Inverse Functions in ACL2(r)
The Nine Billion Names of $\sqrt{2}$

R. Gamboa J. Cowles
University of Wyoming

ACL2 Workshop 2009
Outline

1. Background
2. General Inverse Functions
3. Inverse of Continuous Functions
4. Conclusion
\(\sqrt{2} \) in ACL2: Nasty, Brutish, Short

\[(\text{defthm} \text{ there-is-no-sqrt-2} \n (\text{not} \ (\text{equal} \ (* \ x \ x) \ 2)))\]

Proof: By case analysis.

- \(\sqrt{2} \) must be numeric
- \(\sqrt{2} \) cannot be rational
- \(\sqrt{2} \) cannot be complex-rational
- All numbers in ACL2 are rational or complex-rational
Approximating \sqrt{x} in ACL2

(defthm convergence-of-iter-sqrt
 (implies (and (rationalp x)
 (rationalp epsilon)
 (<= 0 epsilon)
 (<= 0 x))
 (and (<= (* (iter-sqrt x epsilon) (iter-sqrt x epsilon)) x)
 (< (- x (* (iter-sqrt x epsilon) (iter-sqrt x epsilon))) epsilon))))
\(\sqrt{x} \) in ACL2(r)

\(\sqrt{x} \) can be introduced in ACL2(r), because

- ACL2(r) adds the irrationals to ACL2's number system
- The completeness of the real numbers is established via standard-part, part of an axiomatization of the reals based on non-standard analysis
The Goal of ACL2(r)

- ACL2(r) uses non-standard analysis to introduce notions from calculus into ACL2, e.g., the Intermediate Value Theorem.
- Eventually, it should know about all results from first-year calculus (but that’s in the future).
- Today, we take a step forward, by introducing inverse functions, including ln x.
Inverse Functions

Suppose \(f : D \to R \) has the following properties:

- \(f \) is 1-1: \(\forall x_1, x_2 \in D. f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)
- \(f \) is onto: \(\forall y \in R. \exists x \in D. f(x) = y \)
Inverse Functions

Suppose \(f : D \rightarrow R \) has the following properties:

- \(f \) is 1-1: \(\forall x_1, x_2 \in D. f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)
- \(f \) is onto: \(\forall y \in R. \exists x \in D. f(x) = y \)

Then there is a function \(f^{-1} : R \rightarrow D \) such that

- \(\forall y \in R. f(f^{-1}(y)) = y \)
Inverse Functions

Suppose \(f : D \to R \) has the following properties:

- \(f \) is 1-1: \(\forall x_1, x_2 \in D. f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)
- \(f \) is onto: \(\forall y \in R. \exists x \in D. f(x) = y \)

Then there is a function \(f^{-1} : R \rightarrow D \) such that

- \(\forall y \in R. f(f^{-1}(y)) = y \)
- \(\forall x \in D. f^{-1}(f(x)) = x \)
Inverse Functions

Suppose $f : D \rightarrow R$ has the following properties:

- f is 1-1: $\forall x_1, x_2 \in D. f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- f is onto: $\forall y \in R. \exists x \in D. f(x) = y$

Then there is a function $f^{-1} : R \rightarrow D$ such that

- $\forall y \in R. f(f^{-1}(y)) = y$
- $\forall x \in D. f^{-1}(f(x)) = x$
- $\forall y_1, y_2 \in R. f^{-1}(y_1) = f^{-1}(y_2) \Rightarrow y_1 = y_2$
Inverse Functions

Suppose \(f : D \rightarrow R \) has the following properties:

- \(f \) is 1-1: \(\forall x_1, x_2 \in D. f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)
- \(f \) is onto: \(\forall y \in R. \exists x \in D. f(x) = y \)

Then there is a function \(f^{-1} : R \rightarrow D \) such that

- \(\forall y \in R. f(f^{-1}(y)) = y \)
- \(\forall x \in D. f^{-1}(f(x)) = x \)
- \(\forall y_1, y_2 \in R. f^{-1}(y_1) = f^{-1}(y_2) \Rightarrow y_1 = y_2 \)
- \(\forall x \in D, y \in R. f(x) = y \Rightarrow f^{-1}(y) = x \)
Inverse Functions in ACL2(r)

- The invertible function f can be introduced using `encapsulate`.
- The constraints include “f is 1-1” (easy) and “f is onto” (hard).
- The domain D and range R also need to be introduced (as unary boolean functions).
- The function f^{-1} can be defined using `defchoose`.
The Onto Constraint

