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Abstract1

The Jakarta Tool Suite (JTS) aims to reduce substantially
the cost of generator development by providing domain-
independent tools for creating domain-specific languages
and component-based generators called GenVoca genera-
tors. JTS is a set of precompiler-compiler tools for extend-
ing industrial programming languages (e.g., Java) with
domain-specific constructs. JTS is itself a GenVoca gener-
ator, where precompilers for JTS-extended languages are
constructed from components.

1  Introduction

Software generators are among the most effective
methods of achieving software reuse. Generators reduce
maintenance costs, produce more evolvable software, and
provide significant increases in software productivity
[Deu97, Die97, Kie96]. From a technical standpoint, gen-
erators are compilers for domain-specific languages
(DSLs) or general-purpose programming languages with
domain-specific extensions [Cor90, Sma97]. Such lan-
guages express fundamental abstractions of a domain
using high-level programming constructs. The P2 data
structure generator is an example: P2 extended the C lan-
guage with cursor and container data types [Bat93-94].
This allowed P2 users to program in data-structure-spe-
cific abstractions, which resulted in substantial improve-
ments in productivity, program clarity, and performance. 

Implementing a domain-specific language as an
extension of an existing programming language (called a
host language) has several advantages. First, we can lever-
age off existing functionality and not have to re-implement

common language constructs. Second, the extensions
themselves only need to be transformed to the point where
they are expressible in the host language. Third, existing
infrastructure (e.g., development and debugging environ-
ments) can be reused. All these factors result into lower
implementation costs for language developers and
decreased transition and education costs for users.

Nevertheless, adding domain-specific constructs to a
general programming language presents severe technical
difficulties. Programming languages are generally not
designed to be extensible, and the ones that are (e.g., Lisp
and a variety of other functional languages) have not
gained wide acceptance. Addressing the needs of the
industry (where C, C++, and Java prevail) is paramount
for promulgating generator technology. Our interest in
DSLs comes from our work in the design and construction
of component-based generators, called GenVoca genera-
tors [Bat92-97]. Target applications are specified as com-
positions of reusable components; GenVoca generators
convert these compositions into source code. From our
experience, there is a serious lack of tools to simplify the
construction of these generators. We estimate that over
60% of the effort in building a GenVoca generator
involves the creation of a largely domain-independent pro-
gramming infrastructure (e.g., component specification
languages, component composition languages, etc.).

The Jakarta Tool Suite (JTS) is aimed at providing
this common infrastructure: it is a set of domain-indepen-
dent tools for extending industrial programming languages
with domain-specific constructs. JTS is designed specifi-
cally for creating DSLs and GenVoca generators. JTS con-
sists of two tools: Jak and Bali. The Jak language is an
extensible superset of Java that supports meta-program-
ming (i.e., features that allow Java programs to write other
Java programs). Bali is a tool for composing grammars.
JTS is itself a GenVoca generator. Languages and lan-
guage extensions are encapsulated as reusable compo-
nents. A JTS component consists of a Bali grammar file
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(which defines the syntax of a language or extension) and
a set of Jak files (that define the semantics of the extension
as syntactic transformations). Different combinations of
these components yield different language variants. Bali
and Jak work cooperatively to automatically convert a
composition of components that defines a language variant
into a preprocessor for that variant. 

The implementation of JTS is bootstrapped: JTS is
written in Jak and Jak is also the first customized language
that has been produced by JTS. (That is, new extensions
are written in Jak (Java); the Jak preprocessor is then
extended by this new component so that it can be used to
write other extensions, and so on). In the following sec-
tions, we review the current features of Jak and Bali and
explain the strategy behind their implementation. After-
wards, we explain the novelty of JTS and differentiate JTS
from other language specification and construction tools.

2  The Jak Language

Jak is an open, extensible superset of Java. It extends
Java with support for meta-programming (i.e., features
that enable Java programs to write other Java programs).
In the following sections, we explain two key features of
Jak —namely, AST constructors and Generation Scoping
— that distinguish it from Java. Both have been imple-
mented as JTS components and are examples of the kinds
of language extensions that JTS is capable of expressing.

2.1  AST Constructors 

JTS internally represents programs and code frag-
ments as two kinds of trees. A surface syntax tree (SST) is
a parse tree of a code fragment (as defined by some gram-
mar). An abstract syntax tree (AST) is a semantically-
checked SST that has been annotated with type declara-
tions and references to the symbol table. An SST is con-
verted into an AST by invoking the typecheck() method
on the root of the tree. In this section, we present the (sur-
face syntax) tree constructors and composition methods in
Jak. 

