing through the matrices.

We now note that, as part of the computation, AT L, BT and CT start by containing no elements and must ultimately
equal all of A, B and C, respectively. Thus, as part of the loop, rows must be taken from BB and CB and must be added
to BT and CT , respectively, and the quadrant AT L must be expanded every time the loop executes:

Step 5a:

 AT L AT R

ABL ABR

→


A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

 BT

BB

→


B0

B1

B2

 ,

 CT

CB

→


C0

C1

C2


and

Step 5b:

 AT L AT R

ABL ABR

←


A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

 BT

BB

←


B0

B1

B2

 ,

 CT

CB

←


C0

C1

C2

 .

Step 6: Determining the state after repartitioning.

This is where things become again less straightforward. The repartitionings in Step 5a do not change the contents of
C: it is an “indexing” operation. We can thus ask ourselves the question of what the contents of C are in terms of the
newly exposed parts of A, B, and C. We can derive this state, Pbefore, via textual substitution: The repartitionings in
Step 5a imply that

AT L = A00 AT R =
(

A01 A02

)
ABL =

 A10

A20

 ABR =

 A11 A12

A21 A20

 ,

BT = B0

BB =

 B1

B2

 , and
CT =C0

CB =

 C10

C20

 .

If we substitute the expressions on the right of the equalities into the loop-invariant we find that CT

CB

=

 AT LBT +ĈT

ĈB


becomes 

C0 C1

C2


=


(A00)(B0)+Ĉ0 Ĉ1

Ĉ2




and hence 
C0

C1

C2

=


A00B0 +Ĉ0

Ĉ1

Ĉ2



5.4. Symmetric matrix-matrix multiplication * to edX 231

Step 7: Determining the state after moving the thick lines.

The movement of the thick lines in Step 5b means that now

AT L =

 A00 A01

A10 A11

 AT R =

 A02

A12


ABL =

(
A20 a21

)
ABR = A22

,
BT =

 B0

B1


BB = B2

, and
CT =

 C0

C1


CB =C2

.

If we substitute the expressions on the right of the equalities into the loop-invariant we find that CT

CB

=

 AT LBT +ĈT

ĈB


becomes 

 C0

C1


C2

=


 A00 AT

10

A10 A11

 B0

B1

+

 Ĉ0

Ĉ1


Ĉ2


where we recognize that due to symmetry A01 = AT

10 and hence
C0

C1

C2

=


A00B0 +AT

10B1 +Ĉ0

A10B0 +A11B1 +Ĉ1

Ĉ2


Step 8: Determining the update.

Comparing the contents in Step 6 and Step 7 now tells us that the state of C must change from
C0

C1

C2

=


A00B0 +Ĉ0

Ĉ1

Ĉ2


to 

C0

C1

C2

=


A00B0 +AT

10B1 +Ĉ0

A10B0 +A11B1 +Ĉ1

Ĉ2

 ,

which can be accomplished by updating

C0 := AT
10B1 +C0

C1 := A10B0 +A11B1 +C1

Discussion

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/4
https://www.youtube.com/watch?v=VxL9G_6zHtM

232 Week 5. Matrix-Matrix Operations

Let us discuss the update step
C0 := AT

10B1 +C0

C1 := A10B0 +A11B1 +C1

and decompose the second assignment into two steps:

C0 := AT
10B1 +C0

C1 := A10B0 +C1

C1 := A11B1 +C1

Let’s assume that matrices C and B are m× n so that A is m×m, and that the algorithm uses a block size of nb. For
convenience, assume m is an integer multiple of nb: let m = Mnb. We are going to analyze how much time is spent in
each of the assignments.

Assume A00 is (Jnb)× (Jnb) in size, for 0 ≤ J < M−1. Then, counting each multiply and each add as a floating
point operation (flop):

• C0 := AT
10B1 +C0: This is a matrix-matrix multiply involving (Jnb)×nb matrix AT

10 and nb×n matrix B1, for

2Jn2
bn flops.

• C1 := A10B0 +C1: This is a matrix-matrix multiply involving nb× (Jnb) matrix A10 and Jnb×n matrix B0, for

2Jn2
bn flops.

• C1 := A11B1 +C1: This is a symmetric matrix-matrix multiply involving nb× nb matrix A11 and nb× n matrix
B1, for

2n2
bn flops.

If we aggregate this over all iterations, we get

• All C0 := AT
10B1 +C0:

M−1

∑
J=0

2Jn2
bn flops≈ 2

M2

2
n2

bn flops = (Mnb)
2n flops = m2n flops.

• All C1 := A10B0 +C1: This is a matrix-matrix multiply involving nb× (Jnb) matrix A10 and Jnb×n matrix B0,
for

M−1

∑
J=0

2Jn2
bn flops≈ 2

M2

2
n2

bn flops = (Mnb)
2n flops = m2n flops.

• All C1 :=A11B1+C1: This is a symmetric matrix-matrix multiply involving nb×nb matrix A11 and nb×n matrix
B1, for

M−1

∑
J=0

2n2
bn flops = 2Mn2

bn flops = 2nbmn flops.

The point: If nb is much smaller than m, then most computation is being performed in the general matrix-matrix
multiplications

C0 := AT
10B1 +C0

C1 := A10B0 +C1

and a relatively small amount in the symmetric matrix-matrix multiplication

C1 := A11B1 +C1

Thus, one can use a less efficient implementation for this subproblem (for example, using an unblocked algorithm).
Alternatively, since A11 is relatively small, one can create a temporary matrix T in which to copy A11 with its up-
per triangular part explicitly copied as well, so that a general matrix-matrix multiplication can also be used for this
subproblem.

5.4. Symmetric matrix-matrix multiplication * to edX 233

5.4.5 Other blocked algorithms * to edX

* Watch Video on edX
* Watch Video on YouTube

Homework 5.4.5.1 Derive as many blocked algorithmic variants as you find useful.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symm l blk var1 ws.tex, * symm l blk var2 ws.tex,
* symm l blk var3 ws.tex, * symm l blk var4 ws.tex,
* symm l blk var5 ws.tex, * symm l blk var6 ws.tex,
* symm l blk var7 ws.tex, * symm l blk var8 ws.tex.

• * SymmLBlkVar1LS.mlx, * SymmLBlkVar2LS.mlx,
* SymmLBlkVar3LS.mlx, * SymmLBlkVar4LS.mlx,
(The rest of these are not yet available.)
* SymmLBlkVar5LS.mlx, * SymmLBlkVar6LS.mlx,
* SymmLBlkVar7LS.mlx, * SymmLBlkVar8LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

5.4.6 A second PME * to edX

There is a second PME for this operation. Partition C→
(

CL CR

)
and Partition B→

(
BL BR

)
. Then, entering

this in the postcondition C = AB+Ĉ, we find that(
CL CR

)
= A

(
BL BR

)
+
(

ĈL ĈR

)
yielding the second PME

PME 2:
(

CL CR

)
=
(

ABL +ĈL ABR +ĈR

)
.

Notice that this is identical to PME 1 for general matrix-matrix multiplication in Unit 5.3.2.
The astute reader will recognize that the update for the resulting variants cast computation in terms of a symmetric

matrix-vector multiply

c1 := Ab1 + c1

for the unblocked algorithms and the symmetric matrix-matrix multiply

C1 := AB1 +C1

for the blocked algorithms.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/5
https://youtu.be/oZ1eVnH-gNk
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar6LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar7LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar8LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/f4821a23311c4a8a8b9deac0b590bfc6/5fdae494dd8c4367a6eb4ed1c3d9484e/6

234 Week 5. Matrix-Matrix Operations

5.5 Enrichment * to edX

5.5.1 The memory hierarchy * to edX

* Watch Video on edX
* Watch Video on YouTube

5.5.2 The GotoBLAS matrix-matrix multiplication algorithm * to edX

* Watch Video on edX
* Watch Video on YouTube

A number of recent papers on matrix-matrix multiplication are listed below.

• Kazushige Goto, Robert A. van de Geijn. “Anatomy of high-performance matrix multiplication.” ACM Trans-
actions on Mathematical Software (TOMS), 2008.
This paper on the GotoBLAS approach for implementing matrix-matrix multiplication is probably the most
frequently cited recent paper on high-performance matrix-matrix multiplication. It was written to be under-
standable by expert and novice alike.

• Field G. Van Zee, Robert A. van de Geijn. “BLIS: A Framework for Rapidly Instantiating BLAS Functionality.”
ACM Transactions on Mathematical Software (TOMS), 2015.
In this paper, the implementation of the GotoBLAS approach is refined, exposing more loops around a “micro-
kernel” so that less code needs to be highly optimized.

These papers can be accessed for free from

http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html

(Journal papers #11 and #39.)
We can list more reading material upon request.

5.5.3 The PME and loop invariants say it all! * to edX

In Unit 5.2.6, Figure 5.10, you may have noticed a pattern between the PME and the two loop invariants that yielded
the same update in the loop. One of those loop invariants yields an algorithm that marches through the matrix from
top-left to bottom-right while the other one marches from bottom-right to top-left.

Reversing the order in which a loop index changes (e.g. from incrementing to decrementing or vise versa) is known
as loop reversal. It is only valid under some circumstances. What Figure 5.10 suggests is that there may be a relation
between the PME and a loop invariant that tells us conditions under which it is legal to reverse.

How the PME and loop invariants give insight into, for example, opportunities for parallelism is first discussed in

• Tze Meng Low, Robert A. van de Geijn, Field G. Van Zee.
“Extracting SMP parallelism for dense linear algebra algorithms from high-level specifications.”
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, 2005.

Look for Conference Publication #8 at

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/1
https://youtu.be/t_y6DQoQbfY
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/2
https://youtu.be/07SMaudtH6k
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa/d3ae9ace147c4579804aeaca7a596d01/3

5.6. Wrap Up * to edX 235

http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html

for free access. This then led to a more complete treatment in the dissertation

• Tze Meng Low.
A Calculus of Loop Invariants for Dense Linear Algebra Optimization.
Ph.D. Dissertation. The University of Texas at Austin, Department of Computer Science. December 2013.
This work shows how an important complication for compilers, the phase ordering problem can be side-stepped
by looking at the PME and loop invariants.

This dissertation is also available from the same webpage.
We believe you now have the background to understand these works.

5.6 Wrap Up * to edX

5.6.1 Additional exercises * to edX

Level-3 BLAS (matrix-matrix) operations

For extra practice, the level-3 BLAS (matrix-matrix) operations are a good source. These operations involve two or
more matrices and are special cases of matrix-matrix multiplication.

GEMM.
Earlier this week, you already derived algorithms for the GEMM (general matrix matrix multiplication operation:

C := AB+C,

where A, B, and C are all matrices with appropriate sizes. This is a special case of the operation that is part of the
BLAS, which includes all of the following operations:

C := αAB+βC

C := αAT B+βC

C := αABT +βC

C := αAT BT +βC

(Actually, it includes even more if the matrices are complex valued). The key is that matrices A and B are not to be
explicitly transposed because of the memory operations and/or extra space that would require. We suggest you ignore
α and β. This then yields the unblocked algorithms/functions

• GEMM NN UNB VARX(A, B, C) (no transpose A, no transpose B),

• GEMM TN UNB VARX(A, B, C) (transpose A, no transpose B),

• GEMM NT UNB VARX(A, B, C) (no transpose A, transpose B), and

• GEMM TT UNB VARX(A, B, C) (transpose A, transpose B).

as well as the blocked algorithms/functions

• GEMM NN BLK VARX(A, B, C) (no transpose A, no transpose B),

• GEMM TN BLK VARX(A, B, C) (transpose A, no transpose B),

• GEMM NT BLK VARX(A, B, C) (no transpose A, transpose B), and

• GEMM TT BLK VARX(A, B, C) (transpose A, transpose B).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

236 Week 5. Matrix-Matrix Operations

SYMM.
Earlier this week we discussed C := AB+C where A is symmetric and therefore only stored in the lower triangular

part of A. Obviously, the matrix could instead be stored in the upper triangular part of A. In addition, the symmetric
matrix could be on the right of matrix B, as in C := BA+C. This then yields the unblocked algorithms/functions

• SYMM LL UNB VARX(A, B, C) (left, lower triangle stored),

• SYMM LU UNB VARX(A, B, C) (left, upper triangle stored),

• SYMM RL UNB VARX(A, B, C) (right, lower triangle stored), and

• SYMM RU UNB VARX(A, B, C) (right, upper triangle stored).

and blocked algorithms/functions

• SYMM LL BLK VARX(A, B, C) (left, lower triangle stored),

• SYMM LU BLK VARX(A, B, C) (left, upper triangle stored),

• SYMM RL BLK VARX(A, B, C) (right, lower triangle stored), and

• SYMM RU BLK VARX(A, B, C) (right, upper triangle stored).

SYRK.
If matrix C is symmetric, then so is the result of what is known as a symmetric rank-k update (SYRK): C := AAT +

C. In this case, only the lower or upper triangular part of C needs to be stored and updated. Alternatively, the rank-k
update can compute with the transpose of A yielding C := AT A+C. The resulting unblocked algorithms/functions are
then

• SYRK LN UNB VARX(A, B, C) (lower triangle stored, no transpose),

• SYRK LT UNB VARX(A, B, C) (lower triangle stored, transpose),

• SYRK UN UNB VARX(A, B, C) (upper triangle stored, no transpose),

• SYRK UT UNB VARX(A, B, C) (upper triangle stored, transpose),

while the blocked algorithms/functions are

• SYRK LN BLK VARX(A, C) (lower triangle stored, no transpose),

• SYRK LT BLK VARX(A, C) (lower triangle stored, transpose),

• SYRK UN BLK VARX(A, C) (upper triangle stored, no transpose),

• SYRK UT BLK VARX(A, C) (upper triangle stored, transpose),

SYR2K.
Similarly, if matrix C is symmetric, then so is the result of what is known as a symmetric rank-2k update (SYR2K):

C := ABT +BATC. In this case, only the lower or upper triangular part of C needs to be stored and updated. Alterna-
tively, the rank-2k update can compute with the transposes of A and B, yielding C := AT B+BT A+C. The resulting
unblocked algorithms/functions are then

• SYR2K LN UNB VARX(A, B, C) (lower triangle stored, no transpose),

• SYR2K LT UNB VARX(A, B, C) (lower triangle stored, transpose),

• SYR2K UN UNB VARX(A, B, C) (upper triangle stored, no transpose),

• SYR2K UT UNB VARX(A, B, C) (upper triangle stored, transpose),

5.6. Wrap Up * to edX 237

and the blocked ones are

• SYR2K LN BLK VARX(A, B, C) (lower triangle stored, no transpose),

• SYR2K LT BLK VARX(A, B, C) (lower triangle stored, transpose),

• SYR2K UN BLK VARX(A, B, C) (upper triangle stored, no transpose),

• SYR2K UT BLK VARX(A, B, C) (upper triangle stored, transpose).

You may want to consider deriving algorithms for this operation after Week 6, since there is similarity with opera-
tions discussed there.

TRMM.
Another special case of matrix-matrix multiplication is given by B := AB, where A is (lower or upper) triangular.

It turns out that the output can overwrite the input matrix B if the computation is carefully ordered. Alternatively,
the triangular matrix can be to the right of B. Finally, A can be optionally transposed and/or have a unit or nonunit
diagonal.

B := LB

B := LT B

B := UB

B := UT B

where L is a lower triangular (possibly implicitly unit lower triangular) matrix and U is an upper triangular (possibly
implicitly unit upper triangular) matrix. This then yields the algorithms/functions

• TRMM LLNN UNB VARX(L, B) where LLNN stands for left, lower triangular, no transpose, non unit diagonal,

• TRMM RLNN UNB VARX(L, B) where LLNN stands for right, lower triangular, no transpose, non unit diagonal,

• and so forth.

TRSM.
The final matrix-matrix operation solves AX = B where A is triangular, and the solution X overwrites B. This is

known as triangular solve with multiple right-hand sides. We discuss this operation in detail in Week 6.

5.6.2 Summary * to edX

In this week, we applied the techniques to more advanced problems. Not much to summarize!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2

238 Week 5. Matrix-Matrix Operations

Week 6
Advanced Matrix Operations

6.1 Opening Remarks * to edX

6.1.1 Launch * to edX

* Watch Video on edX
* Watch Video on YouTube

239

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://www.youtube.com/watch?v=-zAjMbKfM0w

240 Week 6. Advanced Matrix Operations

6.1.2 Outline Week 6 * to edX

6.1. Opening Remarks * to edX . 239
6.1.1. Launch * to edX . 239
6.1.2. Outline Week 6 * to edX . 240
6.1.3. What you will learn * to edX . 241

6.2. LU Factorization * to edX . 242
6.2.1. Background * to edX . 242
6.2.2. From specification to the PME * to edX . 242
6.2.3. Unblocked Variant 1 * to edX . 243
6.2.4. More loop invariants * to edX . 244
6.2.5. Blocked algorithms * to edX . 246
6.2.6. Which variant to pick * to edX . 247
6.2.7. LU factorization with pivoting * to edX . 248

6.3. Related Operations . 248
6.3.1. Triangular solve * to edX . 248
6.3.2. Triangular solve with multiple right-hand sides * to edX . 251

6.4. Enrichment * to edX . 251
6.4.1. At the frontier and beyond... 251
6.4.2. Practical libraries * to edX . 252
6.4.3. Correctness in the presence of roundoff error * to edX . 253
6.4.4. Beyond dense linear algebra * to edX . 253
6.4.5. When the worksheet does not yield algorithms for matrix operations * to edX 254
6.4.6. If it is so systematic, can’t we get a computer to do it? * to edX 254

6.5. Wrap Up * to edX . 255
6.5.1. Additional exercises * to edX . 255

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

6.1. Opening Remarks * to edX 241

6.1.3 What you will learn * to edX

The final week shows the power of the FLAME notation. It demonstrates that advanced matrix operations can be
tackled using this approach by examining LU factorization to discover unblocked and blocked algorithms used to
solve systems of equations.

Upon completion of this week, you should be able to

• Derive and implement the unblocked and blocked algorithms for LU factorization and related operations.

• Select a loop invariant so that the algorithm developed with it will have certain desired properties, such as
accessing matrices by columns.

• Recognize practical applications and extend the ideas of goal-oriented program to new situations.

• Discover the many directions of research that what you have learned enable.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/010c0e7d30104ed88e6784d992ba174d/3

242 Week 6. Advanced Matrix Operations

6.2 LU Factorization * to edX

6.2.1 Background * to edX

* Watch Video on edX
* Watch Video on YouTube

6.2.2 From specification to the PME * to edX

Step 1: The precondition and postcondition

* Watch Video on edX
* Watch Video on YouTube

Those who feel they need a refresher on Gaussian elimination and how it relates to the LU factorization may
want to visit Week 6 of Linear Algebra: Foundations to Frontiers (LAFF). The materials for this course are
available on * edX or from * www.ulaff.net

In the launch we argued that Gaussian elimination can be reformulated as the computation of the LU factorization
of a given square matrix A:

A = LU,

where L is a unit lower triangular matrix and U is an upper triangular matrix. (This factorization does not always exist.
We will revisit this issue later.) As part of the computation, the original matrix A is typically overwritten with L and
U . More precisely,

• The strictly lower triangular part of L overwrites the strictly lower triangular part of A.

• The diagonal of L is known to be all ones, and hence needs not to be stored.

• The upper triangular matrix U overwrites the upper triangular part of A.

The precondition is given by A = Â, where we implicitly assume that A is square and that the LU factorization exists,
and the postcondition is given by

A = L\U ∧LU = Â,

where the notation L\U is used to indicate that A is overwritten with L and U as described earlier.

Partitioning the matrices

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://www.youtube.com/watch?v=ksCqO7sK0B0
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://www.youtube.com/watch?v=scXYw5vYHA0
http://www.edx.org
http://www.ulaff.net
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://www.youtube.com/watch?v=TQZe10XZhUY

6.2. LU Factorization * to edX 243

What we have learned so far is that a matrix is often partitioned into quadrants if it has special structure. For
example, when a matrix, A, was symmetric and stored in the lower triangular part of the array, we partitioned it as

A→

 AT L AT R

ABL ABR

 ,

where AT L is square (and hence so is ABR). This then meant that

A =

 AT L AT
BL

ABL ABR


because of symmetry.

In fact, we were partitioning A in this way also because of the triangular nature of what was stored. When matrices
are triangular, one will similarly want to partition them into quadrants, this time to expose a submatrix of zeroes.
Partition into lower triangular matrix L and upper triangular matrix U like

L→

 LT L LT R

LBL LBR

 and U →

 UT L UT R

UBL UBR

 ,

where

• LT L and LBR are square and hence are unit lower triangular.

• UT L and UBR are square and hence are upper triangular.

Then

L =

 LT L 0

LBL LBR

 and U →

 UT L UT R

0 UBR

 ,

where 0 denotes a zero matrix of appropriate size.

Homework 6.2.2.1 Derive the PME from the postcondition and how matrices L and U inherently need to be
partitioned.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

6.2.3 Unblocked Variant 1 * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://www.youtube.com/watch?v=8vYuq3wsNcw
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/2
https://www.youtube.com/watch?v=O7SkK6icl9I
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://www.youtube.com/watch?v=swqTncomc8c

244 Week 6. Advanced Matrix Operations

Homework 6.2.3.1 Derive and implement the unblocked algorithm that corresponds to

Invariant 1 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

ÂBL ÂBR

∧LT LUT L = ÂT L.

If you get stuck, there are hints in the below videos.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var1 ws.tex.
This worksheet is already partially filled out (through Step 5).

• If you end up using the first video that follows this homework as a hint, then you may want to continue after
watching that with the following worksheet: * LU unb var1 ws step6.tex.
This worksheet is filled out through Step 6.

• * LUUnbVar1LS.mlx.
Note: for the implementation, you don’t need to include L and U as parameters. They were ”temporaries”
in the derivation, but don’t show up in the actual implementation. This same comment holds for all imple-
mentations of LU factorization.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

6.2.4 More loop invariants * to edX

* Watch Video on edX
* Watch Video on YouTube

In the video, we suggest the second loop invariant

Invariant 2 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

∧ LT LUT L = ÂT L

LBLUT L = ÂBL

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws_step6.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar1LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://www.youtube.com/watch?v=FvTrPnBy1sE
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/3
https://www.youtube.com/watch?v=q1-W4jST9o4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/4
https://www.youtube.com/watch?v=YCrgILRwC6E

6.2. LU Factorization * to edX 245

where
LT LUT L = ÂT L

LBLUT L = ÂBL

captures the constraint
LT LUT L = ÂT L∧LBLUT L = ÂBL.

Homework 6.2.4.1 Derive and implement the unblocked algorithm that corresponds to

Invariant 2 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

∧ LT LUT L = ÂT L

LBLUT L = ÂBL.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var2 ws.tex.
This worksheet is already partially filled out (through Step 5).

• * LUUnbVar2LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 6.2.4.2 Identify three additional loop invariants (Invariants 3-5) for computing the LU factorization.
* SEE ANSWER

* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

Homework 6.2.4.3 Derive and implement the unblocked algorithms that correspond to Invariants 3-5 from the
last homework. If you have limited time, then derive at least the algorithm corresponding to Invariant 5.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var3 ws.tex, * LU unb var4 ws.tex, * LU unb var5 ws.tex.
These worksheets are already partially filled out (through Step 5).

• * LUUnbVar3LS.mlx, * LUUnbVar4LS.mlx, * LUUnbVar5LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar2LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/4
https://www.youtube.com/watch?v=wcL-ZpztpE0
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar5LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/

246 Week 6. Advanced Matrix Operations

6.2.5 Blocked algorithms * to edX

* Watch Video on edX
* Watch Video on YouTube

The loop invariants for LU factorization are given in Figure 6.12.

Homework 6.2.5.1 Derive and implement the blocked algorithm that corresponds to

Invariant 5 : AT L AT R

ABL ABR

=

 L\UT L ÛT R

LBL ÂBR−LBLUT R

∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL.

If you need hints along the way, you may want to watch the videos that follow this homework.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU blk var5 ws.tex.

• * LUBlkVar5LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://www.youtube.com/watch?v=RZ9Azp954qQ
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar5LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://www.youtube.com/watch?v=tsPcBXapNBo
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://www.youtube.com/watch?v=NAEEMlOV_nI
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://www.youtube.com/watch?v=DmxXdc9DnHk
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/5
https://www.youtube.com/watch?v=_ZyRGYWV7ag

6.2. LU Factorization * to edX 247

Invariant 1 : AT L AT R

ABL ABR

=

 L\UT L ÂT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L

Invariant 2 : AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

 ∧
LT LUT L = ÂT L

LBLUT L = ÂBL.

Invariant 3 : AT L AT R

ABL ABR

=

 L\UT L UT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

Invariant 4 : AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR

 ∧
LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Invariant 5 : AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR−LBLUT R

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Figure 6.1: The five loop invariants for computing the LU factorization.