- The problem with onto is that it uses existential quantifiers $(\forall y \exists x \ldots)$
- Normally, we would define a function $g(y)$ to remove the quantifier $\exists x$
- But that would be the inverse function!
- Instead, we use ACL2’s support for quantifiers
The Onto Constraint with Quantifiers

1. Name the property “ontoness”

 \[
 \text{(defun-sk ifn-is-onto-predicate \(y\))}
 \]
 \[
 \text{(exists \(x\))}
 \]
 \[
 \text{(and (ifn-domain-p \(x\))}
 \]
 \[
 \text{(equal (ifn \(x\) \(y\)))})
 \]

2. Assert that the property holds

 \[
 \text{(defthm ifn-is-onto)}
 \]
 \[
 \text{(implies (ifn-range-p \(y\))}
 \]
 \[
 \text{(ifn-is-onto-predicate \(y\)))}
 \]
Defining the Inverse

(defchoose ifn-inverse (x) (y)
(and (ifn-domain-p x)
(equal (ifn x) y)))

- By itself, the defchoose simply states that if any function can be an inverse of \(f \), then \(f^{-1} \) can be that inverse
- That the inverse function exists is guaranteed by the constraints on the function \(f \) (aka ifn)
We can apply this theorem to the function $f(x) = x^2$ to find $f^{-1}(x) = \sqrt{x}$.

Clearly, x^2 is 1-1 (over the non-negative reals).

But how do we know that x^2 is onto (over the non-negative reals)?

Possible Answer: The Intermediate Value Theorem (IVT)

This will work for all continuous functions, not just x^2.
The Intermediate Value Theorem
Applying the IVT

- We no longer require that f is onto
Applying the IVT

- We no longer require that f is onto
- We still require that f is 1-1
Applying the IVT

- We no longer require that f is onto
- We still require that f is 1-1
- Also, f must be continuous
Applying the IVT

- We no longer require that f is onto
- We still require that f is 1-1
- Also, f must be continuous
- The domain and range should be intervals
 - Aside: We chose to represent intervals explicitly, so that we can quantify over intervals easily (and prove such theorems as $x \in I \land z \in I \land x < y < z \Rightarrow y \in I$)
Applying the IVT

- We no longer require that f is onto
- We still require that f is 1-1
- Also, f must be continuous
- The domain and range should be intervals
 - Aside: We chose to represent intervals explicitly, so that we can quantify over intervals easily (and prove such theorems as $x \in I \land z \in I \land x < y < z \Rightarrow y \in I$)
- We need to find $a, b \in D$ such that $f(a) < z < f(b)$ or $f(a) > z > f(b)$
Applying the IVT

- We no longer require that \(f \) is onto
- We still require that \(f \) is 1-1
- Also, \(f \) must be continuous
- The domain and range should be intervals
 - Aside: We chose to represent intervals explicitly, so that we can quantify over intervals easily (and prove such theorems as \(x \in I \land z \in I \land x < y < z \Rightarrow y \in I \))
- We need to find \(a, b \in D \) such that \(f(a) < z < f(b) \) or \(f(a) > z > f(b) \)

Once we introduce such a function, we can use functional-instantiate to define the inverse
The Definv Macro

- Using the IVT to justify ontoness is a very powerful tool
- We can use it to define many different inverse functions
- The macro definv automates this process
 - Use defchoose to introduce the inverse function
 - Use functional-instantiate functional-instantiate to prove the inverse properties
Finally! \sqrt{x}

```
(defun square (x)
    (realfix (* x x)))
(defun square-interval (y)
    (if (< 1 y)
        (interval 1 y)
        (interval 0 1)))
(defun inv square
  :domain (interval 0 nil)
  :range (interval 0 nil)
  :inverse-interval square-interval)
```
Inverse Trigonometric Functions

- The same ideas can be applied to sine and cosine
- The hard part is showing that sine and cosine are 1-1 and continuous over the appropriate domains
Inverse Sine

(defun sine-interval (y)
 (declare (ignore y))
 (interval (− (/ (acl2-pi) 2)) (/ (acl2-pi) 2))))

(definv real-sine
 :f-inverse acl2-asin
 :domain (interval (− (/ (acl2-pi) 2)) (/ (acl2-pi) 2))
 :range (interval −1 1)
 :inverse-interval sine-interval)
Inverse Cosine

(defun cosine-interval (y)
 (declare (ignore y))
 (interval 0 (acl2-pi)))

(definv real-cosine
 :f-inverse acl2-acos
 :domain (interval 0 (acl2-pi))
 :range (interval −1 1)
 :inverse-interval cosine-interval)
Suppose $z \equiv a + bi$ is a non-zero complex number.