Homework 6.2.5.2 Derive and implement the blocked algorithms that correspond to Invariants 1-4. If you have
limited time, then you may want to focus on Invariant 2. A table of all loop invariants was given in the solution for
Homework 6.2.4.2.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU blk var1 ws.tex, * LU blk var2 ws.tex, * LU blk var3 ws.tex, * LU blk var4 ws.tex.

• * LUBlkVar1LS.mlx, * LUBlkVar2LS.mlx, * LUBlkVar3LS.mlx, * LUBlkVar4LS.mlx.

* SEE ANSWER
* DO EXERCISE ON edX

6.2.6 Which variant to pick * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/1
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar4LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/6
https://www.youtube.com/watch?v=s5RRgeIItzQ

248 Week 6. Advanced Matrix Operations

Invariant 1 :
(Bordered algo-
rithm)

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L

Invariant 2 :
(Left-looking al-
gorithm)

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

 ∧
LT LUT L = ÂT L

LBLUT L = ÂBL.

Invariant 3 :
(Up-looking algo-
rithm)

 AT L AT R

ABL ABR

=

 L\UT L UT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

Invariant 4 :
(Crout Variant)

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR

 ∧
LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Invariant 5 :
(Right-looking al-
gorithm)

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR−LBLUT R

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Figure 6.2: The five loop invariants for computing the LU factorization. Commonly used names are given in paren-
theses. The Right-looking algorithm is also often called Classical Gaussian Elimination.

6.2.7 LU factorization with pivoting * to edX

* Watch Video on edX
* Watch Video on YouTube

* Watch Video on edX
* Watch Video on YouTube

For details on LU factorization with pivoting, we refer the interested reader to

Robert A. van de Geijn and Enrique S. Quintana-Ortı́
The Science of Programming Matrix Computations
PDF for free at www.lulu.com, 2008

6.3 Related Operations

6.3.1 Triangular solve * to edX

* Watch Video on edX
* Watch Video on YouTube

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/7
https://www.youtube.com/watch?v=0NhmOdFBgAw
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/0d15b5ce64b44cc0af992ef4c119c160/7
https://www.youtube.com/watch?v=SdbrVP14vew
http://www.lulu.com/shop/enrique-s-quintana-ort%C3%AD/the-science-of-programming-matrix-computations/ebook/product-17418498.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/1
https://www.youtube.com/watch?v=H8YPDjk_y9E

6.3. Related Operations 249

Computing the LU factorization of a matrix is a first step towards solving the linear system

Ax = y,

where A is a square matrix and vector y is the right-hand side of the system. These are the given inputs. The vector x
is to be computed.

The idea is as follows: if A = LU , then
Ax = y

is equivalent to
(LU)x = y,

which is in turn equivalent to
L(Ux) = y.

Now, we can introduce a temporary vector z =Ux so that Lz = y. Then Ax = y can be solved via the steps

• Compute the LU factorization of A so that A = LU .

• Solve Lz = y. Typically the result overwrites the input vector y.

• Solve Ux = y, where y now contains the solution to Lz = y. Typically x overwrites the input vector y.

These operations are known as triangular solves (TRSV in BLAS terminology).
The operation that solves Lx = y was already encountered when we discussed LU factorization: Unblocked Vari-

ants 1 and 2 included the update
a01 := L−1

00 a01.

One can (and should) implement this as the unit lower triangular solve Lx = y, where L is the submatrix L00, y is a01,
and x overwrites a01. Why should you implement it this way? Because inverting an n×n matrix requires n3 floating
point operations while solving with L requires only n2 operations.

Another operation that we encountered, in Unblocked Variants 1 and 3, was

aT
10 := aT

10U−1
00 .

This can be reformulated as
(aT

01)
T :=U−T

00 (aT
01)

T

where U−T
00 equals the inverse of UT . (In a linear algebra course you may have learned that (A−1)T = (AT)−1 can be

denoted by A−T since the order of applying the transposition and the inversion doesn’t matter.) We can then recognize
this as solving the triangular system

UT x = y

where U equals U00, y equals (aT
10)

T and the solution x overwrites aT
10 (storing it as a row in A.)

This now suggests an entire class of triangular solve operations:

L x = y (6.1)
LT x = y (6.2)

U x = y (6.3)
UT x = y, (6.4)

where L can be a lower or unit lower triangular matrix, U can be an upper or unit upper triangular matrix, x overwrites
y, and y can be stored as a row or a column.

250 Week 6. Advanced Matrix Operations

Homework 6.3.1.1 Derive the PME for solving Lx = y, overwriting y with the solution, where L is unit lower
triangular and y is stored as a column vector. Next, derive and implement unblocked algorithms. You will want
to find an algorithm that accesses L by columns. Can you already tell from the loop invariant which algorithm will
have that property, so that you only have to derive one?
We use trsv lnu and TrsvLNU to indicate that the triangular solve involves the lower triangular part of the matrix,
that the matrix stored there is not to be transposed, and that matrix is a unit triangular matrix.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * trsv lnu unb var1 ws.tex, * trsv lnu unb var2 ws.tex

• * TrsvLNUUnbVar1LS.mlx, * TrsvLNUUnbVar2LS.mlx
Note: for the implementation, you don’t need to include x as a parameter. It was a ”temporary” in the deriva-
tion, but doesn’t show up in the actual implementation. This same comment holds for all implementations
of triangular solve.

* SEE ANSWER
* DO EXERCISE ON edX

Homework 6.3.1.2 Derive the PME for solving Ux = y, overwriting y with the solution, where U is upper tri-
angular and y is stored as a column vector. In what direction should you march through the matrix and vectors?
(The PME should tell you.) Derive and implement unblocked algorithms. You will want to find an algorithm that
accesses U by columns. Can you already tell from the loop invariant which algorithm will have that property, so
that you only have to derive one?
We use trsv unn and TrsvUNN to indicate that the triangular solve involves the upper triangular part of the matrix,
that the matrix stored there is not to be transposed, and that matrix is not a unit triangular matrix.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * trsv unn unb var1 ws.tex, * trsv unn unb var2 ws.tex

• * TrsvUNNUnbVar1LS.mlx, * TrsvUNNUnbVar2LS.mlx
Note: for the implementation, you don’t need to include x as a parameter. It was a ”temporary” in the deriva-
tion, but doesn’t show up in the actual implementation. This same comment holds for all implementations
of triangular solve.

* SEE ANSWER
* DO EXERCISE ON edX

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar2LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar2LS.mlx
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/

6.4. Enrichment * to edX 251

6.3.2 Triangular solve with multiple right-hand sides * to edX

* Watch Video on edX
* Watch Video on YouTube

Consider the set of linear equations

Ax0 = b0

Ax1 = b1
...

...
Axn−1 = bn−1,

where A is given as are the right-hand sides, b0,b1, · · · ,bn−1. This can be reformulated as(
Ax0 Ax1 · · · Axn−1

)
=
(

b0 b1 · · · bn−1

)
or, equivalently,

AX = B,

where X =
(

x0 x1 · · · xn−1

)
and B =

(
b0 b1 · · · bn−1

)
. Thus, if A and B are given, then solving AX = B for

matrix X can be viewed as solving a linear system with multiple right-hand sides. If matrix A is triangular, then this
becomes a triangular solve with multiple right-hand sides (TRSM in BLAS terminology).

Consider the case where A is replaced by the lower triangular matrix L. Then the postcondition becomes

B = X ∧LX = B̂,

which captures that B can be overwritten with the solution. Partitioning X and B by columns yields the PME(
BL BR

)
=
(

XL XR

)
∧ LXL = B̂L LXR = B̂R .

It is not hard to see that this PME yields algorithms that compute X one or more columns at a time (depending on
whether an unblocked or blocked algorithm is derived).

Homework 6.3.2.1 Derive an alternative PME that corresponds to partitioning L into quadrants. You are on your
own: derive the invariants, the algorithms, the implementations. If you still have energy left after that, do the same
for solving UX = B or LT X = B ore UT X = B (without explicitly transposing L or U). You are now an expert!

* SEE ANSWER
* DO EXERCISE ON edX

6.4 Enrichment * to edX

6.4.1 At the frontier and beyond...

For those who yearn for more, further readings can be found at

* http://shpc.ices.utexas.edu/publications.html.

Most can be accessed for free by clicking on the title of the paper on that webpage.
When an undergraduate or graduate student shows interest in pursuing research with us, we ask them to read

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/2
https://www.youtube.com/watch?v=p5kfpJ1Zeh4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/91cfd554fc1b413f8ef62d23b6ba4a58/a4113117faad46a7a75621a3c5959b5b/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
http://shpc.ices.utexas.edu/publications.html

252 Week 6. Advanced Matrix Operations

Robert A. van de Geijn and Enrique S. Quintana-Orti.
The Science of Programming Matrix Computations.
www.lulu.com, 2008.

and some of the materials mentioned in Unit 5.5.2. After this, if they are still interested, they may be ready to pursue
research. Now, this course provides that background.

As one learns about formal derivation of algorithms, one starts to wonder...

• Can the techniques yield production quality libraries?

• Since scientific computing typically involves real valued data, stored in finite precision in the memory of a
computer, what does correct mean anyway?

• The examples in the second part of this course seem to focus on dense matrix operations (dense matrices don’t
have enough known zeros to warrant taking advantage of them). Does the methodology apply to all such
operations? Does it apply to operations with sparse matrices (which do have enough known zeros to warrant
taking advantage of them)?

• Does it apply to operations that don’t involve matrices or multidimensional arrays?

• Why haven’t software engineers been programming using APIs like FLAME@lab all along?

• As you were doing the various homework assignments, you may have noticed how systematic the approach is.
Can it be automated? Spark on steriods?

In this week’s enrichments, we address some of these questions. But what we really hope is that you now see oppor-
tunities to take what you have learned in new directions.

6.4.2 Practical libraries * to edX

In this course, we illustrate how algorithms can be represented in code using the FLAME@lab API for MATLAB. To
attain high performance, one would need to instead use a language like C.

An overview of how the techniques have been implmented in a practical library can be found in

Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S. Quintana-Orti, Gregorio Quintana-Orti.
The libflame Library for Dense Matrix Computations.
IEEE Computing in Science and Engineering, Vol. 11, No 6, November/December 2009.

A complete reference for the libflame library that has resulted is given in

Field G. Van Zee.
libflame: The Complete Reference.
www.lulu.com, 2009.

We are funded by the National Science Foundation’s Software Infrastructure for Sustained Innovation (SI2) program
(most currently by Award ACI-1550493, which also partially funds this MOOC) to create a new linear algebra software
stack. In addition, we receive funding from a number of partner companies, listed at * http://shpc.ices.utexas.edu/sponsors.html.

A video of Robert implementing the Cholesky factorization, an operation that is closely related to LU factorization,
in C that illustrates the performance benefits of blocked algorithms can be found at

* http://www.cs.utexas.edu/users/flame/Movies.html#Chol

(If you would like to try your hand at this, be warned that at this time we need to still check if the given links
still work. In particular, the link to the GotoBLAS2 is out of date.)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//2
http://shpc.ices.utexas.edu/sponsors.html
http://www.cs.utexas.edu/users/flame/Movies.html#Chol

6.4. Enrichment * to edX 253

6.4.3 Correctness in the presence of roundoff error * to edX

The problem with correctness for matrix algorithms is that in practice the data is real valued (stored as floating point
numbers) and that the computation uses floating point arithmetic that introduces roundoff error when real valued
numbers are approximated.

A notion of correctness in the presence of roundoff error is that of numerical stability. A computer implementation
of an algorithm (which incurs roundoff error) for computing a result is said to be numerically stable if it computes
the exact result for a slightly changed (perturbed) input. The idea is that if the problem is such that a small change
in the input yields a large change in the output, then the problem is inherently difficult to solve accurately and is then
said to be ill-conditioned. It is only if the computed result cannot be linked to a slightly changed problem that the
implementation has a serious concern. In this case, the implementation and/or algorithm is not correct in the presence
of roundoff error.

Let us illustrate this by considering the problem of solving Ax = y where A and y are given and x is to be computed.
When we solve this on a computer, we expect an inexact result to be computed because of roundoff error that accu-
mulates as the computation proceeds. Let’s call this result x̃. Then Ax̃ = ỹ, some alternative right-hand side. Now, it is
easy to show that A(x̃−x) = ỹ−y. Rather than focusing on whether x̃ is “close to” x (which it won’t be if the problem
of solving this linear system is ill-conditioned), we instead ask whether x̃ is the solution to a nearby problem: Is ỹ
“close to” y? In practice the matrix and the right-hand side often involve measured data that is inexact. So, we would
expect that y has some error in it anyway: even x then only solves a nearby problem. Thus, computing the solution to
a nearby problem is the best we can hope for. If the problem is badly behaved, then a small change in the input (ỹ)
could yield a large change in the output (x̃) and hence one can’t hope for a good solution, regardless of how “correct”
our implementation is.

To prove a matrix algorithm correct thus means that one must not only find a correct algorithm in the absence
of roundoff error, but one must also then prove that the algorithm is numerically stable. Proving that an algorithm is
numerically stable typically employs a technique known as “backward error analysis.” Fortunately, we have shown that
for many matrix computations backward error analysis can be systematic much like the derivation of matrix algorithms
was systematic. This involves what we call the “error worksheet.” Details can be found in the journal paper

Paolo Bientinesi, Robert A. van de Geijn.
Goal-Oriented and Modular Stability Analysis.
Journal on Matrix Analysis and Applications Volume 32 Issue 1, February 2011.

The material in that paper is based on the dissertation

Paolo Bientinesi.
* Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algorithms.
Ph.D. Dissertation. The University of Texas at Austin, Department of Computer Sciences. Aug. 2006.

If you are interested, we recommend you instead read the technical report

Paolo Bientinesi and Robert A. van de Geijn.
* The Science of Deriving Stability Analyses.
FLAME Working Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen.
TR AICES-2008-2. November 2008.

which is very much like the journal paper, but includes exercises for the reader.

6.4.4 Beyond dense linear algebra * to edX

Computations with matrices and vectors are of great importance to scientific computing and domains like machine
learning. While operations with dense matrices are important, so-called sparse matrix computations are more common.

In preliminary work, we have extended the FLAME methodology to so-called Krylov subspace methods (including
the Conjugate Gradient method):

Victor Eijkhout, Paolo Bientinesi, Robert van de Geijn.
Toward Mechanical Derivation of Krylov Solver Libraries.
Procedia Computer Science, 1(1) 1805-1813, 2010 (Proceedings of ICCS2010.)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//3
http://www.cs.utexas.edu/users/pauldj/pubs/thesis.pdf
http://www.aices.rwth-aachen.de:8080/aices/preprint/documents/AICES-2008-7.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//4

254 Week 6. Advanced Matrix Operations

For those who know about such methods, the trick is to view the vectors that are produced by the iteration as the
columns of a matrix, as was advocated by Alston Householder in the 1960s. That matrix is dense, allowing a variation
of the FLAME methodology to be applied.

In

Tze Meng Low.
* A Calculus of Loop Invariants for Dense Linear Algebra Optimization.
Ph.D. Dissertation. The University of Texas at Austin, Department of Computer Science. December 2013.

it is suggested that the FLAME methodology can be extended to the class of Primitive Recursive Functions (PRFs).
Those familiar with recursion will have noticed that the PME is invariably a recursive definition of the operation
and that the FLAME methodology transforms this definition into a family of loop-based algorithms. This makes the
operations to which we have applied the FLAME methodology members of the class of PRFs.

6.4.5 When the worksheet does not yield algorithms for matrix operations * to edX

There are matrix operations for which the FLAME methodology will not yield loop-based algorithms. (Or, at least, not
in a straightforward fashion.) It is well-known that, in general, there is no formula for solving the algebraic eigenvalue
problem for larger matrices. (Given a matrix of size at least 5× 5 there is no formula for finding the eigenvalues,
except for special matrices.) Thus, we cannot expect a loop to be derived, via the FLAME methodology or otherwise,
that computes these in a finite number of iterations.

6.4.6 If it is so systematic, can’t we get a computer to do it? * to edX

* Watch Video on edX
* Watch Video on YouTube

Computer scientists make knowledge systematic with automation as the ultimate goal. For many matrix computa-
tions, programming with the FLAME methodology is systematic. Can it be automated?

The above video by Prof. Paolo Bientinesi demonstrates the Cl1ck tool mentioned later in this unit. (Unfortunately,
the interface that is used in that video is not publicly available. Fortunately, Cl1ck has been rewritten in Python.)

The FLAME methodology was first published in

John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Robert A. van de Geijn.
FLAME: Formal Linear Algebra Methods Environment.
ACM Transactions on Mathematical Software (TOMS), 2001

and the dissertation

John A. Gunnels.
* A Systematic Approach to the Design and Analysis of Linear Algebra Algorithms.
Ph.D. Dissertation. FLAME Working Note #6, The University of Texas at Austin, Department of Com-
puter Sciences. Technical Report TR-2001-44. Nov. 2001.

“The Worksheet” to which you were introduced in Weeks 4-6 was first published in

Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, Robert A. van de Geijn.
The science of deriving dense linear algebra algorithms.
ACM Transactions on Mathematical Software (TOMS), 2005.

What the worksheet made obvious was that, on the one hand, the methodology had pedagogical potential and, on the
other hand, it could be automated. A prototype was first published in

http://www.cs.utexas.edu/users/flame/pubs/low_dissertation_20139.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//6
https://youtu.be/CJrWaFQLZfo
http://www.cs.utexas.edu/users/flame/pubs/FLAWN6.pdf

6.5. Wrap Up * to edX 255

Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn.
Automatic Derivation of Linear Algebra Algorithms with Application to Control Theory.
PARA 2004, LNCS 3732, pp. 385–394, 2005.

and became a major part of the dissertation

Paolo Bientinesi.
* Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algorithms.
Ph.D. Dissertation. The University of Texas at Austin, Department of Computer Sciences. Aug. 2006.

More recently, how to automatically generate PMEs is described in

Diego Fabregat-Traver and Paolo Bientinesi.
* Knowledge-Based Automatic Generation of Partitioned Matrix Expressions.
Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, Volume 6885, pp. 144-
157, Springer, 2011.
Technical report: * http://hpac.rwth-aachen.de/aices/preprint/documents/AICES-2011-01-03.pdf.

and how to then derive invariants in

Diego Fabregat-Traver and Paolo Bientinesi.
* Automatic Generation of Loop-Invariants for Matrix Operations.
Computational Science and its Applications, International Conference, pp. 82-92, IEEE Computer Soci-
ety, 2011.
Technical report: * http://hpac.rwth-aachen.de/aices/preprint/documents/AICES-2011-02-01.pdf

The complete automation of the methodology is the subject of Chapter 4 of

Diego Fabregat-Traver.
Knowledge-Based Automatic Generation of Linear Algebra Algorithms and Code.
Dissertation. RWTH Aachen, April 2014.
Technical report: * http://arxiv.org/abs/1404.3406

The Cl1ck tool that resulted from this work can be downloaded from

* https://github.com/dfabregat/Cl1ck.

There you will also find instructions and examples.

6.5 Wrap Up * to edX

6.5.1 Additional exercises * to edX

In this unit, we list a number of operations that are similar to those found in this week and for which you may want to
try and derive algorithms.

Factorization operations

This week started with a discussion of the LU factorization. Here are a number of related operations.

Variations on LU factorization. While the LU factorization captures the computations performed by Gaussian elim-
ination, some obvious variations of the theme come to mind:

• A→ LU where L is lower triangular and U is unit upper triangular,

• One could compute A→UL where L is lower triangular and U is unit upper triangular, and

• One could compute A→UL where L is unit lower triangular and U is upper triangular.

(Here the→ denotes that the factorization is computed.)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
http://www.cs.utexas.edu/users/pauldj/pubs/thesis.pdf
http://dx.doi.org/10.1007/978-3-642-23568-9_12
http://hpac.rwth-aachen.de/aices/preprint/documents/AICES-2011-01-03.pdf
http://doi.ieeecomputersociety.org/10.1109/ICCSA.2011.41
http://hpac.rwth-aachen.de/aices/preprint/documents/AICES-2011-02-01.pdf
http://arxiv.org/abs/1404.3406
https://github.com/dfabregat/Cl1ck
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

256 Week 6. Advanced Matrix Operations

Unfactoring the LU factorization. Also of interest might be the operations A := LU or A := UL that reverse the
factorizations discussed above.

LU factorization with pivoting. It is well-known that in practice one should swap rows as one computes the LU
factorization. This is discussed, for example, in Week 7 of Linear Algebra: Foundations to Frontiers (LAFF) and is
also a standard topic in courses on numerical algorithms or numerical linear algebra. The derivation is a bit tricky...
Robert has done it, but it is not cleanly written up anywhere. Hopefully he will do so soon!

Reduction to row-echelon form. For the insider, reduction to row-echelon form can be thought of as LU factoriza-
tion with complete pivoting. Another project Robert should take on sometime...

Cholesky factorization. In a number of the enrichments, the Cholesky factoriziation is mentioned. Given symmetric
positive definite (SPD) matrix A, it computes the factorization A→ LLT where L is a lower triangular matrix. (If the
diagonal entries are forced to be positive, the factorization is unique). The Cholesky factor L, overwrites the lower
triangular part of A (if it was that part of the symmetric matrix that was originally stored). It should be relatively
straightforwardard to derive the three loop invariants for this operation and to then derive the unblocked and blocked
variants.

There are some obvious variations on this theme: A→UUT , A→ LT L and A→UTU .

The LDLT factorization. Given a symmetric (but not necessarily positive definite) matrix, under mild conditions
one can compute the LDLT factorization, A→ LDLT , where L is unit lower triangular and D is diagonal. Obvious
variations on the these include A→UT DU , where U is unit upper triangular.

The QR factorization. Given matrix A, computing an orthogonal basis for its column space can be formulated as the
factorization A→ QR where the columns of Q form an orthonormal basis for the column space of A and R is upper
triangular. The postcondition for this operation becomes A = QR∧QT Q = I. From this, it is relatively easy to derive
what are known as the classic Gram-Schmidt method and the Modified Gram-Schmidt method.

Trickier to derive is Householder QR factorization. Robert has notes, somewhere...

Solving or multiplying with triangular matrices

TRSV (triangular solve).
In Section 6.3, we discussed a number of operations related to the solution of a triangular system of linear equa-

tions. Much like there were a large number such operations for the closely related triangular matrix-vector multi-
plication operation (TRMV), there are a large number of triangular solve operations. As for TRMV, the input can be
overwritten with the output:

y := L−1y or, equivalently, solve Lx = y overwriting y with x

y := L−T y or, equivalently, solve LT x = y overwriting y with x

y := U−1y or, equivalently, solve Ux = y overwriting y with x

y := U−T y or, equivalently, solve UT x = y overwriting y with x,

where L is a lower triangular (possibly implicitly unit lower triangular) matrix and U is an upper triangular (possibly
implicitly unit upper triangular) matrix. This then yields the algorithms/functions

• TRSV LNN UNB VARX(L, Y) where LNN stands for lower triangular, no transpose, non unit diagonal,

• TRSV LNU UNB VARX(L, Y) where LNU stands for lower triangular, no transpose, unit diagonal,

• TRSV LTN UNB VARX(L, Y) where LTN stands for lower triangular, transpose, non unit diagonal,

• TRSV LTU UNB VARX(L, Y) where LTU stands for lower triangular, transpose, unit diagonal,

6.5. Wrap Up * to edX 257

• TRSV UNN UNB VARX(L, Y) where UNN stands for upper triangular, no transpose, non unit diagonal,

• TRSV UNU UNB VARX(L, Y) where UNU stands for upper triangular, no transpose, unit diagonal,

• TRSV UTN UNB VARX(L, Y) where UTN stands for upper triangular, transpose, non unit diagonal,

• TRSV UTU UNB VARX(L, Y) where UTU stands for upper triangular, transpose, unit diagonal.

TRSM (triangular solves with multiple right-hand sides).
Similarly, there are many cases of triangular solve with multiple right-hand sides (TRSM):

B := L−1B or, equivalently, solve LX = B overwriting B with X

B := L−T B or, equivalently, solve LT X = B overwriting B with X

B := BL−1 or, equivalently, solve XL = B overwriting B with X

B := BL−T or, equivalently, solve XLT = B overwriting B with X

B := U−1B or, equivalently, solve UX = B overwriting B with X

B := U−T B or, equivalently, solve UT X = B overwriting B with X

B := BU−1 or, equivalently, solve XU = B overwriting B with X

B := BU−T or, equivalently, solve XUT = B overwriting B with X

where L is a lower triangular (possibly implicitly unit lower triangular) matrix and U is an upper triangular (possibly
implicitly unit upper triangular) matrix. This then yields the algorithms/functions

• TRSM LLNN UNB VARX(L, B) where LLNN stands for left, lower triangular, no transpose, non unit diagonal,

• TRSM RLNN UNB VARX(L, B) where LLNN stands for right, lower triangular, no transpose, non unit diagonal,

• and so forth.

Two-sided triangular solve. Given square matrix A, the algebraic eigenvalue problem computes eigenpairs (λ,x)
so that Ax = λx. If A is symmetric, this becomes a symmetric eigenproblem. For reasons that go beyond this course,
using the FLAME methodology for computing this solution is inherently not possible. But there are steps along the
way to which it does apply.

Here we discuss an operation that reduces the generalized positive definite eigenvalue problem Ax = λBx to a
symmetric eigenvalue problem. Typically, matrix B is symmetric positive definite (SPD) and A is symmetric. In this
case, we can use the Cholesky factorization (discussed above) to factor B→ LLT , where L is lower triangular. Now
Ax = λLLT x and hence L−1AL−T (LT x) = λ(LT x), which means we can instead solve the symmetric eigenproblem
Cy = λy, where C = L−1AL−T and y = LT x.

The operation that, given symmetric matrix A and lower triangular matrix L, computes A := L−1AL−T is called the
two-sided triangular solve operation. There are obviously a number of related operations:

A := L−1AL−T

A := L−T AL−1

A := U−1AU−T

A := U−T AU−1,

where L is a lower triangular matrix and U is an upper triangular matrix. (This time, these triangular matrices are
never unit triangular matrices, except by sheer coincidence.) Resulting algorithms/functions are

• TRSM2SIDED LN UNB VARX(L, B) where LN stands for lower triangular, no transpose,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

258 Week 6. Advanced Matrix Operations

• TRSM2SIDED LT UNB VARX(L, B) where LT stands for lower triangular, ttranspose,

• TRSM2SIDED UN UNB VARX(L, B) where UN stands for upper triangular, no transpose,

• TRSM2SIDED UT UNB VARX(L, B) where UT stands for upper triangular, ttranspose.

This operation and the closely related two-sided triangular matrix-matrix multiplication operation, are discussed in

Jack Poulson, Robert van de Geijn, and Jeffrey Bennighof.
* Parallel Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem.
FLAME Working Note #56. The University of Texas at Austin, Department of Computer Science. Tech-
nical Report TR-11-05. Feb. 2011.

Two-sided triangular matrix-matrix multiplication. The operation that, given symmetric matrix A and lower trian-
gular matrix L, computes A := LALT is called the two-sided triangular matrix-matrix multiplication operation. There
are obviously a number of related operations:

A := LALT

A := LT AL

A := UAUT

A := UT AU,

where L is a lower triangular matrix and U is an upper triangular matrix. (Again, these triangular matrices are never
unit triangular matrices, except by sheer coincidence.) Resulting algorithms/functions are

• TRMM2SIDED LN UNB VARX(L, B) where LN stands for lower triangular, no transpose,

• TRMM2SIDED LT UNB VARX(L, B) where LT stands for lower triangular, ttranspose,

• TRMM2SIDED UN UNB VARX(L, B) where UN stands for upper triangular, no transpose,

• TRMM2SIDED UT UNB VARX(L, B) where UT stands for upper triangular, ttranspose.

Inversion of matrices

Generally speaking, it is ill-advised to explicitly invert a matrix. Still, on occasion there is reason to do so.

Inverting a triangular matrix. Let us consider inverting lower triangular matrix L. It is well-known that its inverse
is itself lower triangular.

Notice that  LT L 0

LBL LBR

−1

=

 L−1
T L 0

−L−1
BRLBLLT L L−1

BR

 ,

which is one way to express the PME. (You can check this by multiplying out LL−1 with the partitioned matrices, to
find this yields the identity.) This approach is employed in

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn.
Families of algorithms related to the inversion of a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008.

in which you will also find derivations for many related operations.
Alternatively, one can view this as solving LX = I where I is the identity and lower triangular matrix X overwrites

L. This yields one PME. A second one results from instead considering XL = I.
Obviously, these observations can be extended to the computation of the inverse of an upper triangular matrix U .

http://www.cs.utexas.edu/users/flame/pubs/FLAWN56.pdf

6.5. Wrap Up * to edX 259

Inverting a symmetric positive definite (SPD) matrix The paper

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn. Families of algorithms related to the inversion of
a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008.

as the title suggests, also discusses the inversion of SPD matrices.

Inverting a general (square) matrix. The first journal paper that used what we now call the FLAME notation dealt
with the high-performance parallelization of a general matrix (and includes pivoting):

Xiaobai Sun, Enrique S. Quintana, Gregorio Quintana, and Robert van de Geijn.
A Note on Parallel Matrix Inversion.
SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1762–1771, 2001.

At the time, we did not yet explicitly use the FLAME methodology to derive algorithms.
If one were to derive algorithms for computing A−1, one might use the observation that AT L AT R

ABL ABR

−1

= some nasty expession

from which then loop invariants can be derived. Alternatively, one could consider

AX = I

and
XA = I

to derive PMEs and loop invariants.
Additing pivoting would make for a really interesting exercise...

Operations encountered in control theory

We have also applied the FLAME methodology to two fundamental operations encountered in control theory: solving
the triangular Sylvester equation and its symmetric counterpart, the triangular Lyapunov equation.

The triangular Sylvester equation. The continuous Sylvester equation is given by

AX +XB+Y = 0,

where A, B, and Y are given, and X is to be computed, overwriting Y . This problem is related to the eigenvalue
problem and hence, as a general rule, the FLAME methodology does not apply. However, after initial manipulation,
the problem becomes

LX +XU +C = 0,

where L is lower triangular and U is upper triangular. A variation of this operation was one of the first more compli-
cated case studies pursued after the FLAME methodology was first unveiled, in

Enrique S. Quintana-Orti, Robert A. van de Geijn.
Formal derivation of algorithms: The triangular Sylvester equation.
ACM Transactions on Mathematical Software (TOMS), 2003.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.P4C.14.01x+2T2020/courseware/79238bd5084e47ab8b3a1affc088effa//1

260 Week 6. Advanced Matrix Operations

The triangular Lyapunov equation The continuous Lyapunov equation is given by

AX +XAT +Y = 0,

where A and symmetric Y are given, and X is to be computed, overwriting Y . Again, this problem is related to the
eigenvalue problem and hence, as a general rule, the FLAME methodology does not apply. However, after initial
manipulation the problem becomes

LX +XLT +C = 0,

where L is lower triangular and C is still SPD. This operation is used as an example in

Paolo Bientinesi, John Gunnels, Maggie Myers, Enrique Quintana-Ortı́, Tyler Rhodes, Robert van de
Geijn, and Field Van Zee.
Deriving Linear Algebra Libraries
Formal Aspects of Computing, November 2013, Volume 25, Issue 6, pp 933-–945.

Answers

261

Homework 1.2.1.1 Decide whether or not the following are propositions:
1. Is it raining?

(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

Answer: This is not a proposition since it is a question, not a declarative statement.

2. Shut the window when it is raining!
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

Answer: This is not a proposition since it is a command, not a declarative statement.

3. There is a number between 0 and 5 that is even.
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

Answer: This is a proposition. It is a declarative statement that evalues to TRUE.

4. There is no number between 0 and 5 that is even.
(a) This is not a proposition.

(b) This is a proposition and it evaluates to TRUE.

(c) This is a proposition and it evaluates to FALSE.

Answer: This a proposition. It is a declarative statement evaluates to FALSE.

* BACK TO TEXT

Homework 1.2.2.1 Complete the truth table for (p⇒ q)∧ (q⇒ r).

p q r p⇒ q q⇒ r (p⇒ q)∧ (q⇒ r)

T T T T T T

T T F T F F

T F T F T F

T F F F T F

F T T T T T

F T F T F F

F F T T T T

F F F T T T

* BACK TO TEXT

262

Homework 1.2.3.1 Let x and y be variables that take on integer values. Let p be the statement “x is positive” and q be
the statement “y is positive”. Determine the symbolic statements for the following predicates described using English.
Mark all that are correct. (There may be multiple correct answers.)

263

1. Both x and y are positive.
(a) p∧q

(b) p∨q

(c) ¬(p∧q)

(d) p⇒ q

Answer: (a) p∧q; We could rephrase this sentence
as X is positive and Y is positive.

2. Either x or y is positive.
(a) p∧q

(b) p∨q

(c) ¬(p∧q)

(d) p⇒ q

Answer: (b) p∨ q; We could rephrase this sentence
as x is positive or y is positive.

3. x is positive but y is not.
(a) ¬q

(b) ¬(p∧q)

(c) ¬p∨¬q

(d) p∧¬q

Answer: (d) p∧¬(q); We could rephrase this sen-
tence as x is positive and not (y is positive).

4. Either x or y is positive but not both are positive.
(a) p∧q

(b) (p∨q)∧¬(p∧q)

(c) ¬p∨q

(d) (p∧¬q)∨ (¬p∧q)

Answer: Both (b) and (d). We could rephrase this
sentence as x is positive or y is positive and not both
x is positive and y is positive. This we could also
rephrase as exactly one of x and y is positive giving
us (d). This Boolean operator is often called the ex-
clusive or and sometime denoted as XOR. Notice this
means that the expression in (b) is equivalent to the
expression in (d).

5. x is not positive and y is not positive.

(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧¬q

(d) ¬p∨¬q

Answer: c) Self-explanatory!

6. At least one of x and y is not positive.
(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧¬q

(d) ¬p∨¬q

Answer: (d) ¬(p)∨¬(q) and (a) ¬(p∧ q). We
could rephrase this sentence as “x is not positive or
y is not positive” which justifies (d). However, we
could also rephrase this as “It is not the case that x
and y are both positive”. Notice this means that the
expression in (a) is equivalent to the expression in
(d).

7. Neither x nor y is positive.
(a) ¬p

(b) ¬(p∧q)

(c) ¬p∧¬q

(d) ¬p∨¬q

Answer: (c) ¬(p)∧¬(q). We could rephrase this
sentence as “x is not positive and y is not positive”.

8. It is not the case that both x and y are positive.
(a) ¬(p∧q)

(b) ¬(p∨q)

(c) ¬p∧q

(d) p∧¬q

Answer: (a) We could rephrase this as “Not (x is
positive and y is positive)”. We could also rephrase
this sentence as “x is not positive or y is not positive”.

9. Both x and y are not positive.
(a) ¬p

(b) ¬(p∧q)

(c) ¬p∧¬q

(d) ¬p∨¬q

(e) not clear

Answer: (e) The most likely answer is ¬(p)∧¬(q);
We could rephrase this sentence as “x is not posi-
tive and y is not positive”. However, sometimes in
English we confuse this with it is not the case that
both are positive. It is often difficult to determine
where the parentheses are in English statements. No-
tice that we could also rephrase this as “neither x nor
y are positive”. So, we declare it “not clear”.

10. If x is positive then y is positive.
(a) p∧q

(b) p⇒ q

(c) p∨q

(d) ¬(p∧q)

Answer: b)

264

* BACK TO TEXT

Homework 1.2.4.1 Let p = F, q = F, and r = F. Evaluate

• p∧q⇒ r

Answer: F∧F︸ ︷︷ ︸
F

⇒ F

︸ ︷︷ ︸
T

• (p∧q)⇒ r

Answer: (F∧F)︸ ︷︷ ︸
F

⇒ F

︸ ︷︷ ︸
T

• p∧ (q⇒ r)

Answer: F∧ (F⇒ F)︸ ︷︷ ︸
T︸ ︷︷ ︸

F

* BACK TO TEXT

Homework 1.2.4.2 Evaluate
T ∨¬T ∧F ⇒ T ∧¬T ⇔ T ⇒ F.

a) T

b) F

Answer:
T ∨ ¬T︸︷︷︸

F

∧F

︸ ︷︷ ︸
F︸ ︷︷ ︸

T

⇒ T ∧ ¬T︸︷︷︸
F︸ ︷︷ ︸

F

︸ ︷︷ ︸
F

⇔ T ⇒ F︸ ︷︷ ︸
F

︸ ︷︷ ︸
T

* BACK TO TEXT

265

Homework 1.2.5.1 Use a truth table to prove the commutativity of the ∧ operator:

(E1∧E2)⇔ (E2∧E1).

Answer:
E1 E2 (E1∧E2) (E2∧E1) (E1∧E2)⇔ (E2∧E1)

T T T T T

T F F F T

F T F F T

F F F F T

* BACK TO TEXT

Homework 1.2.5.2 Use a truth table to prove
p∧q⇒ p.

Answer:
p q (p∧q) (p∧q)⇒ p

T T T T

T F F T

F T F T

F F F T

* BACK TO TEXT

Homework 1.3.2.1 Prove that (p⇒ (q∧ r))⇔ ((p⇒ q)∧ (p⇒ r)).

Answer:
(p⇒ (q∧ r))

⇔< implication >

¬p∨ (q∧ r)

⇔< distributivity >

(¬p∨q)∧ (¬p∨ r)

⇔< implication ×2 >

(p⇒ q)∧ (p⇒ r)

* BACK TO TEXT

Homework 1.3.2.2 Prove that (p⇒ (q⇒ r))⇔ (p∧q⇒ r).

266

Answer:
p⇒ (q⇒ r)

⇔< implication >

¬p∨ (q⇒ r)

⇔< implication >

¬p∨¬q∨ r

⇔< associativity >

(¬p∨¬q)∨ r

⇔< De Morgan’s >

¬(p∧q)∨ r

⇔< implication >

p∧q⇒ r

* BACK TO TEXT

Homework 1.3.2.3 Prove that (p⇒ (q∨ r))⇔ ((p⇒ q)∨ (p⇒ r)).

Answer:
(p⇒ (q∨ r)

⇔< implication >

¬p∨ (q∨ r)

⇔< ∨-simplification >

¬p∨¬p∨ (q∨ r))

⇔< commutativity; associativity >

(¬p∨q)∨ (¬p∨ r)

⇔< implication ×2 >

(p⇒ q)∨ (p⇒ r)

* BACK TO TEXT

Homework 1.3.4.1 Let n≥ 1. Then ∑
n
i=1 i = n(n+1)/2.

Always/Sometimes/Never

Answer:
VideoInfoTwoThreeTwoOne
We can prove this in three different ways:

1. By mathematical induction, carefully mimicing the proof that ∑
n−1
i=0 i = (n−1)n/2; or

2. Using a trick similar to the one used in the alternative proof given for ∑
n−1
i=0 i = (n−1)n/2; or

3. Using the fact that ∑
n−1
i=0 i = n(n−1)/2.

* BACK TO TEXT

267

Homework 1.3.4.2 Let n≥ 1. ∑
n−1
i=0 1 = n.

Always/Sometimes/Never

Answer: Always.

Base case: n = 1. For this case, we must show that ∑
1−1
i=0 1 = 1.

∑
1−1
i=0 1

= (Definition of summation)

1

This proves the base case.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for n = k where k ≥ 1:

k−1

∑
i=0

1 = k.

We will show that the result is then also true for n = k+1:

(k+1)−1

∑
i=0

1 = (k+1).

Assume that k ≥ 1. Then
∑
(k+1)−1
i=0 1

= (arithmetic)

∑
k
i=0 1

= (split off last term)(
∑

k−1
i=0 1

)
+1

= (I.H.)

k+1.

This proves the inductive step.

By the Principle of Mathematical Induction the result holds for all n.

* BACK TO TEXT

Homework 1.3.4.3 Let n≥ 1 and x ∈ Rm. Then

n−1

∑
i=0

x = x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= nx

Always/Sometimes/Never

Answer: Always.

n−1

∑
i=0

x =

(
n−1

∑
i=0

1

)
x = nx.

However, we want you to prove this with mathematical induction:

268

Base case: n = 1. For this case, we must show that ∑
1−1
i=0 x = x.

∑
1−1
i=0 x

= < Definition of summation>

x

This proves the base case.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for n = k where k ≥ 1:

k−1

∑
i=0

x = kx.

We will show that the result is then also true for n = k+1:

(k+1)−1

∑
i=0

x = (k+1)x.

Assume that k ≥ 1. Then
∑
(k+1)−1
i=0 x

= < arithmetic>

∑
k
i=0 x

= < split off last term>

∑
k−1
i=0 x+ x

= < I.H.>

kx+ x

= < algebra>

(k+1)x

This proves the inductive step.

By the Principle of Mathematical Induction the result holds for all n.

* BACK TO TEXT

Homework 1.3.4.4 Let n≥ 1. ∑
n−1
i=0 i2 = (n−1)n(2n−1)/6.

Always/Sometimes/Never

Answer: VideoInfoTwoThreeTwoFour

269

Always

Base case: n = 1. For this case, we must show that ∑
1−1
i=0 i2 = (1− 1)(1)(2(1)− 1)/6. But ∑

1−1
i=0 i2 = 0 = (1−

1)(1)(2(1)−1)/6. This proves the base case.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for n = k where k ≥ 1:

k−1

∑
i=0

i2 = (k−1)k(2k−1)/6.

We will show that the result is then also true for n = k+1:

(k+1)−1

∑
i=0

i2 = ((k+1)−1)(k+1)(2(k+1)−1)/6 = (k)(k+1)(2k+1)/6.

Assume that k ≥ 1. Then
∑
(k+1)−1
i=0 i2

= (arithmetic)

∑
k
i=0 i2

= (split off last term)

∑
k−1
i=0 i2 + k2

= (I.H.)

(k−1)k(2k−1)/6+ k2

= (algebra)

[(k−1)k(2k−1)+6k2]/6.
Now,

(k)(k+1)(2k+1) = (k2 + k)(2k+1) = 2k3 +2k2 + k2 + k = 2k3 +3k2 + k

and
(k−1)k(2k−1)+6k2 = (k2− k)(2k−1)+6k2 = 2k3−2k2− k2 + k+6k2 = 2k3 +3k2 + k.

Hence
(k+1)−1

∑
i=0

i2 = (k)(k+1)(2k+1)/6

This proves the inductive step.

By the Principle of Mathematical Induction the result holds for all n.

* BACK TO TEXT

Homework 1.4.6.1 Let us consider a one dimensional array b(1 : n) (using Matlab notation), where 1 ≤ n. Let
j and k be two integer variables satisfying 1 ≤ j ≤ k ≤ n. By b(j : k) we mean the subarray of b consisting of
b(j),b(j+1), . . .b(k). The segment b(j : k) is empty (contains no elements) if j > k.

Translate the following sentences into predicates.

1. All elements in the subarray b(j : k) are positive.

Answer: (∀i | j ≤ i≤ k : b(i)> 0)

2. No element in the subarray b(j : k) is positive.

Answer: Some correct translations into logic notation:

270

• Literal translation: (there does not exist an element in the subarray that is positive) ¬(∃i | j≤ i≤ k : b(i)>
0).

• All elements in the subarray are not postive: (∀i | j ≤ i≤ k : ¬(b(i)> 0)) or (∀i | j ≤ i≤ k : b(i)≤ 0).

3. It is not the case that all elements in the subarray b(j : k) are positive.

Answer: Some correct translations into logic notation:

• Literal translation:(∀i | j ≤ i≤ k : b(i)> 0).

• There exists an element in the subarray that is not positive: (∃i | j ≤ i ≤ k : ¬(b(i) > 0)) or (∃i | j ≤ i ≤
k : b(i)≤ 0).

4. All elements in the subarray b(j : k) are not positive.

Answer: Some correct translations into logic notation:

• Literal translation:(∀i | j ≤ i≤ k : 6= (b(i)> 0)) or (∀i | j ≤ i≤ k : b(i)≤ 0).

• There does not exist an element in the subarray that is positive: ¬(∃i | j ≤ i≤ k : b(i)> 0).

5. Some element in the subarray b(j : k) is positive.

Answer: Some correct translations into logic notation:

• Literal translation: (there exists an element in the subarray that is positive) (∃i | j ≤ i≤ k : b(i)> 0).

Notice that the English sentence is somewhat ambiguous: is exactly one element positive or at least one element?

6. There is an element in the subarray b(j : k) that is positive.

Answer: Some correct translations into logic notation:

• Literal translation: (∃i | j ≤ i≤ k : b(i)> 0).

Again, the English sentence is somewhat ambiguous.

7. At least one element in the subarray b(j : k) is positive.

Answer: Some correct translations into logic notation:

• Literal translation: (∃i | j ≤ i≤ k : b(i)> 0).

• Not all elements in the subarray are not positive: ¬(∀i | j≤ i≤ k : ¬(b(i)> 0)) or ¬(∀i | j≤ i≤ k : b(i)≤
0).

Now the English sentence is not ambiguous.

8. Some element in the subarray b(j : k) is not positive.

Answer: Some correct translations into logic notation:

• Literal translation: (∃i | j ≤ i≤ k : ¬(b(i)> 0)) or (∃i | j ≤ i≤ k : b(i)≤ 0).

• Not all elements in the subarray are positive: ¬(∀i | j ≤ i≤ k : b(i)> 0).

Again, the English sentence is somewhat ambiguous.

9. Not all elements in the subarray b(j : k) are positive.

Answer: Some correct translations into logic notation:

271

• Literal translation: ¬(∀i | j ≤ i≤ k : b(i)> 0).

• There exists at least one element in the subarray that is not positive: (∃i | j ≤ i ≤ k : ¬(b(i) > 0)) or
(∃i | j ≤ i≤ k : b(i)≤ 0).

10. It is not the case that there is an element in the subarray b(j : k) that is positive.

Answer: Some correct translations into logic notation:

• Literal translation: ¬(∃i | j ≤ i≤ k : b(i)> 0).

• All elements in the subarray are not positive: (∀i | j ≤ i≤ k : ¬(b(i)> 0)) or (∀i | j ≤ i≤ k : b(i)≤ 0).

* BACK TO TEXT

Homework 1.4.6.2 Translate the following sentence into a predicate: Exactly one element in the subarray b(j : k) is
positive.

1. (∃i | j ≤ i≤ k : b(i)> 0∧ (∀p | j ≤ p≤ k∧ p 6= i : ¬(b(p)> 0)))

2. (∃i | j ≤ i≤ k : b(i)> 0)∧ (∀p | j ≤ p≤ k∧ p 6= i : ¬(b(p)> 0))

Answer: There exists an element in the subarray b(j : k) that is positive and all other elements in that subarray are
not positive: (∃i | j ≤ i≤ k : b(i)> 0∧ (∀p | j ≤ p≤ k∧ p 6= i : ¬(b(i)> 0))). Notice that the quantifiers have to be
“nested”

* BACK TO TEXT

Homework 1.4.6.3 Formalize the following English specifications. Be sure to introduce necessary restrictions.

1. Set s equal to the sum of the elements of b(j : k).

Answer:

s = (∑i | j ≤ i≤ k : b(i))

What if j : k is empty? This should return zero, which this properly captures.

2. Set M equal to the maximum value in b(j : k).

Answer:
(∃i | j ≤ i≤ k : M = b(i))∧ (∀i | j ≤ i≤ k : b(i)≤M)

What if j : k is empty? Then the ∃ clause evaluates to F and hence the whole thing evaluates to false. This
means that the program should not complete.

3. Set I equal to the index of a maximum value of b(j : k).

Answer:
(j ≤ I ≤ k)∧ (∀i | j ≤ i≤ k : b(i)≤ b(I))

What if j : k is empty? Then the (j ≤U ≤ k) clause evaluates to F and hence the whole thing evaluates to false.
This means that the program should not complete.

272

4. Calculate x, the greatest power of 2 that is not greater than positive integer n.

Answer:

1≤ x≤ n∧ (∃i | 0≤ i : x = 2i∧ n
2
< x≤ n)

or
1≤ x≤ n∧ (∃i | 0≤ i : x = 2i)∧¬(∃i | x < 2i ≤ n)

5. Compute c, the number of zeroes in array b(1 : n).

Answer:
(∑ i | 1≤ i≤ n∧b(i) = 0 : 1)

6. Consider array of integers b(1 : n). Each of its subsegments b(i : j) has a sum Si, j = (∑ | i ≤ k ≤ j : b(k)).
Compute M equal to the maximum such sum.

Answer:
(∃i, j | 1≤ i≤ j ≤ n : M = Si, j)∧¬(∃i, j | 1≤ i≤ j ≤ n : M < Si, j)

or
(∃i, j | 1≤ i≤ j ≤ n : M = Si, j)∧ (∀i, j | 1≤ i≤ j ≤ n : M ≥ Si, j)

* BACK TO TEXT

Homework 1.5.2.1 For each of the following, if applicable, indicate which statement is TRUE (by examination):

1. (a) 0≤ x≤ 10 is weaker than 1≤ x < 5.

(b) 0≤ x≤ 10 is stronger than 1≤ x < 5.

Answer: By examination, 0≤ x≤ 10 is weaker than 1≤ x < 5. Your reason could be “If x is between one and
five (inclusive one and five) then it is certainly between zero and ten (inclusive zero and ten).”