Then z can be written as $z = re^{i\theta}$ where

- $r = ||z|| = \sqrt{a^2 + b^2}$
- $\theta = \cos^{-1}(a/z)$ or $\theta = 2\pi - \cos^{-1}(a/z)$, depending on the sign of b.
Application: Polar Form

- Suppose \(z \equiv a + bi \) is a non-zero complex number
- Then \(z \) can be written as \(z = re^{i\theta} \) where
 - \(r = ||z|| = \sqrt{a^2 + b^2} \)
 - \(\theta = \cos^{-1}(a/z) \) or \(\theta = 2\pi - \cos^{-1}(a/z) \), depending on the sign of \(b \)

Note: The following properties are easy to prove in ACL2(r):
- \(r \) is a non-negative real
- \(r = 0 \) only when \(a + bi = 0 \)
- \(r = |a| \) when \(b = 0 \)
- \(\theta \in [0, 2\pi) \)
- if \(b = 0 \), \(\theta = 0 \) or \(\theta = \pi \), depending on the sign of \(a \)
The macro `definv` can be used to define ln y for $y \in [1, \infty)$.
Natural Logarithm

- The macro definv can be used to define $\ln y$ for $y \in [1, \infty)$
- This definition can be extended to $y \in (0, \infty)$ by using the property $e^{a-b} = e^a/e^b$, so $\ln(1/y) = -\ln(y)$ when $y \in (0, 1)$
Natural Logarithm

- The macro definv can be used to define $\ln y$ for $y \in [1, \infty)$
- This definition can be extended to $y \in (0, \infty)$ by using the property $e^{a-b} = e^a/e^b$, so $\ln(1/y) = -\ln(y)$ when $y \in (0, 1)$
- Finally, when $z \in \mathbb{C}$ and $z \neq 0$, we can write $z = re^{i\theta}$ so $\ln z = \ln r + i\theta$, where $\ln r$ is as defined previously, since $r \in (0, \infty)$
Natural Logarithm

- The macro definv can be used to define \(\ln y \) for \(y \in [1, \infty) \)
- This definition can be extended to \(y \in (0, \infty) \) by using the property \(e^{a-b} = \frac{e^a}{e^b} \), so \(\ln(1/y) = -\ln(y) \) when \(y \in (0, 1) \)
- Finally, when \(z \in \mathbb{C} \) and \(z \neq 0 \), we can write \(z = re^{i\theta} \) so \(\ln z = \ln r + i\theta \), where \(\ln r \) is as defined previously, since \(r \in (0, \infty) \)

Note: It is easy to prove in ACL2(r) that \(\ln \) satisfies the usual properties, e.g.,
- \(\ln(xy) = \ln x + \ln y \)
- \(\ln \frac{1}{x} = -\ln x \)
General Exponentials

- When a and x are numbers and $a \neq 0$, we can define
 \[a^x \equiv e^{x \ln a} \]

Again, it is easy to prove that a^x satisfies the usual properties, e.g.,

- $a^{x+y} = a^x a^y$
- $a^{-x} = \frac{1}{a^x}$

It is also easy to show that a^i is equal to the ACL2 built-in function `(expt a i)` when i is an integer
√x Again

From the basic properties of a^x, we can show that

- $x^{1/2} \cdot x^{1/2} = x^{1} = x$
- So when $x \in [0, \infty)$, $x^{1/2} = \sqrt{x}$

The last property follows from the uniqueness of inverse functions
Current Work

- For technical reasons (having to do with restrictions on encapsulate, non-classical terms, and free variables), we can only invert functions of a single variable.
- However, if we use a classical definition of continuity, we can avoid this restriction.
- We are currently working on an ACL2 book that introduces continuity in this way.
- In anticipation of that proof, we have some early results with inverses of multi-variable functions (when all but one variable are held fixed).
General Logarithms

- The function a^x can be inverted to yield $\log_a x$
- Since a^x is a function of two variables (a and x), this requires that we specify which variable we are inverting and which is held fixed
General Roots

- The function x^n can be inverted to yield $\sqrt[n]{x}$
- This is the same as inverting a^x, but holding the other variable fixed
- I.e., when we write x^n, we think of n as fixed and x as the free variable
Yet Another \sqrt{x}

- Of course, $\sqrt[2]{x} = \sqrt{x}$
- This follows (again) from the uniqueness of inverse functions
Conclusion

- It is often useful to define a function as the inverse of another
 - E.g., \sqrt{x}, $\ln x$, $\sin^{-1}(x)$
- ACL2(r) now supports such implicit definitions for many functions
- This takes advantage of ACL2’s support for quantifiers, constrained functions, and macros
- Among other things, this mechanism provides us with several new ways to define \sqrt{x} in ACL2(r)