2. (a) x = 5∧ y = 4 is weaker than y = 4.

(b) x = 5∧ y = 4 is stronger than y = 4.

Answer: By examination, y = 4 is weaker. If x equals 5 and y equals 4, then y equals 4. Another way of
thinking about this is “x = 5 AND y = 4 is more restrictive on what values x and y can take on than when we
only require y to equal 4.”

3. (a) x≤ 5∨ y = 3 is weaker than x = 5∧ y = 4.

(b) x≤ 5∨ y = 3 is stronger than x = 5∧ y = 4.

Answer: By examination, x≤ 5∨ y = 3 is weaker. If x equals 5 and y equals 4, then x equals 5 must be TRUE
and hence x equal to 5 OR y equal to 3 must be TRUE.

4. (a) T is weaker than F.

(b) T is stronger than F.

Answer: By examination, T is weaker. “If FALSE is TRUE then certainly TRUE is TRUE. Or, “The set of
states that satisfies the condition where FALSE is TRUE is included in the set of states where TRUE is TRUE.”
(After all, the set of states for which FALSE is TRUE is empty, and all elements in an empty set are in any other
set, including the set of states where TRUE is TRUE.)

273

5. (a) (∀i|5≤ i≤ 10 : b(i+1)< b(i)) is weaker than (∀i|7≤ i≤ 10 : b(i+1)< b(i)).

(b) (∀i|5≤ i≤ 10 : b(i+1)< b(i)) is stronger than (∀i|7≤ i≤ 10 : b(i+1)< b(i)).

Answer: By examination, (∀i|5≤ i≤ 10 : b(i+1)< b(i)) is stronger. (∀i|5≤ i≤ 10 : b(i+1)< b(i)) means
b(5)> b(6)> b(7)> b(8)> b(9)> b(10)> b(11) which implies that b(7)> b(8)> b(9)> b(10)> b(11).

6. (a) x≤ 1 is weaker than x≥ 5.

(b) x≤ 1 is stronger than x≥ 5.

Answer: Neither of these implies the other, so neither is weaker than the other. How do we argue (indeed
prove) this? x = 1 satisfies x≤ 1 but not x≥ 5. So, x≤ 1⇒ x≥ 5 is not TRUE. Similarly, x = 5 satisfies x≥ 5
but not x≤ 1. So, x≥ 5⇒ x≤ 1 is not TRUE.

7. (a) x≤ 4 is weaker than 5 > x.

(b) x≤ 4 is stronger than 5 > x.

Answer: This is a trick question. These two expressions are equivalent. We have decided that any predicate is
simultaneously stronger and weaker than itself. So both are TRUE.

* BACK TO TEXT

Homework 1.5.2.2 Use the Basic Equivalences to prove the following. (Do NOT use the weakening/strengthening
laws given in Figure 1.2, which we will discuss later.)

1. E1∧E2⇒ E1

Answer: Now, we noticed that in the last proof there was a point at which we would have liked to have said
“well, dah, of course b and c implies c.” This exercise shows that particular insight in isolation. Again, we use
an “equivalence style” of proof:

E1∧E2⇒ E1

⇔< implication >

¬(E1∧E2)∨E1

⇔< DeMorgan’s >

(¬E1∨¬E2)∨E1

⇔< commutativity; associativity; commutativity >

¬E2∨ (E1∨¬E1)

⇔< excluded middle >

¬E2∨T

⇔< ∨-simplification >

T

2. E1⇒ E1∨E3

Answer: Here is another one of those “well, dah” problems. Let’s prove it:

274

E1⇒ E1∨E3

⇔< implication >

¬E1∨ (E1∨E3)

⇔< associativity; commutativity >

(E1∨¬E1)∨E3

⇔< excluded middle >

T ∨E3

⇔< commutativity; ∨-simplification >

T

3. E1∧E2⇒ E1∨E3 Answer: This one generalized the last two results.

E1∧E2⇒ E1∨E3

⇔< implication >

¬(E1∧E2)∨ (E1∨E3)

⇔< DeMorgan’s >

(¬E1∨¬E2)∨ (E1∨E3)

⇔< commutativity; associativity; commutativity ×2 >

¬E2∨E3∨ (E1∨¬E1)

⇔< excluded middle >

¬E2∨E3∨T

⇔< ∨-simplification ×2 >

T

* BACK TO TEXT

Homework 1.5.2.3 Use the Basic Equivalences and/or the results from Homework 1.5.2.2 to prove that

E1∧E2⇒ (E1∨E3)∧E2.

Answer:

E1∧E2⇒ (E1∨E3)∧E2

⇔< ∧ distributivity >

E1∧E2⇒ (E1∧E2)∨ (E3∧E2)

⇔< Homework 1.5.2.2 ?? >

T
* BACK TO TEXT

Homework 1.5.2.4 In Figure 1.2 we present three Weakening/Strengening Laws. This exercise shows that if you only
decide to remember one, it should be the last one.

1. Show that (E1 ∧E2)⇒ E1 is a special case of (E1 ∧E2)⇒ (E1 ∨E3).

Answer: (E1 ∧E2)⇒ (E1 ∨E3) is true for all expressions E1 , E2 , and E3 . If you choose E3 = F then
you get (E1 ∧E2)⇒ E1

275

2. Show that E1 ⇒ (E1 ∨E3) is a special case of (E1 ∧E2)⇒ (E1 ∨E3).

Answer: (E1 ∧E2)⇒ (E1 ∨E3) is true for all expressions E1 , E2 , and E3 . If you choose E2 = T then
you get E1 ⇒ (E1 ∨E3)

* BACK TO TEXT

Homework 1.5.2.5 For each of the following predicates pairs from Homework 1.5.2.1 use an equivalence style proof,
the Basic Logic Equivalences, and the Weakening/strengthening laws to prove which predicate is weaker:

1. 0≤ x≤ 10 and 1≤ x < 5.

Answer: By examination, 0≤ x≤ 10 is weaker. Proof:

(1≤ x < 5)⇒ (0≤ x≤ 10)

⇔< algebra >

(1≤ x < 5)⇒ (0 = x∨1≤ x < 5∨5≤ x≤ 10)

⇔< weakening/strengening law >

T

2. x = 5∧ y = 4 and y = 4.

Answer: By examination, y = 4 is weaker. Proof:

(x = 5∧ y = 4)⇒ (y = 4)

⇔< weakening/strengening law >

T

3. x≤ 5∨ y = 3 and x = 5∧ y = 4.

Answer: By examination, x≤ 5∨ y = 3 is weaker. Proof:

(x = 5∧ y = 4)⇒ (x≤ 5∨ y = 3)

⇔< algebra >

(x = 5∧ y = 4)⇒ (x < 5∨ x = 5∨ y = 3)

⇔< weakening/strengening law >

T

4. T and F. Answer: By examination, T is weaker. Proof:

F⇒ T

⇔< ∧-simplication >

F∧T⇒ T

⇔< weakening/strengening law >

T

276

5. (∀i|5≤ i≤ 10 : b(i+1)< b(i)) and (∀i|7≤ i≤ 10 : b(i+1)< b(i)) Answer: By examination, (∀i|5≤ i≤ 10 :

b(i+1)< b(i)) is stronger. Proof:

(∀i|5≤ i≤ 10 : b(i+1)< b(i))⇒ (∀i|7≤ i≤ 10 : b(i+1)< b(i))

⇔< split range >

(∀i|5≤ i≤ 6 : b(i+1)< b(i))∧ (∀i|7≤ i≤ 10 : b(i+1)< b(i))⇒ (∀i|7≤ i≤ 10 : b(i+1)< b(i))

⇔< weakening/strengthening law >

T

* BACK TO TEXT

277

Figure 2.3: Annotated algorithm for computing the sum of the elements of array b.

Homework 2.1.1.1 Consider again the algorithm that sums the elements of array b, now given in Figure 2.1. Place
the following assertions in the correct place (the blank boxes) in the algorithm:

1. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n}

2. { s = 0∧0 = k ≤ n}

3. { s = 0∧0≤ n}

4. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧¬(k < n)}

5. { s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n}

6. { s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n}

Answer:
* BACK TO TEXT

Homework 2.1.1.2 Take the solution for the last homework and use it to convince someone (possibly yourself) that
the code segment is correct.

* BACK TO TEXT

5.2

Homework 2.2.2.1 By examination, decide whether the following Hoare triples hold (evaluate to TRUE) and which
of the predicates are stronger/weaker:

1. {x > 4}y := x+1{y > 5} TRUE/FALSE

Answer: TRUE.
Clearly, y will end up satisfying {y > 5}. This is a correct code segment.

2. {x = 10}y := x+1{y > 5} TRUE/FALSE
x = 10 is stronger than x > 4 TRUE/FALSE

Answer: TRUE.
In this case, y will end up equaling y = 11 and hence {y > 5} holds after y := x+1 is executed. In other words,
the predicate {x = 10}y := x+1{y > 5} evaluates to true. It is a correct code segment.

Since (x = 10)⇒ (x > 4) the second statement is TRUE.

3. {x = 5}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x = 5 TRUE/FALSE

Answer: TRUE.
Clearly, y will end up equaling y = 6 and hence {y > 5} holds after y := x+ 1 is executed. The predicate
{x = 5}y := x+1{y > 5} evaluates to true. It is a correct code segment.

Since (x = 5)⇒ (x > 4) the second statement is TRUE.

278

4. {x≥ 5}y := x+1{y > 5} TRUE/FALSE
x > 4 is at least as weak as x≥ 5 TRUE/FALSE

Answer: TRUE.
Clearly, y will end up satisfying {y > 5}. Again, the predicate {x = 5}y := x+1{y > 5} evaluates to true. It is
a correct code segment.

Since (x≥ 5)⇒ (x > 4) the second statement is TRUE.

5. {x = 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x = 4 TRUE/FALSE

Answer: FALSE.
Clearly, y will end up equaling y= 5 and hence {y> 5} does not holds after y := x+1 is executed. The predicate
{x = 4}y := x+1{y > 5} evaluates to FALSE. It is a incorrect code segment.

Since x = 4 does not imply that x > 4, the second statement is also FALSE.

6. {x≥ 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is weaker than x≥ 4 TRUE/FALSE

Answer: FALSE.
Clearly, y will end up satisfying {y≥ 5}. This means y> 5 is not necessarily TRUE and hence this is an incorrect
code segment.

Since x≥ 4 does not imply that x > 4, the second statement is also FALSE.

7. {x > 4}y := x+1{y > 5} TRUE/FALSE
x > 4 is at least as weak as x > 4 TRUE/FALSE

Answer: TRUE

* BACK TO TEXT

Homework 2.2.2.2 What do you notice about the relationship between the preconditions, P, that make the Hoare
triple {P}y := x+1{y > 5} TRUE and the predicate x > 4? Choose the correct answer:

a) Of all P for which the Hoare triple holds (evaluates to TRUE), x > 4 is the weakest.

b) Of all P for which the Hoare triple holds (evaluates to TRUE), x > 4 is the strongest.

c) Of all P for which the Hoare triple holds, y > 5 is the weakest.

d) No obvious relation.

Answer: a)
By examination:

• {P}y := x+1{y > 5} evaluates to TRUE only when P⇒ (x > 4).

• Equivalently, the code segment

{P}
y := x+1
{y > 5}

is correct only when x > 4 is at least as weak as P.

279

• Yet another way of saying this: The program must be in a state where x > 4 before executing y := x+1 if it is
to complete in a state where y > 5.

• And one more way: The set of all states (of variables) for which y := x+1 completes in a state where y > 5 is
described by the predicate x > 4.

* BACK TO TEXT

Homework 2.2.3.1 For each of the below code segments, determine the weakest precondition (by examination):

1. wp(“x := y”,x = 5) =

Answer: y = 5)

2. wp(“x := x+1”,0≤ x≤ 1) =

Answer: −1≤ x≤ 0

3. wp(“x := y”,x = y) =

Answer: T

4. wp(“x := 4”,x = 5) =

Answer: F

* BACK TO TEXT

Homework 2.3.1.1 Consider the skip command, which simply doesn’t do anything:

{Q : ?}
skip
{R : x > 4}

From what state Q will the command skip finish (in a finite amount of time) in a state where x > 4 is TRUE? In other
words,

wp(“skip”,x > 4) = x > 4

Answer: Obviously, x > 4 better be TRUE before the skip command is executed.
* BACK TO TEXT

Homework 2.3.1.2 Building on the intuition from the last homework, give wp(“skip”,R) = R for an arbitrary post-
condition R. Answer:

wp(“skip”,R) = R

for any predicate R: The set of all states such that executing skip completes (in a finite amount of time) in a state where
R is true is described by the predicate R since what is true after the command is what is true before the command.

* BACK TO TEXT

Homework 2.3.2.1 Consider the abort command, which aborts (which means execution does not reach the point in
the program after the abort command).

280

{Q : ?}
abort
{R : x > 4}

From what state Q will the command abort finish (in a finite amount of time) in a state where x > 4 is T? In other
words, evaluate

wp(“abort”,x > 4) = FALSE

Answer: There is no state of the variables before the abort command such that it finishes in a state where x > 4.
How do you describe the empty set of states? It is the set of states for which FALSE holds. (FALSE is never TRUE
and hence there is no state for which this holds.)

* BACK TO TEXT

Homework 2.3.2.2 Building on the intuition from the last homework, evaluate

wp(“abort”,R) = FALSE

Answer:
wp(“abort”,R) = FALSE

for any predicate R: The set of all states such that executing abort completes (in a finite amount of time) in a state
where R is true is empty.

* BACK TO TEXT

Homework 2.3.3.1 Prove the following code segment correct:{
Q : s = 0∧0≤ n

}
S : k := 0{

R : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n
}

Answer We need to prove that Q⇒ wp(“S”,R):

Q⇒ wp(“S”,R)

⇔< instantiate S and R >

Q⇒ wp(“k := 0”,s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n)

⇔< definition of wp(:=) >

Q⇒ (s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n)k
(0)

⇔< definition of Rk
(E) >

Q⇒ (s = (∑i | 0≤ i < 0 : b(i))∧0≤ 0≤ n)

⇔< instantiate Q; sum over empty range; algebra >

(s = 0∧0≤ n)⇒ (s = 0∧0≤ n)

⇔<⇒-simplification >

T

where we skip valid(E) since it is obviously a valid expression.
* BACK TO TEXT

281

Homework 2.3.3.2 Prove the following code segment correct:{
Q : s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n

}
S : s := s+b(k){

R : s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n
}

Answer: We need to prove that Q⇒ wp(“S”,R):

Q⇒ wp(“S”,R)

⇔< Instantiate S and R >

Q⇒ wp(“s := s+b(k)”,s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n)

⇔< Definition of wp(:=) >

Q⇒ (s = (∑ i | 0≤ i < k+1 : b(i))∧0≤ k < n)s
(s+b(k))

⇔< Definition of Rs
(E) >

Q⇒ ((s+b(k)) = (∑ | 0≤ i < k+1 : b(i))∧0≤ k < n)

⇔< Split range >

Q⇒ (s+b(k) = (∑ | 0≤ i < k : b(i))+b(k)∧0≤ k < n)

⇔< Instantiate Q; algebra; >

(s = (∑ i | 0≤ i < k : b(i))∧0≤ k ≤ n∧ k < n)⇒
(s = (∑ | 0≤ i < k : b(i))∧0≤ k < n)

⇔< Algebra >

T

where we skip valid(E) since it is obviously a valid expression
* BACK TO TEXT

Homework 2.3.4.1 Compute

1. wp(“i := i−1”, i≥ 0)

Answer:
wp(“i := i−1”, i≥ 0)

⇔< Definition of := >

i−1≥ 0

⇔< algebra >

i≥ 1

2. wp(“i := i+1”, i = j) Answer:

282

wp(“i := i+1”, i = j)

⇔< Definition of := >

i+1 = j

⇔< algebra >

i = j−1

3. wp(“i := i+1; j := j+ i”, i = j)

Answer:

wp(“i := i+1; j := j+ i”, i = j)

⇔< Definition of := >

wp(“i := i+1”, i = j+ i)

⇔< Definition of := >

i+1 = j+ i+1

⇔< algebra >

0 = j

or

wp(“i := i+1; j := j+ i”, i = j)

⇔< Definition of := >

wp(“i := i+1”, i = j+ i)

⇔< algebra >

wp(“i := i+1”,0 = j)

⇔< Definition of := >

0 = j

4. wp(“i := 2i+1; j := j+ i”, i = j)

Answer:

wp(“i := 2i+1; j := j+ i”, i = j)

⇔< Definition of := >

wp(“i := 2i+1”, i = j+ i)

⇔< algebra >

wp(“i := 2i+1”,0 = j)

⇔< Definition of := >

0 = j

5. wp(“ j := j+ i; i := 2i+1”, i = j)

283

Answer:

wp(“ j := j+ i; i := 2i+1”, i = j)

⇔< Definition of := >

wp(“ j := j+ i”,2i+1 = j)

⇔< Definition of := >

2i+1 = j+ i

⇔< algebra >

i = j−1

6. wp(“t := i; i := j; j := t”, i = î∧ j = ĵ)

Answer:

wp(“t := i; i := j; j := t”, i = î∧ j = ĵ)

⇔< Definition of := >

wp(“t := i; i := j”, i = î∧ t = ĵ)

⇔< Definition of := >

wp(“t := i”, j = î∧ t = ĵ)

⇔< Definition of := >

j = î∧ i = ĵ

7. wp(“i := 0;s := 0”,0≤ i < n∧ s = (∑ j|0≤ j < i : b(j))).

Answer:

wp(“i := 0;s := 0”,0≤ i < n∧ s = (∑ j|0≤ j < i : b(j)))

⇔< Definition of := >

wp(“i := 0”,0≤ i < n∧0 = (∑ j|0≤ j < i : b(j)))

⇔< Definition of := >

0≤ 0 < n∧0 = (∑ j|0≤ j < 0 : b(j))

⇔< Algebra; empty range >

0 < n∧0 = 0

⇔< Algebra >

0 < n∧T

⇔< ∧-simplification >

0 < n

8. wp(“s := s+b(i); i := i+1”,0≤ i≤ n∧ s = (∑ j|0≤ j < i : b(j)))

284

Answer:
wp(“s := s+b(i); i := i+1”,0≤ i≤ n∧ s = (∑ j|0≤ j < i : b(j)))

⇔< Definition of := >

wp(“s := s+b(i)”,0≤ i+1≤ n∧ s = (∑ j|0≤ j < i+1 : b(j)))

⇔< Definition of := >

0≤ i+1≤ n∧ s+b(i) = (∑ j|0≤ j < i+1 : b(j))

⇔< Split range >

0≤ i+1≤ n∧ s+b(i) = (∑ j|0≤ j < i : b(j))+b(i)

⇔< Algebra >

0≤ i+1≤ n∧ s = (∑ j|0≤ j < i : b(j))

⇔< Algebra >

−1≤ i < n∧ s = (∑ j|0≤ j < i : b(j))

* BACK TO TEXT

Homework 2.3.4.2 As part of the launch, you informally argued the correctness of the code segment{
Q : 0≤ n

}
S0 : s := 0

S1 : k := 0{
R : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n)

}
where array b has size n with 0 ≤ n. Prove this code segment correct. (In the “Wrap Up” you find another exercise
related to the correctness of the program in the launch.)

Answer:
Q⇒ wp(“S0;S1”,R)

⇔< instantiate >

Q⇒ wp(“s := 0;k := 0”,(s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n))

⇔< definition of :=, twice >

Q⇒ (0 = (∑ i | 0≤ i < 0 : b(i)))∧ (0≤ 0n≤ n)

⇔< sum over empty range; algebra >

Q⇒ (0 = 0∧0≤ n)

⇔< instantiate Q; algebra; ∧-simplification >

(0≤ n)⇒ (0≤ n)

⇔<⇒-simplification >

T

* BACK TO TEXT

Homework 2.3.4.3 Consider an array b of size n with 0≤ n, a scalar variable s, and the code segment

285

{
Q : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k < n)

}
S0 : s := s+b(k)

S1 : k := k+1{
R : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n)

}
which may be part of a program that sums the entries in array b. Prove this code segment correct.

Answer:

Q⇒ wp(“S0;S′′1 ,R)

⇔< Composition of commands >

Q⇒ wp(“S0”,wp(“S1”,R))

⇔< Instantiate S1 >

Q⇒ wp(“S0”,wp(k := k+1,R))

⇔< Instantiate R; def. of wp(:=,R) >

Q⇒ wp(“S0”,((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k ≤ n)))k
(k+1))

⇔< Instantiate S0; def. of Rk
(E) >

Q⇒ wp(s := s+b(k),((s = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))

⇔< def. of wp(:=,R) >

Q⇒ ((s = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))s
(s+b(k))

⇔< def. of Rs
(E) >

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))

⇔< Split range >

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k : b(i))+b(k))∧ (0≤ k+1≤ n))

⇔< Instantiate Q; algebra; algebra >

((s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k < n))⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ (−1≤ k < n)))

⇔< algebra >

((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n)))

⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ ((0≤ k < n)∨ (−1 = k))))

⇔< Weakening/strengthening >

T

* BACK TO TEXT

Homework 2.3.4.4 Prove the following code segment, which swaps the values of variables x and y, correct.{
Q : (x = x̂)∧ (y = ŷ)

}
S0 : t := x

S1 : x := y

S2 : y := t{
R : (x = ŷ)∧ (y = x̂)

}
286

Answer:
Q⇒ wp(“S0;S1;S′′2 ,R)

⇔< Composition of commands >

Q⇒ wp(“S”0,wp(“S”1,wp(“S”2,R)))

⇔< Instantiate S2 and R >

Q⇒ wp(“S”0,wp(“S”1,wp(y := t,(x = ŷ)∧ (y = x̂))))

⇔< Definition of wp(:=,) >

Q⇒ wp(“S”0,wp(“S”1,((x = ŷ)∧ (y = x̂))y
(t))))

⇔< Instantiate S1, definition of Ry
(t) >

Q⇒ wp(“S”0,wp(x := y,((x = ŷ)∧ (t = x̂))))

⇔< Definition of wp(:=,) >

Q⇒ wp(“S”0,((x = ŷ)∧ (t = x̂))x
(y))

⇔< Instantiate S0, definition of Rx
(y) >

Q⇒ wp(t := x,((y = ŷ)∧ (t = x̂)))

⇔< Definition of wp(:=,) >

Q⇒ ((y = ŷ)∧ (t = x̂))t
(x)

⇔< Instantiate Q, definition of Rt
(x) >

((x = x̂)∧ (y = ŷ))⇒ ((y = ŷ)∧ (x = x̂))

⇔< ∧-commutivity;⇒-simplification >

T

Answer: An alternative way to prove this is to annotate the code:{
Q : (x = x̂)∧ (y = ŷ)

}
{

wp(“S”0,wp(“S”1,wp(S2,R))) = (y = ŷ)∧ (x = x̂)
}

S0 : t := x{
wp(“S”1,wp(S1,R)) = (y = ŷ)∧ (t = x̂)

}
S1 : x := y{

wp(“S”2,R) = (x = ŷ)∧ (t = x̂)
}

S2 : y := t{
R : (x = ŷ)∧ (y = x̂)

}
after which we are left with proving that Q⇒ (y = ŷ)∧ (x = x̂), which is trivial.

* BACK TO TEXT

Homework 2.3.5.1 Evaluate

1. wp(“i := i+1; j := 2i”,2i = j)

Answer:

287

wp(“i := i+1; j := 2i”,2i = j)

⇔< definition of := >

wp(“i := i+1”,(2i = j) j
(2i))

⇔< definition of Rx
(E) >

wp(“i := i+1”,(2i = 2i))

⇔< algebra >

wp(“i := i+1”,T)

⇔< definition of := >

(T) i
(i+1)

⇔< definition of Rx
(E) >

T

or, quicker,
wp(“i := i+1; j := 2i”,2i = j)

⇔< definition of := >

wp(“i := i+1”,(2i = 2i))

⇔< algebra >

wp(“i := i+1”,T)

⇔< definition of := >

T

2. wp(“ j := 2i; i := i+1”,2i = j)

Answer:

288

wp(“ j := 2i; i := i+1”,2i = j)

⇔< definition of := >

wp(“ j := 2i”,(2i = j) i
(i+1))

⇔< definition of Rx
(E) >

wp(“ j := 2i”,(2(i+1) = j))

⇔< algebra; definition of := >

(2i+2 = j) j
(2i)

⇔< definition of Rx
(E) >

2i+2 = 2i

⇔< algebra >

F

or, quicker,
wp(“ j := 2i; i := i+1”,2i = j)

⇔< definition of := >

wp(“ j := 2i”,(2(i+1) = j))

⇔< algebra; definition of := >

2i+2 = 2i

⇔< algebra >

F

3. wp(“i, j := i+1,2i”,2i = j)

Answer:

289

wp(“i, j := i+1,2i”,2i = j)

⇔< definition of := >

(2i = j) i, j
(i+1),(2i))

⇔< definition of Rx
(E) >

2(i+1) = 2i

⇔< algebra >

2 = 0

⇔< algebra >

F

or, quicker,

wp(“i, j := i+1,2i”,2i = j)

⇔< definition of := >

(2(i+1) = 2i)

⇔< algebra >

F

* BACK TO TEXT

Homework 2.3.5.2 Prove the following code segment correct. It swaps the values of variables x and y.

{Q : (x = x̂)∧ (y = ŷ)}
S : x,y := y,x
{R : (x = ŷ)∧ (y = x̂)}

Answer:
Q⇒ wp(“S”,R)

⇔< Instantiate S and R >

Q⇒ wp(“x,y := y,x′′,(x = ŷ)∧ (y = x̂))

⇔< Definition of wp(:=,) >

Q⇒ ((x = ŷ)∧ (y = x̂))x,y
(y),(x)

⇔< Instantiate Q, definition of Rx,y
(y),(x) >

((x = x̂)∧ (y = ŷ))⇒ ((y = ŷ)∧ (x = x̂))

⇔< ∧-commutivity;⇒-simplification >

T

* BACK TO TEXT

Homework 2.3.5.3 Evaluate

290

1. wp(“i := 2i+ j; j := i+2 j+4”, i = j)

Answer:
wp(“i := 2i+ j; j := i+2 j+4”, i = j)

⇔< definition of := >

wp(“i := 2i+ j”, i = i+2 j+4)

⇔< definition of := >

2i+ j = 2i+ j+2 j+4

⇔< algebra >

0 = 2 j+4

⇔< algebra >

j =−2

2. wp(“ j := i+2 j+4; i := 2i+ j”, i = j)

Answer:
wp(“ j := i+2 j+4; i := 2i+ j”, i = j)

⇔< definition of := >

wp(“ j := i+2 j+4”,2i+ j = j)

⇔< definition of := >

2i+(i+2 j+4) = i+2 j+4

⇔< algebra >

2i = 0

⇔< algebra >

i = 0

3. wp(“i, j := 2i+ j, i+2 j+4”, i = j)

Answer:
wp(“i, j := 2i+ j, i+2 j+4”, i = j)

⇔< definition of := >

2i+ j = i+2 j+4

⇔< algebra >

i = j+4

* BACK TO TEXT

Homework 2.3.6.1 Prove the correctness of the following code segment. It might be part of a loop that scales the
elements of array b by scalar α 6= 0. The array b̂ is introduced to refer to the original contents of b and should not be
used in actual computation. You may skip checking if the expression being assigned is valid (since they clearly are).

291

{
Q : (∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k < n)

}
S : b(k) := α×b(k){

R : (∀i | 0≤ i < k+1 : b(i) = α× b̂(i))∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)
}

Answer:

Q⇒ wp(“S”,R)

⇔< instantiate S and R >

Q⇒ wp(“b(k) := α×b(k)”, (∀i | 0≤ i < k+1 : b(i) = α× b̂(i))

∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< split range >

Q⇒ wp(“b(k) := α×b(k)”, (∀i | 0≤ i < k : b(i) = α× b̂(i))∧b(k) = α× b̂(k)

∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n))

⇔< definition of := (k is not in range of quantifier) >

Q⇒ (∀i | 0≤ i < k : b(i) = α× b̂(i))∧α×b(k) = α× b̂(k)

∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< algebra >

Q⇒ (∀i | 0≤ i < k : b(i) = α× b̂(i))

∧ b(k) = b̂(k)∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< split range >

Q⇒ (∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< instantiate Q >

(∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k < n)⇒
(∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< weakening/strengthening (0≤ k < n is stronger than 0≤ k ≤ n) >

T

Alternative proof: arraycolsep=1.4pt

292



Q : (∀i | 0≤ i < k : b(i) = α× b̂(i))∧ (∀i | k ≤ i < n : b(i) = b̂(i))∧ (0≤ k < n)

⇔< split range >

(∀i | 0≤ i < k : b(i) = α× b̂(i))∧b(k) = b̂(k)

∧(∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)


{

Q⇒ wp(“S”,R)? YES!
}



wp(“S”,R) : (∀i | 0≤ i < k : b(i) = α× b̂(i))∧α×b(k) = α× b̂(k)

∧(∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< algebra >

(∀i | 0≤ i < k : b(i) = α× b̂(i))∧b(k) = b̂(k)

∧(∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)


S : b(k) := α×b(k)

R : (∀i | 0≤ i < k+1 : b(i) = α× b̂(i))∧ (∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)

⇔< split range >

(∀i | 0≤ i < k : b(i) = α× b̂(i))∧b(k) = α× b̂(k)

∧(∀i | k+1≤ i < n : b(i) = b̂(i))∧ (0≤ k ≤ n)


* BACK TO TEXT

Homework 2.3.6.2 Consider the following code segment that swaps the contents of b(i) and b(j).

{
Q : (∀k | 0≤ k < n : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n)∧ i 6= j

}
b(i),b(j) := b(j),b(i) {R : (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n)}


Prove it correct.

293

Answer:

Q⇒ wp(“S”,R)

⇔< instantiate S and R >

Q⇒ wp(“b(i),b(j) := b(j),b(i)”, (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n))}
⇔< simultaneous assignment to array >

Q⇒ (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(j) = b̂(j))∧ (b(i) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n)}
⇔< instantiate Q; split range >

(∀k | 0≤ k < n : b(k) = b̂(k))∧ (0≤ i < n)∧0≤ j < n)∧ i 6= j

⇒ (∀k | (0≤ k < n) : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n)}
⇔< weakening/strengthening >

T

* BACK TO TEXT

Homework 2.4.2.1 In the above example, we use an intuitive understanding of the abs() function. We can refine this
by recognizing that z = abs(x) is equivalent to (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x) so that the code segment becomes

{
T

}
if

x≥ 0→ z := x

x≤ 0→ z :=−x

fi{
(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}

Prove this code segment correct.

294

Answer:

T ⇒ wp(“if”,R)

⇔<⇒-simplification >

wp(“if”,R)

⇔< definition of wp(“if”,) >

(x≥ 0∨ x≤ 0) ∧ (x≥ 0⇒ wp(“z := x”,(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)))

∧ (x≤ 0⇒ wp(“z :=−x”,(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)))

⇔< definition of := >

(x≥ 0∨ x≤ 0) ∧ (x≥ 0⇒ (x≥ 0∧ x = x)∨ (x≤ 0∧ x =−x))

∧ (x≤ 0⇒ (x≥ 0∧−x = x)∨ (x≤ 0∧−x =−x))

⇔< algebra ×5 >

T ∧ (x≥ 0⇒ (x≥ 0∧T)∨ (x≤ 0∧ x = 0))∧ (x≤ 0⇒ (x≥ 0∧ x = 0)∨ (x≤ 0∧T))

⇔< algebra ×2; ∧-simplification ×3 >

(x≥ 0⇒ x≥ 0∨ x = 0)∧ (x≤ 0⇒ x = 0∨ x≤ 0)

⇔< weakening/strengthening; commutativity; weakening/strengthening >

T ∧T

⇔< ∧-simplification >

T

* BACK TO TEXT

Homework 2.4.3.1 Complete the proof of the correctness of{
T

}
if

x≥ 0→ z := x

x≤ 0→ z :=−x

fi{
(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

}
from the last example.

Answer:

295

Q∧G1⇒ wp(“S1”,R):

Q∧G1⇒ wp(“S1”,R)

⇔< instantiate >

T ∧ x≤ 0⇒ wp(“z :=−x”,(x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x))

⇔< ∧-simplification, definition of := >

x≤ 0⇒ (x≥ 0∧−x = x)∨ (x≤ 0∧−x =−x)

⇔< algebra ×2 >

x≤ 0⇒ (x≥ 0∧ x = 0)∨ (x≤ 0∧T)

⇔< ∧-simplification; algebra >

x≤ 0⇒ x = 0∨ x≤ 0

⇔< weakening/strengthening >

T

* BACK TO TEXT

Homework 2.4.3.2 The following code segment sets m to the maximum of x and y. Use the If Theorem to prove it
correct.

{Q : T}
if

x≥ y → m := x

x≤ y → m := y
fi
{R : (x≥ y∧m = x)∨ (x≤ y∧m = y)}

Answer:

• Q⇒ G0∨·· ·∨Gk−1:

Q⇒ G0∨G1

⇔< instantiate >

T ⇒ x≥ y∨ x≤ y

⇔<⇒-simplification; algebra >

T

296

• Q∧G0⇒ wp(S0,R):

Q∧G0⇒ wp(S0,R)

⇔< instantiate >

T ∧ x≥ y⇒ wp(“m := x”,(x≥ y∧m = x)∨ (x≤ y∧m = y))

⇔< ∧-simplification, definition of := >

x≥ y⇒ (x≥ y∧ x = x)∨ (x≤ y∧ x = y)

⇔< algebra ×2 >

x≥ y⇒ (x≥ y∧T)∨ x = y

⇔< ∧-simplification >

x≥ y⇒ x≥ y∨ x = y

⇔< weakening/strengthening >

T

297

• Q∧G1⇒ wp(“S1”,R):

Q∧G1⇒ wp(“S1”,R)

⇔< instantiate >

T ∧ x≤ y⇒ wp(“m := y”,(x≥ y∧m = x)∨ (x≤ y∧m = y))

⇔< ∧-simplification, definition of := >

x≤ y⇒ (x≥ y∧ y = x)∨ (x≤ y∧ y = y)

⇔< algebra ×2 >

x≤ y⇒ x = y∨ (x≤ y∧T)

⇔< ∧-simplification >

x≤ y⇒ x = y∨ x≤ y

⇔< weakening/strengthening >

T

* BACK TO TEXT

Homework 2.4.3.3 The following code segment might be part of a loop that computes m, the minimum value in array
b:

{Q : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n}
if

b(i)≥ m → skip

b(i)≤ m → m := b(i)
fi
i := i+1
{R : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i≤ n}

Prove it correct. Answer:

First, let’s bring it down to only having to prove the if command correct:

{Q : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n}
if

b(i)≥ m → skip

b(i)≤ m → m := b(i)
fi
{R′ : (∀ j | 1≤ j < i+1 : m≤ b(j))∧0≤ i+1≤ n}
i := i+1
{R : (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i≤ n}

(This is a matter of substituting i+1 for i.)
Now, to check the correctness of the if command, we check

• Q⇒ G0∨·· ·∨GK−1:

298

Q⇒ (G0∨G1)

⇔< instantiate >

Q⇒ (b(i)≥ m∨b(i)≤ m)

⇔< algebra >

Q⇒ T

⇔<⇒-simplification >

T
(Notice: we did not instantiate Q initially, and found out that it needed not be instantiated. This saves a lot of
writing of long expressions.)

• Q∧G0⇒ wp(S0,R′):

Q∧G0⇒ wp(S0,R′)

⇔< instantiate >

Q∧G0⇒ wp(skip,(∀ j | 1≤ j < i+1 : m≤ b(j))∧0≤ i+1≤ n)

⇔< definition skip; algebra >

Q∧G0⇒ (∀ j | 1≤ j < i+1 : m≤ b(j))∧−1≤ i < n

⇔< instantiate >

(∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n∧b(i)≥ m⇒ (∀ j | 1≤ j < i+1 : m≤ b(j))∧−1≤ i < n

⇔< algebra; split range >

(∀ j | 1≤ j < i+1 : m≤ b(j))∧0≤ i < n⇒ (∀ j | 1≤ j < i+1 : m≤ b(j))∧−1≤ i < n

⇔< weakening strengthening (0≤ i < n⇒−1≤ i < n) > T
(Notice how we delayed instantiation. In the last step, we use the fact that (E2⇒ E3)⇒ (E1∧E2⇒ E1∧E3).)

299

• Q∧G1⇒ wp(“S1”,R′):

Q∧G1⇒ wp(“S1”,R′)

⇔< instantiate >

Q∧G1⇒ wp(m := b(i),(∀ j | 1≤ j < i+1 : m≤ b(j))∧0≤ i+1≤ n)

⇔< definition wp(:=,); algebra >

Q∧G1⇒ (∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧0≤ i+1≤ n

⇔< instantiate >

(∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n∧b(i)≤ m

⇒ (∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧0≤ i+1≤ n

⇔< algebra >

(∀ j | 1≤ j < i : b(i)≤ b(j))∧ (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n∧b(i)≤ m

⇒ (∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧0≤ i+1≤ n

⇔< more algebra >

(∀ j | 1≤ j < i : b(i)≤ b(j))∧b(i)≤ b(i)∧ (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n∧b(i)≤ m

⇒ (∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧0≤ i+1≤ n

⇔< split range >

(∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧ (∀ j | 1≤ j < i : m≤ b(j))∧0≤ i < n∧b(i)≤ m

⇒ (∀ j | 1≤ j < i+1 : b(i)≤ b(j))∧0≤ i+1≤ n

⇔< weakening strengthening (0≤ i < n⇒−1≤ i < n) >

T
(Notice how we delayed instantiation. In the last step, we again use the fact that (E2⇒ E3)⇒ (E1∧E2⇒
E1∧E3).)

* BACK TO TEXT

Homework 2.4.3.4 Prove the following code segment correct:

{(∀ j|0≤ j < i : m≥ b(j))}
if

b(i)≤ m → skip

b(i)≥ m → m := b(i)
fi
i := i+1
{(∀ j|0≤ j < i : m≥ b(j))}

* BACK TO TEXT

Homework 2.4.5.1 The following code segment sets m to the maximum of x and y with an if-then-else command.
Use Figure 2.5 to prove it correct.

{Q : T}
if x≥ y

300

m := x
else

m := y
fi
{R : (x≥ y∧m = x)∨ (¬(x≥ y)∧m = y)}

Answer:

{
Q : T

}
if x≥ y{

G∧Q : x≥ y∧T
}

{G∧Q⇒ wp(“S0”,R)? YES! }{
wp(“S0”,R) : (x≥ y∧ x = x)∨ (x < y∧ x = y)

}
S0 : m := x{

R : (x≥ y∧m = x)∨ (x < y∧m = y)
}

else{
¬G∧Q : ¬(x≥ y)

}
{¬G∧Q⇒ wp(“S1”,R)? YES! }{

wp(“S1”,R) : (x≥ y∧ y = x)∨ (x < y∧ y = y)
}

S1 : m := y{
R : (x≥ y∧m = x)∨ (x < y∧m = y)

}
fi R : (x≥ y∧m = x)∨ (¬(x≥ y)∧m = y)



• Q⇒ G∨¬G: trivially true. Indeed, this never needs to be checked for an if-then-else command.

• Q∧G⇒ wp(S0,R):

301

Q∧G⇒ wp(S0,R)

⇔< instantiate >

T ∧ x≥ y⇒ wp(“m := x”,(x≥ y∧m = x)∨ (x < y∧m = y))

⇔< ∧-simplification, definition of := >

x≥ y⇒ (x≥ y∧ x = x)∨ (x < y∧ x = y)

⇔< algebra ×2 >

x≥ y⇒ (x≥ y∧T)∨F

⇔< ∧-simplification; ∨-simplification >

x≥ y⇒ x≥ y

⇔<⇒-simplification >

T

302

• Q∧¬G⇒ wp(S1,R):

Q∧¬G⇒ wp(S1,R)

⇔< instantiate >

T ∧ x < y⇒ wp(“m := y”,(x≥ y∧m = x)∨ (x < y∧m = y))

⇔< ∧-simplification, definition of := >

x < y⇒ (x≥ y∧ y = x)∨ (x < y∧ y = y)

⇔< algebra ×2 >

x < y⇒ x = y∨ (x < y∧T)

⇔< ∧-simplification >

x < y⇒ x = y∨ x < y

⇔< weakening/strengthening >

T

* BACK TO TEXT

Homework 2.5.3.1 Prove the partial correctness of the following code segment that adds the elements in a(0 : n−1)
to b(0 : n−1) storing the result in c(0 : n−1) (assuming the sizes of all three arrays equal at least n):{

{Q : 0≤ n}
}

SI : k := 0

while k < n do

S : c(k) := a(k)+b(k);k := k+1

endwhile{
(R : ∀i | 0≤ i < n : c(i) = a(i)+b(i))

}
Use loop invariant Pinv : (∀i | 0≤ i < k : c(i) = a(i)+b(i))∧0≤ k ≤ n.

* BACK TO TEXT

Homework 2.5.4.1 In Homework 2.5.3.1 you proved the partial correctness of the following code segment that adds
the elements in a(0 : n−1) to b(0 : n−1) storing the result in c(0 : n−1) (assuming the sizes of all three arrays equal
at least n).{

{Q : 0≤ n}
}

SI : k := 0{
{Pinv : (∀i | 0≤ i < k : c(i) = a(i)+b(i))∧0≤ k ≤ n}

}
{
{t : n− k}

}
while k < n do

S : c(k) := a(k)+b(k);k := k+1

endwhile{
(R : ∀i | 0≤ i < n : c(i) = a(i)+b(i))

}
303

Prove in addition the total correctness of this code segment.
* BACK TO TEXT

Homework 2.6.2.1 Prove that ((p⇒ r)∧ (q⇒ r))⇔ ((p∨q)⇒ r).

Answer:
(p⇒ r)∧ (q⇒ r)

⇔< Implication >

(¬p∨ r)∧ (¬q∨ r)

⇔< Distributivity of >

(¬p∧¬q)∨ r

⇔< De Morgan’s >

¬(p∨q)∨ r

⇔< Implication >

p∨q⇒ r

* BACK TO TEXT

Homework 2.6.2.2 Prove that the skip command satisfies the Laws of Excluded Miracle, Distributivity of Conjunc-
tion, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: Since wp(“skip”,R) = R clearly wp(skip,F) = F .

Distributivity of Conjunction: wp(“skip”Q)∧wp(“skip”R) = Q∧R = wp(“skip”Q∧R).

Monotonicity: Assume Q⇒R. Since wp(“skip”Q)=Q and wp(“skip”R)=R clearly wp(“skip”Q)⇒wp(“skip”R).

Distributivity of Disjunction: wp(“skip”Q)∨wp(“skip”R) = Q∨ R = wp(“skip”Q∨ R). Hence wp(“skip”Q)∨
wp(“skip”R)⇒ wp(“skip”Q∨R)

* BACK TO TEXT

Homework 2.6.2.3 Prove that the abort command satisfies the Laws of Excluded Miracle, Distributivity of Conjunc-
tion, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: Since wp(“abort”R) = F clearly wp(“abort”F) = F .

Distributivity of Conjunction: wp(“abort”Q)∧wp(“abort”R) = F ∧F = F = wp(“abort”Q∧R).

Monotonicity: Assume Q⇒ R. Since wp(“abort”Q) = F clearly wp(“abort”Q)⇒ wp(“abort”R) (independent of
the fact that Q⇒ R for this command).

Distributivity of Disjunction: wp(“abort”Q)∨wp(“abort”R)=F∨F =F . Hence wp(“abort”Q)∨wp(“abort”R)⇒
wp(“abort”Q∨R).

* BACK TO TEXT

304

Homework 2.6.2.4 Prove that the composition of commands satisfies the Laws of Excluded Miracle, Distributivity
of Conjunction, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: wp(“S0;S1”,F) = wp(“S0”,wp(“S1”,F))
= wp(“S0”,F) = F .

Distributivity of Conjunction: wp(“S0;S1”,Q)∧wp(“S0;S1”,R)
= wp(“S0”,wp(“S1”,Q))∧wp(“S0”,wp(“S1”,R))
= wp(“S0”,wp(“S1”,Q∧R)) = wp(“S0;S1”,Q∧R).

Monotonicity: Assume Q⇒R. Then wp(“S0;S1”,Q)=wp(““S0”,wp(“S1”,Q))⇒wp(“S0”,wp(“S1”,R))=wp(“S0;S1”,R).

Distributivity of Disjunction: wp(“S0;S1”,Q)∨wp(“S0;S1”,R)
= wp(“S0”,wp(“S1”,Q))∨wp(“S0”,wp(“S1”,R))⇒ wp(“S0”,wp(“S1”,Q)∨wp(“S1”,R))
⇒ wp(“S0”,wp(“S1”,Q∨R))
= wp(“S0;S1”,Q∨R).

* BACK TO TEXT

Homework 2.6.2.5 Prove that the if statement

if
G0→ S0
G1→ S1

fi

satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle:

wp(“if”,F)

⇔< Def. of wp(“if”,Q) >

(G0∨G1)∧ (G0⇒ wp(“S0”,F))∧ (G1⇒ wp(“S1”,F))

⇔< Excluded Miracle >

(G0∨G1)∧ (G0⇒ F)∧ (G1⇒ F)

⇔< Implication >

(G0∨G1)∧ (¬G0∨F)∧ (¬G1∨F)

⇔< ∨-simplification >

(G0∨G1)∧¬G0∧¬G1

⇔< DeMorgan’s Law >

(G0∨G1)∧¬(G0∨G1)

⇔< contradiction >

F

305

Distributivity of Conjunction:

wp(“if”,Q)∧wp(“if”,R)

⇔< definition of wp(“if”,) >

(G0∨G1)∧ (G0⇒ wp(“S0”,Q))

∧ (G1⇒ wp(“S1”,Q))∧ (G0∨G1)∧ (G0⇒ wp(“S0”,R))∧ (G1⇒ wp(“S1”,R))

⇔< commutativity; ∧-simplification; implication >

(G0∨G1)∧ (¬G0∨wp(“S0”,Q))∧ (¬G0∨wp(“S0”,R))∧ (¬G1∨wp(“S1”,Q))∧ (¬G1∨wp(“S1”,R))

⇔< ∨-distributivity >

(G0∨G1)∧ (¬G0∨ (wp(“S0”,Q)∧wp(“S0”,R)))∧ (¬G1∨ (wp(“S1”,Q)∧wp(“S1”,R)))

⇔< distributivity of conjunction >

(G0∨G1)∧ (¬G0∨wp(“S0”,Q∧R))∧ (¬G1∨wp(“S1”,Q∧R))

⇔< implication >

(G0∨G1)∧ (G0⇒ wp(“S0”,Q∧R))∧ (G1⇒ wp(“S1”,Q∧R))

⇔< definition of wp(“if”,) >

wp(“if”,Q∧R)

Monotonicity: (Proof provided by course participant Rhitik Bhatt. Not a strict equivalence style proof, but it is how
Maggie and I would have done it too.)

To prove: (Q⇒ R)⇒ (wp(“if”,Q)⇒ wp(“if”,R)). Let’s assume Q⇒ R is true. Then we must prove that

(wp(“if”,Q)⇒ wp(“if”,R))

is TRUE:

wp(“if”,Q)

⇔< definition of wp(“if”) >

(G0∨G1)∧ (G0⇒ wp(S0,Q))∧ (G1⇒ wp(S1,Q))

⇒< wp(S0,Q)⇒ wp(S0,R),wp(S1,Q)⇒ wp(S1,R) >

(G0∨G1)∧ (G0⇒ wp(S0,Q)⇒ wp(S0,R))∧ (G1⇒ wp(S1,Q)⇒ wp(S1,R))

Rightarrow< (E1⇒ E2⇒ E3)⇒ (E1⇒ E3) >

(G0∨G1)∧ (G0⇒ wp(S0,R))∧ (G1⇒ wp(S1,R))

⇔< definition of wp(“if”) >

wp(“if”,R)

306

Distributivity of Disjunction: (Proof provided by course participant Rhitik Bhatt. Not a strict equivalence style
proof, but it is how Maggie and I would have done it too.)

To Prove : wp(“if”,Q)∨wp(“if”,R))⇒ wp(“if”,Q∨R).

wp(“if”,Q)∨wp(“if”,R)

⇔< Definition of wp(“if”) >

((G0∨G1)∧ (G0⇒ wp(“S0”,Q))∧ (G1⇒ wp(“S1”,Q)))

∨ ((G0∨G1)∧ (G0⇒ wp(“S0”,R))∧ (G1⇒ wp(“S1”,R)))

⇔< ∨-distributivity >

((G0∨G1)∨ ((G0∨G1)∧ (G0⇒ wp(“S0”,R))∧ (G1⇒ wp(“S1”,R)))

∧ ((G0⇒ wp(“S0”,Q))∨ ((G0∨G1)∧ (G0⇒ wp(“S0”,R))∧ (G1⇒ wp(“S1”,R))))

∧ ((G1⇒ wp(“S1”,Q))∨ ((G0∨G1)∧ (G0⇒ wp(“S0”,R))∧ (G1⇒ wp(“S1”,R))))

⇔< ∨-simplification, ∨-distributivity >

(G0∨G1)

∧ (G0⇒ wp(“S0”,Q)∨ (G0∨G1))∧ (G0⇒ wp(“S0”,Q)∨G0⇒ wp(“S0”,R))

∧(G0⇒ wp(“S0”,Q)∨G1⇒ wp(“S1”,R)

∧ (G1⇒ wp(“S1”,Q)∨ (G0∨G1))∧ (G1⇒ wp(“S1”,Q)∨G0⇒ wp(“S0”,R))

∧(G1⇒ wp(“S1”,Q)∨G1⇒ wp(“S1”,R)

(G0∨G1)∧ (G0⇒ wp(“S0”,Q)∨G0⇒ wp(“S0”,R))∧ ((G1⇒ wp(“S1”,Q))∨ (G1⇒ wp(“S1”,R)))

⇔< ((A⇒ B)∨ (A⇒C))⇔ A⇒ B∨C >

(G0∨G1)∧ (G0⇒ wp(“S0”,Q)∨wp(“S0”,R))∧ ((G1⇒ wp(“S1”,Q))∨wp(“S1”,R)))

(G0∨G1)∧ ((G0⇒ wp(“S”,Q∨R))∧ ((G1⇒ wp(“S”,Q∨R))

⇔< definition of wp(if) >

wp(“if”,Q∨R)

* BACK TO TEXT

Homework 2.7.1.1 Consider an array b of size n with 0≤ n, a scalar variable s, and the code segment

{
Q : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k < n)

}
S0 : s := s+b(k)

S1 : k := k+1{
R : (s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k ≤ n)

}
which may be part of a program that sums the entries in array b. Prove this code segment correct.

307

Answer:

Q⇒ wp(“S0;S′′1 ,R)

⇔< Composition of commands >

Q⇒ wp(“S0”,wp(“S1”,R))

⇔< Instantiate S1 >

Q⇒ wp(“S0”,wp(k := k+1,R))

⇔< Instantiate R; def. of wp(:=,R) >

Q⇒ wp(“S0”,((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k ≤ n)))k
(k+1))

⇔< Instantiate S0; def. of Rk
(E) >

Q⇒ wp(s := s+b(k),((s = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))

⇔< def. of wp(:=,R) >

Q⇒ ((s = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))s
(s+b(k))

⇔< def. of Rs
(E) >

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))

⇔< Split range >

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k : b(i))+b(k))∧ (0≤ k+1≤ n))

⇔< Instantiate Q; algebra; algebra >

((s = (∑ i | 0≤ i < k : b(i)))∧ (0≤ k < n))⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ (−1≤ k < n)))

⇔< algebra >

((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n)))

⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ ((0≤ k < n)∨ (−1 = k))))

⇔< Weakening/strengthening >

T

* BACK TO TEXT

Homework 2.7.1.2 Consider an array b with n elements (0≤ n), a scalar variable s, and the code segment

{Q : (s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n))}
S : s,k := s+b(k),k+1
{R : (s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k ≤ n))}

This code segment may be part of a program that sums the entries in array b. Prove this code segment correct.

308

Answer:

Q⇒ wp(“S”,R)

⇔< Instantiate S >

Q⇒ wp(“s,k := s+b(k),k+1′′,R)

⇔< Instantiate R; def. of wp(:=,R) >

Q⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k ≤ n)))s,k
(s+b(k)),(k+1)

⇔< definition of Rs,k
(E0),(E1)

>

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k+1 : b(i))∧ (0≤ k+1≤ n)))

⇔< Split range >

Q⇒ ((s+b(k) = (∑ i | 0≤ i < k : b(i))+b(k))∧ (0≤ k+1≤ n))

⇔< Instantiate Q; algebra; algebra >

((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n)))⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ (−1≤ k < n)))

⇔< algebra >

((s = (∑ i | 0≤ i < k : b(i))∧ (0≤ k < n)))

⇒ ((s = (∑ i | 0≤ i < k : b(i))∧ ((0≤ k < n)∨ (−1 = k))))

⇔< Weakening/strengthening >

T

* BACK TO TEXT

Homework 2.7.1.3 Prove the correctness of the following code segment. It swaps the contents of b(i) and b(j). You
may skip checking if the expressions being assigned are valid (since they clearly are).

{
Q : (∀k | 0≤ k < n : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n)

}
t := b(i)

b(i) := b(j)

b(j) := t R : (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n)



309

Answer:
Q⇒ wp(“t := b(i);b(i) := b(j);b(j) := t”,R)

⇔< instantiate >

Q⇒ wp(“t := b(i);b(i) := b(j);b(j) := t”,

(∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (b(j) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n))

⇔< definition of := >

Q⇒ wp(“t := b(i);b(i) := b(j)”,

(∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(i) = b̂(j))∧ (t = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n))

⇔< definition of := >

Q⇒ wp(“t := b(i)”,

(∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(j) = b̂(j))∧ (t = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n))

⇔< definition of := >

Q⇒ (∀k | (0≤ k < n)∧ (k 6= i)∧ (k 6= j) : b(k) = b̂(k))

∧ (b(j) = b̂(j))∧ (b(i) = b̂(i))∧ (0≤ i < n)∧ (0≤ j < n))

⇔< split range (in reverse) >

Q⇒ (∀k | (0≤ k < n) : b(k) = b̂(k))∧ (0≤ i < n)∧ (0≤ j < n))

⇔< right-hand side of⇒ is Q >

Q⇒ Q

⇔<⇒-simplification >

T

* BACK TO TEXT

Homework 2.7.1.4 Prove the following code segment correct:

{(∀ j|0≤ j < i : m≥ b(j))}
if

b(i)≤ m → skip

b(i)≥ m → m := b(i)
fi
i := i+1
{(∀ j|0≤ j < i : m≥ b(j))}

* BACK TO TEXT

Homework 2.7.1.5 The greatest common divisor (gcd) of two positive integers, x and y, is defined to be the largest
integer k that evenly divides both x and y. Let gcd(x,y) be the function that returns this integer. A property of this

310

function is that if x < y then gcd(x,y− x) = gcd(x,y) and if y < x then gcd(x− y,y) = gcd(x,y). Obviously, if x = y
then x = y = gcd(x,y).

Prove the partial correctness of the following program for computing gcd(x,y), returning the result in updated
variables x and y. (If you feel energetic, prove complete correctness!){

Q: (x = x̂)∧ (y = ŷ)∧ (x̂ > 0)∧ (ŷ > 0)
}

{
Pinv : (gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ)

}
{

t : abs(x+ y)
}

while x 6= y do

if

x < y−→ y := y− x

y < x−→ x := x− y

fi

endwhile{
x = y = gcd(x̂, ŷ)

}
Answer: Here is a more fully annotated algorithm:{

(x = x̂)∧ (y = ŷ)∧ (x̂ > 0)∧ (ŷ > 0)
}

{
(gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ)

}
while x 6= y do

{(gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ)∧ (x 6= y) }

if

x < y−→ y := y− x

y < x−→ x := x− y

fi

{(gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ) }

endwhile{
(gcd(x,y) = gcd(x̂, ŷ))∧ (0 < x≤ x̂)∧ (0 < y≤ ŷ)∧¬(x 6= y)

}
{

x = y = gcd(x̂, ŷ)
}

* BACK TO TEXT

311

Homework 3.1.1.1 Consider the problem of summing the elements of array b, as outlined in Figure 3.1. Place the
following assertions in the correct place (the blank boxes) in the algorithm. Some need to be inserted in multiple
places. Some are just there to confuse you (and not be used)

1. s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n

2. k < n

3. 0≤ k

4. 0 < k

5. s := 0

6. k = 0

7. k := n

8. s := s+b(k)

9. s := s+b(k−1)

Answer:{
0≤ n

}
s := 0

k := n{
s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n

}
while 0 < k do

{s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n ∧ 0 < k }

k := k−1

s := s+b(k)

{s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n }

endwhile{
s = (∑i | k ≤ i < n : b(i))∧0≤ k ≤ n ∧ ¬(0 < k)

}
{

s = (∑ i | 0≤ i < n : b(i))
}

* BACK TO TEXT

Homework 3.2.2.1 Systematically derive the expressions E0 and E1 that make the following code segment correct:{
Q : (s = ŝ)∧ (t = t̂)

}
s, t := E0,E1{

R : (s = t̂)∧ (t = ŝ)
}

* BACK TO TEXT

312

Homework 3.2.2.2 Find the missing assignment to make the following program segment correct. It may be part of a
program that sets variable fac equal to (n−1)! = (n−1)× (n−2)×·· ·×2×1. (Check your results!){

Q : 0 < n
}

i, fac := n,?{
R : 1≤ i≤ n∧ fac = (∏ j | i≤ j < n : j)

}
a) i, fac := n,0

b) i, fac := n,1

c) i, fac := n,n

d) cannot be made to be correct

Answer: b){
Q : 0 < n

}
{

wp(“i, fac := n,E”,R) : 1≤ n≤ n∧E = (∏ j | n≤ j < n : j)
}

i, fac := n,E{
R : 1≤ i≤ n∧ fac = (∏ j | i≤ j < n : j)

}
From this we conclude that E should be chosen to equal 1 since the product over the empty range equals 1.

Check:
0 < n⇒ wp(“i, fac := n,1”,R)

⇔< definition of := >

0 < n⇒ 1≤ n≤ n∧1 = (∏ j | n≤ j < n : j)

⇔< algebra; product over empty range >

1≤ n⇒ 1≤ n∧1 = 1

⇔< algebra; ∧-simplification;⇒-simplification >

T

* BACK TO TEXT

Homework 3.2.2.3 Find the missing assignment to make the following program segment correct. It may be part of
a program that coverts a binary representations (stored in array b) into a decimal number stored in y. (Check your
results!){

Q : y = (∑ j | i≤ j < n : b(j)×2 j)
}

y :=?

i := i−1{
R : y = (∑ j | i≤ j < n : b(j)×2 j)

}
a) y := b(i)×2i + y

313

b) y := b(i−1)×2i−1 + y

c) y := b(i+1)×2i+1 + y

d) cannot be made to be correct

Answer: b){
Q : y = (∑ j | i≤ j < n : b(j)×2 j)

}


wp(“y := E ; i := i−1”,R) : E = (∑ j | i−1≤ j < n : b(j)×2 j)

⇔
E = b(i−1)×2i−1 + (∑ j | i≤ j < n : b(j)×2 j)


y := E{

wp(“i := i−1”,R) : y = (∑ j | i−1≤ j < n : b(j)×2 j)
}

i := i−1{
R : y = (∑ j | i≤ j < n : b(j)×2 j)

}
From this we conclude that E should be chosen to equal b(i−1)×2i−1 + y.

Check:
Q⇒ wp(“y := b(i−1)×2i−1 + y; i := i−1”,R)

⇔< instantiate R >

Q⇒ wp(“y := b(i−1)×2i−1 + y; i := i−1”,y = (∑ j | i≤ j < n : b(j)×2 j))

⇔< definition of := >

Q⇒ wp(“y := b(i−1)×2i−1 + y”,y = (∑ j | i−1≤ j < n : b(j)×2 j))

⇔< definition of := >

Q⇒ b(i−1)×2i−1 + y = (∑ j | i−1≤ j < n : b(j)×2 j)

⇔< split range >

Q⇒ b(i−1)×2i−1 + y = b(i−1)×2i−1 +(∑ j | i≤ j < n : b(j)×2 j)

⇔< instantiate Q; algebra >

y = (∑ j | i≤ j < n : b(j)×2 j)⇒ y = (∑ j | i≤ j < n : b(j)×2 j)

⇔<⇒-simplification >

T

* BACK TO TEXT

Homework 3.2.3.1 Find the missing assignment to make the following program segment correct. (Check your re-
sults!){

Q : 0 < i < n
}

i, j := i+1,?{
R : j = n− i∧0≤ j < n

}
314

a) i, j := i+1,n− i

b) i, j := i+1,n− i+1

c) i, j := i+1,n− i−1

d) cannot be made to be correct

Answer: c){
Q : 0 < i < n

}
{

wp(“i, j := i+1,E”,R) : E = n− (i+1)∧0≤ E < n
}

i, j := i+1,E{
R : j = n− i∧0≤ j < n

}
From this we conclude that E should be chosen to equal n− (i+1).

Check:
0 < i < n⇒ n− (i+1) = n− (i+1)∧0≤ n− (i+1)< n

⇔< algebra; ∧-simplification >

0 < i < n⇒ 0≤ n− (i+1)< n

⇔< algebra >

0 < i < n⇒ 0≤ n− i−1 < n

⇔< algebra >

0 < i < n⇒−n≤−i−1 < 0

⇔< algebra >

0 < i < n⇒ 0 < i+1≤ n

⇔< algebra >

0 < i < n⇒−1 < i≤ n−1

⇔< algebra; i and n are integers >

0 < i∧ i < n⇒ 0≤ i < n

⇔< algebra >

0 < i < n⇒ (0 < i < n)∨ (0 = i)

⇔< weakening/strengthening >

T

* BACK TO TEXT

Homework 3.2.3.2 Find the missing assignment to make the following program segment correct. (Check your re-
sults!){

Q : 0 < i < n
}

i := i+1

j :=?{
R : j = n− i∧0≤ j < n

}
315

a) j := n− i

b) j := n− i+1

c) j := n− i−1

d) cannot be made to be correct

Answer: a){
Q : 0 < i < n

}
{

wp(“i := i+1; j := E(i)”,R) : E(i+1) = n− (i+1)∧0≤ E(i+1)< n
}

i := i+1{
wp(“ j := E(i)”,R) : E(i) = n− i∧0≤ E(i)< n

}
j := E(i){

R : j = n− i∧0≤ j < n
}

From this we conclude that E(i+1) should be chosen to equal n− (i+1) and hence E(i) should be chosen to equal
n− i.

Check:
0 < i < n⇒ wp(“i := i+1; j := n− i”, j = n− i∧0≤ j < n)

⇔< definition of := >

0 < i < n⇒ wp(“i := i+1”,n− i = n− i∧0≤ n− i < n)

⇔< algebra; ∧-simplification >

0 < i < n⇒ wp(“i := i+1”,0≤ n− i < n)

⇔< definition of := >

0 < i < n⇒ 0≤ n− (i+1)< n

⇔< algebra (for many of the steps, see the answer to the last homework) >

0 < i < n⇒ 0≤ i < n

⇔< algebra; weakening/strengthening >

T

* BACK TO TEXT

Homework 3.2.3.3 Find the missing assignment to make the following program segment correct. (Check your re-
sults!){

Q : 0 < i < n
}

j :=?

i := i+1{
R : j = n− i∧0≤ j < n

}
a) j := n− i

b) j := n− i+1

316

c) j := n− i−1

d) cannot be made to be correct

Answer: c){
Q : 0 < i < n

}
{

wp(“ j := E ; i := i+1”,R) : E = n− (i+1)∧0≤ E < n
}

j := E{
wp(“i := i+1”,R) : j = n− (i+1)∧0≤ j < n

}
i := i+1{

R : j = n− i∧0≤ j < n
}

From this we conclude that E should be chosen to equal n− (i+1) or, equivalently, n− i−1.
Check:

0 < i < n⇒ wp(“ j := n− i−1; i := i+1”, j = n− i∧0≤ j < n)

⇔< definition of := >

0 < i < n⇒ wp(“ j := n− i−1”, j = n− (i+1)∧0≤ j < n)

⇔< definition of :=; algebra >

0 < i < n⇒ n− i−1 = n− i−1∧0≤ n− i−1 < n)

⇔< algebra; ∧-simplification >

0 < i < n⇒ 0≤ n− i−1 < n)

⇔< algebra >

0 < i < n⇒ 1≤ i < n

⇔< algebra >

0 < i < n⇒ 0 < i < n

⇔<⇒-simplification >

T

* BACK TO TEXT

Homework 3.3.2.1 Identify for each of the operations on the left the corresponding predicate that best expresses it on
the right.

1. z = abs(x)

2. z = min(x,y)

3. z = max(x,y)

4. z = abs(x− y)

5. Increment c by one if x≤ 0

a. (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)

b. (x≤ y∧ z = y)∨ (x≥ y∧ z = x)

c. (x≤ y∧ z = x)∨ (x≥ y∧ z = y)

d. (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

e. (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)
Answer:

317

1. z = abs(x)

2. z = min(x,y)

3. z = max(x,y)

4. z = abs(x− y)

5. Increment c by one if x≤ 0

d. (x≥ 0∧ z = x)∨ (x≤ 0∧ z =−x)

c. (x≤ y∧ z = x)∨ (x≥ y∧ z = y)

b. (x≤ y∧ z = y)∨ (x≥ y∧ z = x)

e. (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)

a. (x≤ 0∧ c = ĉ+1)∨ (x > 0∧ c = ĉ)

* BACK TO TEXT

Homework 3.3.2.2 Use Figure 3.6 to develop a code segment that computes z = min(x,y):{
Q : T}

}
S{

R : (x≤ y∧ z = x)∨ (x≥ y∧ z = y)
}

Answer:{
Q : T

}
{

Q⇒ G0∨G1? YES
}

if

x≤ y→

{G0∧Q : x≤ y∧T }

{G0∧Q⇒ wp(“S0”,G0∧R0)? YES! }

{wp(“S0”,G0∧R0) : x≤ y∧E0 = x }

S0 : z := E0 = x

{G0∧R0 : x≤ y∧ x≤ y∧ z = x }

x≥ y→

{G1∧Q) : }

{G1∧Q⇒ wp(“S1”,G1∧R1)? YES! }

{wp(“S1”,G1∧R1) : x≥ y∧E1 = y }

S1 : z := E1 = y

{G1∧R1 : x≥ y∧ x≥ y∧ z = y }

fi{
R : (x≤ y∧ z = x)∨ (x≥ y∧ z = y)

}
* BACK TO TEXT

Homework 3.3.2.3 Use Figure 3.6 to develop a code segment that computes z = abs(x− y):

318

{
Q : T}

}
S{

R : (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)
}

Answer:{
Q : T

}
{

Q⇒ G0∨G1? YES
}

if

x≥ y→

{G0∧Q : x≥ y∧T }

{G0∧Q⇒ wp(“S0”,G0∧R0)? YES! }

{wp(“S0”,G0∧R0) : x≥ y∧E0 = x− y }

S0 : z := E0 = x− y

{G0∧R0 : x≥ y∧ z = x− y }

y≥ x→

{G1∧Q) : }

{G1∧Q⇒ wp(“S1”,G1∧R1)? YES! }

{wp(“S1”,G1∧R1) : y≥ x∧E1 = y− x }

S1 : z := E1 = y− x

{G1∧R1 : y≥ x∧ z = y− x }

fi{
R : (x≥ y∧ z = x− y)∨ (y≥ x∧ z = y− x)

}
* BACK TO TEXT

Homework 3.4.5.1 Derive the algorithm for adding array x to array y corresponding to Invariant 2 using the worksheet
in Figure 3.10.

Answer: Watch the videos!
* BACK TO TEXT

Homework 3.5.2.1 At the end of the last video, you were asked to derive the loop guard G from{
Pinv∧¬G : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧¬G

}
{

R : C = AB+Ĉ
}

Indicate which of the following is a correct loop guard G (there may be more than one...)

a) 1 < k.

b) k < n.

319

{
Q : (∀i | 0≤ i < n : y(i) = ŷ(i))∧0≤ n

} wp(“SI”,Pinv) : (∀i | 0≤ i < 0 : y(i) = ŷ(i)+ x(i)) ∧ (∀i | 0≤ i < n : y(i) = ŷ(i))

∧ 0≤ n≤ n


k := n{

Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n
}

while 0 < k do{
Pinv∧G : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n ∧0 < k

}Pinv∧G : (∀i | 0≤ i < k−1 : y(i) = ŷ(i)+ x(i)) ∧ y(k−1) = ŷ(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧ 0 < k ≤ n.


wp(“U ;k := k−1”,Pinv) :

(∀i | 0≤ i < k−1 : y(i) = ŷ(i)) ∧ y(k−1)+ x(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧ 0≤ k−1≤ n.


U : y(k−1) := y(k−1)+ x(k−1)

wp(“k := k−1”,Pinv) :

(∀i | 0≤ i < k−1 : y(i) = ŷ(i)) ∧ y(k−1) = ŷ(k−1)+ x(k−1)

∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧ 0≤ k−1≤ n.


k := k−1

Pinv :

(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ y(k) = ŷ(k)+ x(k)

∧ (∀i | k < i < n : y(i) = ŷ(i)+ x(i)) ∧ 0≤ k ≤ n.

{
Pinv : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n

}
endwhile{

Pinv∧¬G : (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n ∧ ¬(0 < k)
}

{
R : (∀i | 0≤ i < n : y(i) = ŷ(i)+ x(i))

}
Figure 3.4: Completed worksheet for adding vector x to vector y (Variant 2).

320

c) k 6= 1.

d) k 6= n.

Answer: Both a) and c) are correct:

y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧¬(1 < k)

⇒C = AB+Ĉ

and
y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧¬(1 6= k)

⇒C = AB+Ĉ

are both TRUE.
Enter a correct loop guard in the Live Script.

* BACK TO TEXT

Homework 3.5.2.2 At the end of the last video, you were asked to derive the initialization command

k =
y =

to make{
Q : 0 < n

}
k :=

y :={
Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
correct. Indicate which of the following is a correct initialization.
(There may be more than one...)

a) k := n

y := p(n)

b) k := n+1

y := 0

c) k := n

y := 1

d) k := 0

y := 0

Answer: Both a) and b) are correct.

0 < n⇒ wp(“k := n;y := p(n)”,y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1)

and
0 < n⇒ wp(“k := n+1;y := 0”,y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1)

are both TRUE.
Enter a correct initialization command in the Live Script.

* BACK TO TEXT

321

Homework 3.5.2.3 At the end of the last video, you were asked to derive the commands in the loop body

k = k−1
y =

to make{
Pinv∧G : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧1 < k

}
k := k−1

y :=???{
Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
correct. Indicate which of the following is the correct choice for updating y. Hint: derive it systematically!

a) k := k−1

y := p(k)× xk−1 + y

b) k := k−1

y := p(k)+ y× x

c) k := k−1

y := y+ p(k−2)× xk−1

d) k := k−1

y := y+ p(k)× x

Answer: Only b) is correct. (Hmmm, showing that the other ones are not correct could be quite burdensome... But
you won’t be able to prove them correct.)

Here is the derivation of the loop body:{
Pinv∧G : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1∧1 < k

}{
wp(“k := k−1;y := E(k)”,Pinv) : E(k−1) = (∑i | k−1≤ i≤ n : p(i)xi−(k−1))∧1≤ k−1≤ n+1

}
k := k−1{

wp(“y := E(k)”,Pinv) : E(k) = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1
}

y := E(k){
Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
Now, let’s play with

E(k−1) = (∑i | k−1≤ i≤ n : p(i)xi−(k−1))∧1≤ k−1≤ n+1.

E(k−1) = (∑i | k−1≤ i≤ n : p(i)xi−(k−1))∧1≤ k−1≤ n+1

= p(k−1)+(∑i | k ≤ i≤ n : p(i)xi−k+1))∧1≤ k−1≤ n+1

= p(k−1)+(∑i | k ≤ i≤ n : p(i)xi−k))× x∧0≤ k ≤ n.

So that we get

322

{
Pinv∧G : y = (∑i | k ≤ i≤ n : p(i)xi−k) ∧1≤ k ≤ n+1∧1 < k

}
{

wp(“k := k−1;y := E(k)”,Pinv) : E(k−1) = p(k−1)+ (∑i | k ≤ i≤ n : p(i)xi−k) × x∧2≤ k ≤ n+2
}

k := k−1{
wp(“y := E(k)”,Pinv) : E(k) = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1

}
y := E(k){

Pinv : y = (∑i | k ≤ i≤ n : p(i)xi−k)∧1≤ k ≤ n+1
}

From what we highlight we notice that
E(k−1) = p(k−1)+ y× x

or, equivalently, that
E(k) = p(k)+ y× x.

Enter a correct update to y in the Live Script and enjoy getting the right answer the first time!
* BACK TO TEXT

Homework 3.7.1.1 Identify which of the following are valid loop invariants for deriving a loop that computes the dot
product:

a) d = (∑i | 1≤ i < k : x(i)× y(i))∧1≤ k ≤ n+1.

b) d = (∑i | k ≤ i≤ n : x(i)× y(i))∧1≤ k ≤ n+1.

c) d = (∑i | 1≤ i≤ k : x(i)× y(i))∧0≤ k ≤ n.

d) d = (∑i | k < i≤ n : x(i)× y(i))∧0≤ k ≤ n.

Answer: All four are valid loop invariants that lead to algorithms for computing this operation. Of course, you would
have to derive algorithms for all four to show this...

* BACK TO TEXT

Homework 3.7.1.2 For the loop invariant

d = (∑i | 1≤ i < k : x(i)× y(i))∧1≤ k ≤ n+1

derive a correct program for computing xT y. You will want to use the worksheet in Figure 3.11 for this exercise.
Answer:

* BACK TO TEXT

Homework 3.7.1.3 Implement the program from the last exercise using the Live Script in

LAFFPfC −> Assignments −> Week3 −> matlab −> DotVariant1.mlx.

For additional instructions, see Homework 3.5.3.3 on the edX platform.
Make sure you get the right answer the first time! Answer:

* BACK TO TEXT

323

Homework 4.1.1.1 Match the predicate on the left with the corresponding predicate on the right:

(1) d = (∑i | 0≤ i < n : x(i)× y(i)) (a) d = xT
ByB

(2) d = (∑i | 0≤ i < k : x(i)× y(i))

+ (∑i | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n

(b) d = xT y

(3) d = (∑i | 0≤ i < k : x(i)× y(i))∧0≤ k ≤ n (c) d = xT
T yT + xT

ByB

(4) d = (∑i | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n (d) d = xT
T yT

Answer:

(1) d = (∑i | 0≤ i < n : x(i)× y(i)) (b) d = xT y

(2) d = (∑i | 0≤ i < k : x(i)× y(i))

+ (∑i | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n

(c) d = xT
T yT + xT

ByB

(3) d = (∑i | 0≤ i < k : x(i)× y(i))∧0≤ k ≤ n (d) d = xT
T yT

(4) d = (∑k | k ≤ i < n : x(i)× y(i))∧0≤ k ≤ n (a) d = xT
ByB

* BACK TO TEXT

Homework 4.1.1.2 In the annotated algorithm for computing d = xT y in Figure 4.1, place the following expressions
where they can replace the quantifiers. Use your intuition!

• d = xT y

• x→

 xT

xB

 and y→

 yT

yB

, where xT and yT have no elements

• d = xT
T yT

* BACK TO TEXT

Homework 4.2.1.1 In the annotated algorithm on Page 183 for copying vector x into vector y insert the expressions
where they make sense. Use your intuition!

a)

 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2


b) m(yT)< m(y) (three places).

c)

 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2


324

{
(0≤ n)

}
k := 0 x⇒

 xT

xB

 and y⇒

 yT

yB

, where xT and yT have no elements

d := 0
(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n

d = xT
T yT


while k < n do (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n∧ (k < n) d = xT

T yT


d := d + x(k)× y(k)

k := k+1 (∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n d = xT
T yT


endwhile

(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n ∧ ¬(k < n)

d = xT
T yT

 d = (∑i | 0≤ i < n : x(i)× y(i)) d = xT y


Figure 3.5: Answer to Homework 4.1.1.1.

325

{
(∀i | 0≤ i < n : y(i) = ŷ(i))∧ (0≤ n) y = ŷ

}

k := 0 x→

 xT

xB

 and y→

 yT

yB

 where xT and yT are empty


(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n yT

yB

=

 xT

ŷB




while k < n do m(yT)< m(y)

Pinv∧ (k < n) :

(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n∧ (k < n) yT

yB

=

 xT

ŷB

∧ m(yT)< m(y)


 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2




Pinv∧ (k < n) with k term split off) :

(∀i | 0≤ i < k : y(i) = x(i)) ∧ ((y(k) = ŷ(k))∧
(∀i | k+1≤ i < n : y(i) = ŷ(i)) ∧ (0≤ k ≤ n)∧ (k < n)


y0

ψ1

y2

=


x0

ψ̂1

ŷ2




S : y(k) := x(k) ψ1 := χ1
wp(“k := k+1”,Pinv) (with k term split off) :

(∀i | 0≤ i < k : y(i) = x(i))∧ (y(k) = x(k))

∧(∀i | k+1≤ i < n : y(i) = ŷ(i))∧ (0≤ k+1≤ n)


y0

ψ1

y2

=


x0

χ1

ŷ2




k := k+1

 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2




(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n yT

yB

=

 xT

ŷB




endwhile

(∀i | 0≤ i < k : y(i) = ŷ(i)) ∧ (∀i | k ≤ i < n : y(i) = ŷ(i)+ x(i)) ∧0≤ k ≤ n

∧¬(k < n) yT

yB

=

 xT

ŷB

∧¬(m(yT)< m(y))

{
(∀i | 0≤ i < n : y(i) = x(i)) y = x

}
326

Step Algorithm: α := xT y+α

1a {α = α̂ }

4 x→

 xT

xB

 , y→

 yT

yB


where xB has 0 rows, yB has 0 rows

2
{

α = xT
ByB + α̂

}
3 while m(xB)< m(x) do

2,3
{

α = xT
ByB + α̂∧m(xB)< m(x)

}

5a

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


where χ1 has 1 row, ψ1 has 1 row

6
{

α = xT
2 y2 + α̂

}
8 α := χ1×ψ1 +α

7
{

α = χ1×ψ1 + xT
2 y2 + α̂

}

5b

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


2

{
α = xT

ByB + α̂
}

endwhile

2,3
{

α = xT
ByB + α̂∧¬(m(xB)< m(x))

}
1b {α = xT y+ α̂ }

Figure 4.6: Variant 2 for computing α := xT y+α.

d)


y0

ψ1

y2

=


x0

ψ̂1

ŷ2

.

e)


y0

ψ1

y2

=


x0

χ1

ŷ2


f) ψ1 := χ1

Answer: See Figure on Page 326
* BACK TO TEXT

327

Homework 4.2.1.2 Use the * blank worksheet to derive Variant 2 for computing the “sapdot” operation α := xT y+α,
the algorithm corresponding to Invariant 2. (In theory, this worksheet is also in LAFFPfC/Resources/BlankWorksheet.pdf.
In practice, you may want to put a copy there yourself, since the one that is there is not quite the same.)

Answer: See Figure ??
* BACK TO TEXT

328

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf

{
y = ŷ

}
x→

 xT

xB

 and y→

 yT

yB


where xB and yB are empty
 yT

yB

=

 ŷT

xB




while m(yB)< m(y) do
 yT

yB

=

 ŷT

xB

∧ (m(yB)< m(y))

 xT

xB

→


x0

χ1

x2

 and

 yT

yB

→


y0

ψ1

y2


where χ1 and ψ1 are scalars
 yT

yB

=

 ŷT

xB

 with split range:


y0

ψ1

y2

=


ŷ0

ψ̂1

x2




ψ1 := χ1wp(“

 xT

xB

 :=


x0

χ1

x2

 ;

 yT

yB

 :=


y0

ψ1

y2

”,

 yT

yB

=

 ŷT

xB

) :


y0

ψ1

y2

=


ŷ0

χ1

x2




 xT

xB

←


x0

χ1

x2

 and

 yT

yB

←


y0

ψ1

y2



 yT

yB

=

 ŷT

xB

 
endwhile
 yT

yB

=

 ŷT

xB

∧¬(m(yB)< m(y))

{
y = x

}

Figure 4.7: Answer for Homework 4.2.1.2.

329

Homework 5.1.1.1 Compute 
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+


3

1

0

=


8

−5

−5


using algorithmic Variant 1 given in Figure 5.1.

Answer: First iteration: 


1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+3

1

0


=


8

1

0



Second iteration: 

8
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+1

0


=


8

−5

0



Third iteration: 

8

−5
1 −1 2

−2 2 0

−1 1 −2




2

−1

1

+0


=


8

−5

−5



* BACK TO TEXT

Homework 5.1.1.2 Download the Live Script MatVec1LS.mlx into Assignments/Week5/matlab/ and follow the
directions in it to execute function MatVec1.

Answer: Examine MatVec1LS.mlx.
* BACK TO TEXT

Homework 5.1.1.3 Knowing that the matrix is symmetric, compute
1 ? ?

−2 2 ?

−1 1 −2




2

−1

1

+


3

1

0

=


6

−4

−5


330

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/MatVec1LS.mlx

PME:

 CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ABRBB +ĈB

.

AT LBT AT
BLBB ABLBT ABRBB

 CT

CB

=

Yes No No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 1

Yes Yes No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 2

Yes No Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 3

Yes Yes Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 4

No Yes Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 5

No Yes No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 6

No No Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 7

No No No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 8

Figure 5.8: Loop-invariants for C := AB+C where A is symmetric and only its lower triangular part is stored.

331

using algorithmic Variant 1 given in Figure 5.1.

Answer: First iteration: 


1 −2 −1

−2 2 ?

−1 1 −2




2

−1

1

+3

1

0


=


6

1

0



Second iteration: 

6
1 ? ?

−2 2 1

−1 1 −2




2

−1

1

+1

0


=


8

−4

0



Third iteration: 

8

−5
1 ? ?

−2 2 ?

−1 1 −2




2

−1

1

+0


=


6

−4

−5



* BACK TO TEXT

Homework 5.1.1.4 Download the Live Script SymVec1LS.mlx into Assignments/Week5/matlab/ and follow the
directions in it to change the given function to only compute with the lower triangular part of the matrix.

Answer: See Figure 5.9.
* BACK TO TEXT

Homework 5.1.1.5 Knowing that the matrix is symmetric, compute
1 ? ?

2 −2 ?

−2 1 3




1

−1

1

+


1

2

3

=


−2

7

3


using algorithmic Variant 3 given in Figure 5.4.

* BACK TO TEXT

Homework 5.1.1.6 Which algorithm for computing y := Ax+ y casts more computation in terms of the columns of
the stored matrix (and is therefore probably higher performing)?

Answer: If you analyze it, each of the implementations (SymMatVec1 and SymMatVec3) casts roughly half of the
computations in terms of operations with rows and the other half in terms of operations with columns.

* BACK TO TEXT

332

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymVec1LS.mlx

function [y_out] = SymMatVec1(A, x, y)
% Compute y := A x + y, assuming A is symmetric and stored in lower
% triangular part of array A.

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that m = n, x is a vector size n and y is a
% vector of size n...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for i = 1:n

for j=1:i
y_out(i) = A(i,j) * x(j) + y_out(i);

end
for j=i+1:n

y_out(i) = A(j,i) * x(j) + y_out(i);
end

end

end

LAFFPfC/Assignments/Week5/matlab/SymMatVec1.m

Figure 5.9: Function that computes y;= Ax + y, returning the result in vector y out. Matrix A is assumed to be
symmetric and only stored in the lower triangular part of array A.
.

Homework 5.1.1.7 (Challenge) Download the Live Script SymMatVecByColumnsLS.mlx into Assignments/Week5/matlab/
and follow the directions in it to change the given function to only compute with the lower triangular part of the matrix
and only access the matrix by columns. (Not sort-of-kind-of as in SymMatVec3.mlx.)

Answer: See Figure 5.10.
* BACK TO TEXT

Homework 5.1.1.8 (Challenge) Find someone who knows a little (or a lot) about linear algebra and convince this
person that the answer to the last exercise is correct. Alternatively, if you did not manage to come up with an answer
for the last exercise, look at the answer to that exercise and convince yourself it is correct.

Answer: A less systematic way of providing a convincing argument goes as follows: The key is to view the symmetric
matrix as consisting of three parts: the strictly lower triangular part, the diagonal part, and the strictly upper triangular
part:


α0,0 α1,0 · · · αn−1,0

α1,0 α1,1 · · · αn−1,1
...

...
...

αn−1,0 αn−1,0 · · · αn−1,n−1

=

333

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymMatVecByColumnsLS.mlx

function [y_out] = SymMatVec2(A, x, y)
% Compute y := A x + y, assuming A is symmetric and stored in lower
% triangular part of array A.

% Extract the row and column size of A
[m, n] = size(A);

% (Strictly speaking you should check that m = n, x is a vector size n and y is a
% vector of size n...)

% Copy y into y_out
y_out = y;

% Compute y_out = A * x + y_out
for j = 1:n

y_out(j) = A(j,j) * x(j) + y_out(j);
for i=j+1:n

y_out(j) = A(i,j) * x(i) + y_out(j);
y_out(i) = A(i,j) * x(j) + y_out(i);

end
end

end

LAFFPfC/Assignments/Week5/matlab/SymMatVec3.m

Figure 5.10: Function that computes y;= Ax+ y, returning the result in vector y out. Matrix A is assumed to be
symmetric and only stored in the lower triangular part of array A. This implementation accesses the matrix by columns,
which has the potential for better performance.
.


0 0 · · · 0

α1,0 0 · · · 0
...

...
...

αn−1,0 αn−1,0 · · · 0


︸ ︷︷ ︸

L

+


α0,0 0 · · · 0

0 α1,1 · · · 0
...

...
...

0 0 · · · αn−1,n−1


︸ ︷︷ ︸

D

+


0 α1,0 · · · αn−1,0

0 0 · · · αn−1,0
...

...
...

0 0 · · · 0


︸ ︷︷ ︸

U

.

Now, Ax = (L + D +U)x = Lx + Dx +Ux. Think about how the matrix-vector multiplication algorithms can be
modified for each of these special cases and which algorithm you would want to pick to access the lower triangular
part of A by columns. This gives you three sets loops, one loop per term. You can then ”merge” these sets of loops
into one outer loop, and you arrive at the answer.

But would this convince someone? Better yet: if you aren’t that comfortable with matrix operations, would have
thought of the algorithms? Are there other algorithms? Might there be an algorithm that accesses the matrix by
columns that would even be better by some criteria? How would you prove that the algorithm is correct?

More importantly, this is a ”one of” argument. Such arguments are great if you want the person making the
argument to look really smart. It leaves the person on the receiving end of the argument thinking ”I wish I had thought
of that, because then people would think I am really smart!” It is specifically tailored towards this one situation. How
can it be made more systematic? How can you come up with the solution to the last exercise hand-in-hand with the
proof that it is correct? It is what we do as computer scientist: make knowledge systematic.

* BACK TO TEXT

Homework 5.2.2.1 Below on the left you find four loop invariants for computing y := Ax+ y where A has no special
structure. On the right you find four loop invariants for computing y := Ax+ y when A is symmetric and stored in

334

the lower triangular part of A. Match the loop invariants on the right to the loop invariants on the left that you would
expect maintain the same values in y before and after each iteration of the loop. (In the video, we mentioned asking
you to find two invariants. We think you can handle finding these four!)

(1)

 yT

yB

=

 ŷT

ABx+ ŷB

 (a)

 yT

yB

=

 AT LxT+AT
BLxB + ŷT

ABLxT+ABRxB + ŷB



(2)

 yT

yB

=

 AT x+ ŷT

ŷB

 (b)

 yT

yB

=

 AT LxT +AT
BLxB+ŷT

ABLxT +ABRxB + ŷB



(3) y = ALxT + ŷ (c)

 yT

yB

=

 AT LxT +AT
BLxB+ŷT

ABLxT +ABRxB+ŷB



(4) y = ARxB + ŷ (d)

 yT

yB

=

 AT LxT +AT
BLxB + ŷT

ABLxT+ABRxB+ŷB


* BACK TO TEXT

Homework 5.2.3.1 You may want to derive the algorithm corresponding to Invariant 1 yourself, consulting the video
if you get stuck. Some resources:

• The * blank worksheet.

• Download * symv unb var1 ws.tex and place it in LAFFPfC/Assignments/Week5/LaTeX/. You will need
* color flatex.tex as well in that directory.

• The * Spark webpage.

Alternatively, you may want to download the completed worksheet (with intermediate steps later in the PDF) *
symv unb var1 ws answer.pdf and/or its source * symv unb var1 ws answer.tex.

* BACK TO TEXT

Homework 5.2.4.1 Derive algorithms for Variants 2-8, corresponding to the loop invariants in Figure 5.8. (If you
don’t have time to do all, then we suggest you do at least Variants 2-4 and Variant 8). Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symv unb var2 ws.tex, * symv unb var2 ws.tex,
* symv unb var3 ws.tex, * symv unb var4 ws.tex,
* symv unb var5 ws.tex, * symv unb var6 ws.tex,
* symv unb var7 ws.tex, * symv unb var8 ws.tex.

Answer:
Completed worksheets:

* symv unb var2 ws answer.tex, * symv unb var2 ws answer.pdf
* symv unb var3 ws answer.tex, * symv unb var3 ws answer.pdf

335

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws_answer.pdf

* symv unb var4 ws answer.tex, * symv unb var4 ws answer.pdf
* symv unb var5 ws answer.tex, * symv unb var5 ws answer.pdf
* symv unb var6 ws answer.tex, * symv unb var6 ws answer.pdf
* symv unb var7 ws answer.tex, * symv unb var7 ws answer.pdf
* symv unb var8 ws answer.tex, * symv unb var8 ws answer.pdf

* BACK TO TEXT

Homework 5.2.4.2 Match the loop invariant (on the left) to the “update” in the loop body (on the right):

Invariant 1:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (a) y0 := χ1a01 + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

Invariant 2:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (b) ψ1 := α11χ1 +aT
21x2+ ψ1

y2 := χ1a21+ y2

Invariant 3:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (c) y0 := χ1(aT
10)

T + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

Invariant 4:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (d) ψ1 := aT
10x0 +α11χ1 +aT

21x2 +ψ1

Invariant 8:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (e) y0 := χ1(aT
10)

T + y0

ψ1:=aT
10x0 +α11χ1 +ψ1

Answer:

336

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws_answer.pdf

Invariant 1:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (e) y0 := χ1(aT
10)

T + y0

ψ1:=aT
10x0 +α11χ1 +ψ1

Invariant 2:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (d) ψ1 := aT
10x0 +α11χ1 +aT

21x2 +ψ1

Invariant 3:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (c) y0 := χ1(aT
10)

T + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

Invariant 4:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (b) ψ1 := α11χ1 +aT
21x2 +ψ1

y2 := χ1a21 + y2

Invariant 8:

 AT LxT+ AT
BLxB+ŷT

ABLxT+ABRxB+ŷB

 (b) y0 := χ1(aT
10)

T + y0

ψ1 := α11χ1 +ψ1

y2 := χ1a21 + y2

* BACK TO TEXT

Homework 5.2.4.3 Derive algorithms for Variants 2-8, corresponding to the loop invariants in Figure 5.8. (If you
don’t have time to do all, then we suggest you do at least Variants 2-4 and Variant 8). Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symv unb var2 ws.tex, * symv unb var2 ws.tex,
* symv unb var3 ws.tex, * symv unb var4 ws.tex,
* symv unb var5 ws.tex, * symv unb var6 ws.tex,
* symv unb var7 ws.tex, * symv unb var8 ws.tex.

Answer:
Completed worksheets:

* symv unb var2 ws answer.tex, * symv unb var2 ws answer.pdf
* symv unb var3 ws answer.tex, * symv unb var3 ws answer.pdf
* symv unb var4 ws answer.tex, * symv unb var4 ws answer.pdf
* symv unb var5 ws answer.tex, * symv unb var5 ws answer.pdf
* symv unb var6 ws answer.tex, * symv unb var6 ws answer.pdf
* symv unb var7 ws answer.tex, * symv unb var7 ws answer.pdf
* symv unb var8 ws answer.tex, * symv unb var8 ws answer.pdf

* BACK TO TEXT

337

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var3_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var4_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var5_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var6_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var7_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symv_unb_var8_ws_answer.pdf

Homework 5.2.5.1 We now return to the launch for this week and the question of how to find an algorithm for
computing y := Ax+ y, where A is symmetric and stored only in the lower triangular part of A. Consult Figure 5.10 to
answer the question of which invariant(s) yield an algorithm that accesses the matrix by columns.

Answer:
The algorithms corresponding to Invariants 4 and 8 access the matrix by columns: In the update

ψ1 :=α11χ1+aT
21x2 +ψ1

y2 := χ1a21+ y2

Most computation involves a21, which is part of a column of A. If the size of a21 is k, then the update performs 4k
floating point operations with the k elements of A in a21 that must be read from main memory.

If you examine SymMatVecByColumns.mlx you will find that it organizes the loops to implement the algorithm
that corresponds to Invariant 4. Since you derived it to be correct, you now have the answer of how to convince
someone of its correctness. Of course, you still would have to convince that person that it is a correct translation of
the given updates!

* BACK TO TEXT

Homework 5.3.2.1 Identify two loop invariants from PME 1. Answer:

• Invariant 1:
(

CL CR

)
=
(

ABL +ĈL ABR

)
.

• Invariant 2:
(

CL CR

)
=
(

ABL ABR +ĈR

)
.

* BACK TO TEXT

Homework 5.3.2.2 Derive Variant 1, the algorithm corresponding to Invariant 1, in the answer to the last homework.
Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive an
unblocked algorithm).

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var1 ws.tex

• * GemmUnbVar1LS.mlx

Answer:
Answers:

• * gemm unb var1 ws answer.tex,

• * gemm unb var1 ws answer.pdf

• * GemmUnbVar1LSAnswer.mlx

* BACK TO TEXT

338

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar1LSAnswer.mlx

Homework 5.3.2.3 If you feel energetic, repeat the last homework for Invariant 2. Answer:
* BACK TO TEXT

Homework 5.3.3.1 Identify a second PME (PME 2) that corresponds to the case where A is partitioned by rows.
Answer: Partition

C→

 CT

CB

 .

Then C = AB+Ĉ becomes  CT

CB

=

 AT

AB

B+

 ĈT

ĈB

 .

Manipulating this yields

• PME 2:

 CT

CB

=

 AT B+ĈT

ABB+ĈB

.

* BACK TO TEXT

Homework 5.3.3.2 Identify two loop invariants from this second PME (PME 2). Label these Invariant 3 and Invari-
ant 4. Answer:

• Invariant 3:

 CT

CB

=

 AT B+ĈT

ABB

.

• Invariant 4:

 CT

CB

=

 AT B

ABB+ĈB

.

* BACK TO TEXT

Homework 5.3.3.3 Derive Variant 3, the algorithm corresponding to Invariant 3, in the answer to the last homework.
Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive an
unblocked algorithm).

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var3 ws.tex

• * GemmUnbVar3LS.mlx

Answer:
Answers:

339

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar3LS.mlx

• * gemm unb var3 ws answer.tex,

• * gemm unb var3 ws answer.pdf

• * GemmUnbVar3LSAnswer.mlx

* BACK TO TEXT

Homework 5.3.3.4 If you feel energetic, repeat the last homework for Invariant 4, Answer:
* BACK TO TEXT

Homework 5.3.4.1 Identify a third PME that corresponds to the case where A is partitioned by columns. Answer:
Partition

B→

 BT

BB

 .

Then C = AB+Ĉ becomes

C =
(

AL AR

) BT

BB

+Ĉ.

Manipulating this yields

• PME 3: C = ALBT +ARBB +Ĉ.

* BACK TO TEXT

Homework 5.3.4.2 Identify two loop invariants from PME 3. Label these Invariant 5 and Invariant 6. Answer:

• Invariant 5: C = ALBT +Ĉ.

• Invariant 6: C = ARBT B+Ĉ.

* BACK TO TEXT

Homework 5.3.4.3 Derive Variant 5, the algorithm corresponding to Invariant 5, in the answer to the last homework.
Assume the algorithm “marches” through the matrix one row or column at a time (meaning you are to derive an
unblocked algorithm).

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm unb var5 ws.tex

• * GemmUnbVar5LS.mlx

Answer:
Answers:

340

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var3_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar5LS.mlx

• * gemm unb var5 ws answer.tex,

• * gemm unb var5 ws answer.pdf

• * GemmUnbVar5LSAnswer.mlx

* BACK TO TEXT

Homework 5.3.4.4 If you feel energetic, repeat the last homework for Invariant 6. Answer:
* BACK TO TEXT

Homework 5.3.5.1 Derive Variants 1, 3, and 5, the algorithms corresponding to Invariant 1, 3, and 5.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * gemm blk var1 ws.tex, * gemm blk var3 ws.tex * gemm blk var5 ws.tex

• * GemmBlkVar1LS.mlx , * GemmBlkVar3LS.mlx , * GemmBlkVar5LS.mlx

Answer:
Answers:

• * gemm blk var1 ws answer.tex, * gemm blk var3 ws answer.tex * gemm blk var5 ws answer.tex

• * gemm blk var1 ws answer.tex * gemm blk var3 ws answer.tex * gemm blk var5 ws answer.tex

• * GemmBlkVar1LSAnswer.mlx * GemmBlkVar3LSAnswer.mlx * GemmBlkVar5LSAnswer.mlx

* BACK TO TEXT

Homework 5.3.5.2 If you feel energetic, also derive Blocked Variants 2, 4, and 6. Answer:
* BACK TO TEXT

Homework 5.4.2.1 Create a table of all loop invariants for PME 1, disgarding those for which there is no viable loop
guard or initialization command. You may want to start with Figure 5.11. The gray text there will help you decide
what to include in the loop invariant.

Answer: See Figure 5.11.
* BACK TO TEXT

Homework 5.4.3.1 Derive as many unblocked algorithmic variants as you find useful.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

341

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_unb_var5_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmUnbVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/gemm_blk_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/GemmBlkVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex

PME:

 CT

CB

=

 AT LBT +AT
BLBB +ĈT

ABLBT +ABRBB +ĈB

.

AT LBT AT
BLBB ABLBT ABRBB

 CT

CB

=

Yes No No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 1

Yes Yes No No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 2

Yes No Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 3

Yes Yes Yes No

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 4

No Yes Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 5

No Yes No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 6

No No Yes Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 7

No No No Yes

 AT LBT+ AT
BLBB+ĈT

ABLBT+ABRBB+ĈB

 8

Figure 5.11: Loop-invariants for C := AB+C where A is symmetric and only its lower triangular part is stored.

342

• Spark webpage.

• * symm l unb var1 ws.tex, * symm l unb var2 ws.tex,
* symm l unb var3 ws.tex, * symm l unb var4 ws.tex,
* symm l unb var5 ws.tex, * symm l unb var6 ws.tex,
* symm l unb var7 ws.tex, * symm l unb var8 ws.tex.

• * SymmLUnbVar1LS.mlx, * SymmLUnbVar2LS.mlx,
* SymmLUnbVar3LS.mlx, * SymmLUnbVar4LS.mlx,
* SymmLUnbVar5LS.mlx, * SymmLUnbVar6LS.mlx,
* SymmLUnbVar7LS.mlx, * SymmLUnbVar8LS.mlx.

Answer:
Answers:

• * symm l unb var1 ws answer.tex, * symm l unb var2 ws answer.tex,
* symm l unb var3 ws answer.tex, * symm l unb var4 ws answer.tex,
* symm l unb var5 ws answer.tex, * symm l unb var6 ws answer.tex,
* symm l unb var7 ws answer.tex, * symm l unb var8 ws answer.tex.

• * SymmLUnbVar1LSAnswer.mlx, * SymmLUnbVar2LSAnswer.mlx,
* SymmLUnbVar3LSAnswer.mlx, * SymmLUnbVar4LSAnswer.mlx,
* SymmLUnbVar5LSAnswer.mlx, * SymmLUnbVar6LSAnswer.mlx,
* SymmLUnbVar7LSAnswer.mlx, * SymmLUnbVar8LSAnswer.mlx.

* BACK TO TEXT

Homework 5.4.5.1 Derive as many blocked algorithmic variants as you find useful.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * symm l blk var1 ws.tex, * symm l blk var2 ws.tex,
* symm l blk var3 ws.tex, * symm l blk var4 ws.tex,
* symm l blk var5 ws.tex, * symm l blk var6 ws.tex,
* symm l blk var7 ws.tex, * symm l blk var8 ws.tex.

• * SymmLBlkVar1LS.mlx, * SymmLBlkVar2LS.mlx,
* SymmLBlkVar3LS.mlx, * SymmLBlkVar4LS.mlx,
(The rest of these are not yet available.)
* SymmLBlkVar5LS.mlx, * SymmLBlkVar6LS.mlx,
* SymmLBlkVar7LS.mlx, * SymmLBlkVar8LS.mlx.

Answer:
Answers:

• * symm l blk var1 ws answer.tex, * symm l blk var2 ws answer.tex,
* symm l blk var3 ws answer.tex, * symm l blk var4 ws answer.tex,
* symm l blk var5 ws answer.tex, * symm l blk var6 ws answer.tex,
* symm l blk var7 ws answer.tex, * symm l blk var8 ws answer.tex.

343

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar6LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar7LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar8LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var4_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var6_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var7_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_unb_var8_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar2LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar4LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar6LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar7LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/SymmLUnbVar8LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var6_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var7_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var8_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar6LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar7LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar8LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var4_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var6_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var7_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/LaTeX/symm_l_blk_var8_ws_answer.tex

• * SymmLBlkVar1LSAnswer.mlx, * SymmLBlkVar2LSAnswer.mlx,
* SymmLBlkVar3LSAnswer.mlx, * SymmLBlkVar4LSAnswer.mlx,
* SymmLBlkVar5LSAnswer.mlx, * SymmLBlkVar6LSAnswer.mlx,
* SymmLBlkVar7LSAnswer.mlx, * SymmLBlkVar8LSAnswer.mlx.

* BACK TO TEXT

344

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar2LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar4LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar6LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar7LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week5/matlab/SymmLBlkVar8LSAnswer.mlx

Homework 6.2.2.1 Derive the PME from the postcondition and how matrices L and U inherently need to be parti-
tioned.

Answer:
Inserting the partitioned L and U into the postcondition A = L\U ∧LU = Â guides us to how A should be parti-

tioned:

A→

 AT L AT R

ABL ABR

 .

This then yields  AT L AT R

ABL ABR

=

 L\UT L UT R

LBL L\UBR


∧

 LT L 0

LBL LBR

 UT L UT R

0 UBR

=

 ÂT L ÂT R

ÂBL ÂBR

 .

Multiplying the partitioned L and U then gives us the PME: AT L AT R

ABL ABR

=

 L\UT L UT R

LBL L\UBR

∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL LBLUT R +LBRUBR = ÂBR

.

* BACK TO TEXT

Homework 6.2.3.1 Derive and implement the unblocked algorithm that corresponds to

Invariant 1 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

ÂBL ÂBR

∧LT LUT L = ÂT L.

If you get stuck, there are hints in the below videos.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var1 ws.tex.
This worksheet is already partially filled out (through Step 5).

• If you end up using the first video that follows this homework as a hint, then you may want to continue after
watching that with the following worksheet: * LU unb var1 ws step6.tex.
This worksheet is filled out through Step 6.

• * LUUnbVar1LS.mlx.
Note: for the implementation, you don’t need to include L and U as parameters. They were ”temporaries” in the
derivation, but don’t show up in the actual implementation. This same comment holds for all implementations
of LU factorization.

Answer:
View the below video and/or the following answer:

345

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws_step6.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar1LS.mlx

• * LU unb var1 ws.tex

• * LU unb var1 ws answer.pdf

• * LUUnbVar1LSAnswer.mlx.

* BACK TO TEXT

Homework 6.2.4.1 Derive and implement the unblocked algorithm that corresponds to

Invariant 2 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

∧ LT LUT L = ÂT L

LBLUT L = ÂBL.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var2 ws.tex.
This worksheet is already partially filled out (through Step 5).

• * LUUnbVar2LS.mlx.

Answer:

• * LU unb var2 ws answer.tex

• * LU unb var2 ws answer.pdf

• * LUUnbVar2LSAnswer.mlx.

* BACK TO TEXT

Homework 6.2.4.2 Identify three additional loop invariants (Invariants 3-5) for computing the LU factorization.

Answer: (See also the video right after this homework.)
Following the example of how Invariant 2 was derived, two additional loop invariant are relatively easy to identify:

Invariant 3 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

ÂBL ÂBR

∧ LT LUT L = ÂT L LT LUT R = ÂT R,

where
LT LUT L = ÂT L LT LUT R = ÂT R

captures the constraint
LT LUT L = ÂT L∧LT LUT R = ÂT R,

and

Invariant 4 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR

∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT R = ÂBL,

346

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar2LSAnswer.mlx

Invariant 1 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L

Invariant 2 :

 AT L AT R

ABL ABR

=

 L\UT L ÂT R

LBL ÂBR

 ∧
LT LUT L = ÂT L

LBLUT L = ÂBL.

Invariant 3 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

ÂBL ÂBR

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

Invariant 4 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR

 ∧
LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Invariant 5 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR−LBLUT R

 ∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL

Figure 6.12: The five loop invariants for computing the LU factorization.

where
LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT R = ÂBL

captures the constraint
LT LUT L = ÂT L∧LT LUT R = ÂT R∧LBLUT R = ÂBL.

The fifth loop invariant is a little harder to justify. We notice that the PME includes the constraint LBLUT R+LBRUBR =
ÂBR which can be rewritten as LBLUT R = ÂBR−LBRUBR. Now, if LBR and UT R have already been computed, then we
can also required ABR to have been updated by subtracting LBLUT R yielding

Invariant 5 :

 AT L AT R

ABL ABR

=

 L\UT L UT R

LBL ÂBR−LBLUT R

∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT R = ÂBL.

Figure 6.12 gives a table with the five loop invariants.
* BACK TO TEXT

Homework 6.2.4.3 Derive and implement the unblocked algorithms that correspond to Invariants 3-5 from the last
homework. If you have limited time, then derive at least the algorithm corresponding to Invariant 5.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU unb var3 ws.tex, * LU unb var4 ws.tex, * LU unb var5 ws.tex.
These worksheets are already partially filled out (through Step 5).

• * LUUnbVar3LS.mlx, * LUUnbVar4LS.mlx, * LUUnbVar5LS.mlx.

Answer:

347

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar5LS.mlx

• * LU unb var3 ws answer.tex, * LU unb var4 ws answer.tex, * LU unb var5 ws answer.tex

• * LU unb var3 ws answer.pdf, * LU unb var4 ws answer.pdf. * LU unb var5 ws answer.pdf

• * LUUnbVar3LSAnswer.mlx, * LUUnbVar4LSAnswer.mlx, * LUUnbVar5LSAnswer.mlx

* BACK TO TEXT

Homework 6.2.5.1 Derive and implement the blocked algorithm that corresponds to

Invariant 5 : AT L AT R

ABL ABR

=

 L\UT L ÛT R

LBL ÂBR−LBLUT R

∧ LT LUT L = ÂT L LT LUT R = ÂT R

LBLUT L = ÂBL.

If you need hints along the way, you may want to watch the videos that follow this homework.
Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU blk var5 ws.tex.

• * LUBlkVar5LS.mlx.

Answer:

• * LU blk var5 ws answer.tex.

• * LU blk var5 ws answer.pdf.

• * LUBlkVar5LSAnswer.mlx

* BACK TO TEXT

Homework 6.2.5.2 Derive and implement the blocked algorithms that correspond to Invariants 1-4. If you have
limited time, then you may want to focus on Invariant 2. A table of all loop invariants was given in the solution for
Homework 6.2.4.2.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * LU blk var1 ws.tex, * LU blk var2 ws.tex, * LU blk var3 ws.tex, * LU blk var4 ws.tex.

• * LUBlkVar1LS.mlx, * LUBlkVar2LS.mlx, * LUBlkVar3LS.mlx, * LUBlkVar4LS.mlx.

Answer:

• * LU blk var1 ws answer.tex, * LU blk var2 ws answer.tex, * LU blk var3 ws answer.tex, * LU blk var4 ws answer.tex

348

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var4_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var3_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var4_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_unb_var5_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar4LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var5_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar5LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var5_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var5_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar5LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var3_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var4_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar3LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar4LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var3_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var4_ws_answer.tex

• * LU blk var1 ws answer.pdf, * LU blk var2 ws answer.pdf, * LU blk var3 ws answer.pdf. * LU blk var4 ws answer.pdf

• * LUBlkVar1LSAnswer.mlx, * LUBlkVar2LSAnswer.mlx, * LUBlkVar3LSAnswer.mlx, * LUBlkVar4LSAnswer.mlx

* BACK TO TEXT

Homework 6.3.1.1 Derive the PME for solving Lx = y, overwriting y with the solution, where L is unit lower trian-
gular and y is stored as a column vector. Next, derive and implement unblocked algorithms. You will want to find
an algorithm that accesses L by columns. Can you already tell from the loop invariant which algorithm will have that
property, so that you only have to derive one?

We use trsv lnu and TrsvLNU to indicate that the triangular solve involves the lower triangular part of the matrix,
that the matrix stored there is not to be transposed, and that matrix is a unit triangular matrix.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * trsv lnu unb var1 ws.tex, * trsv lnu unb var2 ws.tex

• * TrsvLNUUnbVar1LS.mlx, * TrsvLNUUnbVar2LS.mlx
Note: for the implementation, you don’t need to include x as a parameter. It was a ”temporary” in the deriva-
tion, but doesn’t show up in the actual implementation. This same comment holds for all implementations of
triangular solve.

Answer:
The postcondition can be given as

y = x∧Lx = ŷ.

From this, one can derive the PME  yT

yB

=

 xT

xB

∧ LT LxT = ŷT

LBLxT +LBRxB = ŷB.

This, in turn, yields two loop invariants:  yT

yB

=

 xT

ŷB

∧ LT LxT = ŷT

and  yT

yB

=

 xT

ŷB−LBLxT

∧ LT LxT = ŷT

Here you need to recognize that inherently xT must be computed before xB.
These observations now allow you to derive the various algorithms:

• * trsv lnu unb var1 ws answer.tex, * trsv lnu unb var2 ws answer.tex

• * trsv lnu unb var1 ws answer.pdf, * trsv lnu unb var2 ws answer.pdf

• * TrsvLNUUnbVar1LSAnswer.mlx, * TrsvLNUUnbVar2LSAnswer.mlx

* BACK TO TEXT

349

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var3_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/LU_blk_var4_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar2LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar3LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/LUBlkVar4LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_lnu_unb_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvLNUUnbVar2LSAnswer.mlx

Homework 6.3.1.2 Derive the PME for solving Ux = y, overwriting y with the solution, where U is upper triangular
and y is stored as a column vector. In what direction should you march through the matrix and vectors? (The PME
should tell you.) Derive and implement unblocked algorithms. You will want to find an algorithm that accesses U by
columns. Can you already tell from the loop invariant which algorithm will have that property, so that you only have
to derive one?

We use trsv unn and TrsvUNN to indicate that the triangular solve involves the upper triangular part of the matrix,
that the matrix stored there is not to be transposed, and that matrix is not a unit triangular matrix.

Some resources:

• The * blank worksheet.

• * color flatex.tex.

• Spark webpage.

• * trsv unn unb var1 ws.tex, * trsv unn unb var2 ws.tex

• * TrsvUNNUnbVar1LS.mlx, * TrsvUNNUnbVar2LS.mlx
Note: for the implementation, you don’t need to include x as a parameter. It was a ”temporary” in the deriva-
tion, but doesn’t show up in the actual implementation. This same comment holds for all implementations of
triangular solve.

Answer:
The postcondition can be given as

y = x∧Ux = ŷ.

From this, one can derive the PME  yT

yB

=

 xT

xB

∧ UT LxT +UT RxB = ŷT

UBRxB = ŷB.

This, in turn, yields two loop invariants:  yT

yB

=

 ŷT

xB

∧ UBRxB = ŷB

and  yT

yB

=

 ŷT −UT RxB

xB

∧ UBRxB = ŷB

Here you need to recognize that inherently xB must be computed before xT .

• * trsv unn unb var1 ws answer.tex, * trsv unn unb var2 ws answer.tex

• * trsv unn unb var1 ws answer.pdf, * trsv unn unb var2 ws answer.pdf

• * TrsvUNNUnbVar1LSAnswer.mlx, * TrsvUNNUnbVar2LSAnswer.mlx

* BACK TO TEXT

Homework 6.3.2.1 Derive an alternative PME that corresponds to partitioning L into quadrants. You are on your
own: derive the invariants, the algorithms, the implementations. If you still have energy left after that, do the same for
solving UX = B or LT X = B ore UT X = B (without explicitly transposing L or U). You are now an expert!

* BACK TO TEXT

350

http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Resources/BlankWorksheet.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/color_flatex.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var1_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var2_ws.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar1LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar2LS.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var1_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var2_ws_answer.tex
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var1_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/LaTeX/trsv_unn_unb_var2_ws_answer.pdf
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar1LSAnswer.mlx
http://edx-org-utaustinx.s3.amazonaws.com/UT1401x/LAFFPfC/Assignments/Week6/matlab/TrsvUNNUnbVar2LSAnswer.mlx

Index

equivalence, 18, 40
implies, 18, 40
neg, 18, 40
and, 18, 40
or, 18, 40
∧-simplification, 25
⇒-simplification, 25
∨-simplification, 25

and, 18, 40
logical, 18, 40

∧-simplification, 25
API, 168
Application Programming Interface, 168
associativity, 25

base case, 27, 41
Boolean

value, 17
Boolean value, 17
bound function, 79, 83
bound variable, 31

column-major order, 175, 198
commutativity, 25
conjunction

logical, 18, 40
contingency, 19
contradiction, 19, 25, 40
contrapositive, 22, 24, 25

De Morgan’s laws, 25
disjunction

logical, 18, 40
distributivity, 25

equivalence, 18, 25, 40
logical, 18, 40

excluded middle, 25

exists, 31, 41
∃, 31
∃, 41

for all, 31, 41
∀, 31
∀, 41
free occurrence, 54

goal oriented programming, 49
guard, 63
guarded statement, 63

Hoare triple, 49

identity, 25
if command, 62
implication, 25

logical, 18, 40
⇒-simplification, 25
implies, 18, 40
induction

principle of mathematical, 27
inductive step, 27, 41

Law of Excluded Miracle, 84
logical and, 18, 40
logical equivalence, 18, 40
logical implies, 18, 40
logical negation, 18, 40
logical not, 18, 40
logical or, 18, 40
logical statement, 17
loop invariant, 75, 82

mathematical induction
base case, 27, 41
inductive step, 27, 41
principle of, 27, 41

351

negation, 18, 25, 40
logical, 18, 40

not, 18, 40
logical, 18, 40

occurrence
free, 54

or, 18, 40
logical, 18, 40

∨-simplification, 25

Partitioned Matrix Expression, 163, 171
PME, 163, 171
precedence order, 22
precondition

weakest, 49
predicate, 19, 40
preface, vi
Principle of Mathematical Induction, 27
product, 41
∏, 41
proposition, 17, 19

quantifier
exists, 31, 41
∃, 31
∃, 41

for all, 31, 41
∀, 31
∀, 41
product, 41
∏, 41
sum, 41
∑, 41

row-major order, 175

statement
guarded, 63
logical, 17

sum, 41
∑, 41

tautology, 19, 40
truth table, 19

variable
variable, 31

Weakening/Strengening, 38
weakest precondition, 49
while

theorem, 75–80
while command, 74–81
While Theorem, 75–80

352

	Getting Started
	Opening Remarks
	Welcome to LAFF-On Programming for Correctness . to edX
	Outline . to edX
	What you will learn . to edX

	How to LAFF-On
	What Should We Know? . to edX
	When to LAFF-On . to edX
	How to Navigate LAFF-On
	Homework and LAFF-On . to edX
	Grading and LAFF-On . to edX
	Setting Up to LAFF-On . to edX

	Software to LAFF-On
	Activating Matlab Online . to edX
	Matlab Basics . to edX
	Setting up MATLAB Online to LAFF-On . to edX
	Matlab Live Script . to edX

	Typesetting LAFF-On
	Typesetting mathematics . to edX
	Downloading and testing TeXstudio . to edX
	LaTeX and TeXstudio Primer . to edX

	Enrichments
	The Origins of MATLAB . to edX
	The Origins of LaTeX . to edX

	Wrap Up
	Additional Homework . to edX
	Summary . to edX

	I Foundation
	A Logical Beginning
	Opening Remarks
	Launch . to edX
	Outline Week 1 . to edX
	What you will learn . to edX

	Review of Logic
	Simple Propositions . to edX
	Boolean operators . to edX
	Predicates . to edX
	Precedence of Boolean operators . to edX
	Proving using truth tables . to edX

	Proof Techniques for LAFF-On
	Basic Equivalences . to edX
	Equivalence style proofs . to edX
	(The Principle of Mathematical) Induction . to edX
	The Principle of Mathematical Induction: Examples . to edX

	Quantified Expressions
	What is a quantifier . to edX
	The ``for all'' quantifier . to edX
	The ``there exists'' quantifier . to edX
	Splitting the range . to edX
	Quantifiers with special ranges . to edX
	Practice expressing statements as predicates . to edX

	Weakening/strengthening
	Weakening/strengthening laws . to edX
	Weakening/strengthening exercises . to edX

	Enrichment
	The Humble Programmer – Edsger W. Dijkstra . to edX
	Typesetting proofs with LaTeX . to edX
	More on logic . to edX

	Wrapup
	Additional exercises . to edX
	Summary . to edX

	Proving Programs Correct
	Opening Remarks
	Launch . to edX
	Outline Week 2 . to edX
	What you will learn . to edX

	Tools for Reasoning About Correctness
	The Hoare triple . to edX
	 The weakest precondition . to edX
	Proving the correctness of a Hoare triple . to edX

	Basic Commands
	The skip command . to edX
	The abort command . to edX
	Assignment to a simple variable . to edX
	Composition . to edX
	Simultaneous assignment . to edX
	Assignment to an array element . to edX

	The If Command
	Specification . to edX
	wp(``if'', R) . to edX
	The If Theorem . to edX
	A worksheet for proving an if command correct . to edX
	The if-then-else command . to edX

	The While Command
	Specification . to edX
	Correctness . to edX
	The While Theorem . to edX
	Total correctness . to edX
	Don't Panic . to edX

	Enrichment
	The do command . to edX
	Desirable properties of a language . to edX
	A conversation with Sir Tony Hoare . to edX

	Wrap Up
	Additional exercises . to edX
	Summary . to edX

	Deriving Programs to be Correct
	Opening Remarks . to edX
	Launch . to edX
	Outline Week 3 . to edX
	What you will learn . to edX

	Developing Simple Commands . to edX
	The skip command . to edX
	Assignment to simple variables . to edX
	Careful! . to edX
	Assignment to array elements . to edX

	Developing the if Command . to edX
	A general strategy . to edX
	A commonly encountered case . to edX

	Developing a While Command . to edX
	A worksheet for the while command . to edX
	Progress towards completion . to edX
	A priori determination of loop invariants . to edX
	Deriving the loop guard and initialization command . to edX
	Deriving the loop body . to edX

	Examples . to edX
	Evaluating a polynomial . to edX
	At last, you write your first code! . to edX

	Enrichment . to edX
	A conversation with Prof. David Gries . to edX
	Dafny: a language and program verifier for functional correctness

	Wrap Up . to edX
	Additional exercises . to edX
	Summary . to edX
	Why Dijkstra received the ACM Turing Award . to edX

	II Application
	Matrix-Vector Operations
	Opening Remarks . to edX
	Launch . to edX
	Outline Week 4 . to edX
	What you will learn . to edX

	A Farewell to Indices . to edX
	More notation . to edX
	Deriving algorithms with the FLAME notation . to edX
	Typesetting algorithms with FLAME notation and LaTeX . to edX
	Representing (FLAME) algorithms in code . to edX
	The axpy operation . to edX

	Algorithms over two-dimensional arrays (matrices) . to edX
	Some algorithms for matrix-vector multiplication . to edX
	But you get so much more... . to edX
	The rank-1 update . to edX
	Why do we want multiple algorithms? . to edX

	Enrichment . to edX
	Related reading . to edX

	Wrap Up . to edX
	Additional exercises . to edX
	Summary . to edX

	Matrix-Matrix Operations
	Opening Remarks . to edX
	Launch . to edX
	Outline Week 5 . to edX
	What you will learn . to edX

	Partitioning matrices into quadrants . to edX
	Background . to edX
	Example: Deriving algorithms for symmetric matrix-vector multiplication . to edX
	One complete derivation . to edX
	Other variants . to edX
	Visualizing the different algorithms . to edX
	Which variant? . to edX

	Matrix-matrix multiplication . to edX
	Background . to edX
	Matrix-matrix multiplication by columns . to edX
	Matrix-matrix multiplication by rows . to edX
	Matrix-matrix multiplication via rank-1 updates . to edX
	Blocked algorithms . to edX

	Symmetric matrix-matrix multiplication . to edX
	Background . to edX
	Deriving the first PME and corresponding loop invariants . to edX
	Deriving unblocked algorithms corresponding to PME 1 . to edX
	Blocked Algorithms . to edX
	Other blocked algorithms . to edX
	A second PME . to edX

	Enrichment . to edX
	The memory hierarchy . to edX
	The GotoBLAS matrix-matrix multiplication algorithm . to edX
	The PME and loop invariants say it all! . to edX

	Wrap Up . to edX
	Additional exercises . to edX
	Summary . to edX

	Advanced Matrix Operations
	Opening Remarks . to edX
	Launch . to edX
	Outline Week 6 . to edX
	What you will learn . to edX

	LU Factorization . to edX
	Background . to edX
	From specification to the PME . to edX
	Unblocked Variant 1 . to edX
	More loop invariants . to edX
	Blocked algorithms . to edX
	Which variant to pick . to edX
	LU factorization with pivoting . to edX

	Related Operations
	Triangular solve . to edX
	Triangular solve with multiple right-hand sides . to edX

	Enrichment . to edX
	At the frontier and beyond...
	Practical libraries . to edX
	Correctness in the presence of roundoff error . to edX
	Beyond dense linear algebra . to edX
	When the worksheet does not yield algorithms for matrix operations . to edX
	If it is so systematic, can't we get a computer to do it? . to edX

	Wrap Up . to edX
	Additional exercises . to edX

	Answers
	Index