A tree constructor is a code-template operator, analo-
gous to the Lisp quote construct. It converts a code frag-
ment into an SST; the value of a constructor is a pointer to
the root. The expression constructor exp{ … }exp, for
example, encloses a syntactically correct Jak expression.
When the constructor is evaluated, an SST for that expres-
sion is created, and the root of that tree is the result. Simi-
larly, stm{ … }stm is the corresponding constructor for
Jak statements. SSTs can be unparsed (into text) using the
print() method:

AST_Exp x = exp{ 7 + z*8 }exp;
AST_Stm s = stm{ foo(3); 

 if (y<4) return r; }stm;

x.print( ); // outputs “7 + z*8”
s.print( ); // outputs “foo(3); 

//    if (y<4) return r;”

There are presently 17 different tree constructors in
Jak, the most commonly used are listed in Table 1.

Code fragments are composed using escapes, the
counterpart to the Lisp comma (unquote) construct. The
example below shows a statement constructor with an
escape $stm(body). When the constructor is evaluated,
the SST of body is substituted in the position at which its
escape clause appears.

AST_Stm body = stm{ if(i>40) foo(i); }stm;
AST_Stm loop = stm{ for(i=1; i<10; i++) {

$stm(body); } }stm;

loop.print();
// outputs “for (i=1; i<10;i++)
// { if (i > 40) foo(i); }”

Unlike Lisp and Scheme which have only a single
constructor operator (e.g., backquote/comma), multiple
constructors in syntactically rich languages are common
(e.g., [Wei93], [Chi96]). The main reason has to do with
the ease of parsing code fragments. We avoided the com-
plications described in [Wei93] by making explicit the
type of SST that is returned by a tree constructor. The
result is a slightly more complicated but robust system. 

Constructor Escape Class AST Representation Of

exp{ … }exp $exp( … ) AST_Exp expression

stm{ … }stm $stm( … ) AST_Stmt list of statements

mth{ … }mth $mth( … ) AST_FieldDecl list of data member and method declarations

cls{ … }cls $cls( … ) AST_Class list of class and interface declarations

id{ … }id $id( … ) AST_QualifiedName qualified name

Table 1: AST Constructors and Escapes



Although the tree constructors of Table 1 are pres-
ently specific to Jak, this will not always be the case. Tree
constructors can be added for other languages, such as
CORBA IDL, embedded SQL, (subsets of) C and C++, so
that IDL code, embedded SQL code, etc. can be generated. 

2.2  Generation Scoping

Tree constructors and escapes are not sufficient for
code generators (meta-programs); there must also be a
mechanism to solve the variable binding or inadvertent
capture problem [Koh86], which arises when indepen-
dently-written code fragments are composed. Consider the
following parameterized macro that defines a variable
temp and initializes it to be twice the value of parameter
x:

macro(x) { int temp = 2*x; ... }

Now consider application code that defines a variable,
also called temp, and that invokes macro(temp):

int temp = 5; 
macro(temp);

The code that is produced on expansion is incorrect: 

int temp = 5; 
{ int temp = 2*temp; ... }  // wrong

The inner temp variable was to be initialized using
the outer temp variable; instead the uninitialized inner
temp variable is used to initialize itself! The problem is
that the temp identifiers are not sufficient to disambiguate
the variables that they reference.

Hygienic, lexically-scoped macros (HLSM) were
designed to solve this problem. HLSM relies on a “paint-
ing” algorithm that ensures identifiers are bound to the
correct variables [Ree91]. Often, HLSM is implemented
as a preprocessing step that mangles variable names to
ensure their uniqueness:

 int temp_0 = 5; 
{ int temp_1 = 2*temp_0; ... }  // right

HLSM’s applicability is limited to macros (pattern-
based source code transformations). Since JTS supports
programmatic (as opposed to macro or pattern-based) tree
construction, we devised Generation Scoping (GS), an
adaptation and generalization of HLSM that is suited for
JTS. We originally developed GS for Microsoft’s Inten-
tional Programming (IP) system [Sim95], and used it to
develop the DiSTiL generator, an IP-version of the P2
generator [Sma96-97]. The IP implementation of GS used
handles to symbol table entries to represent variable refer-
ences (see also [Tah97]). Since JTS produces domain-spe-

cific preprocessors, we chose an alternative
implementation that mangles identifiers. In the following
sections, we review its features.

2.2.1  GS Environments

A GS environment is a list of identifiers (i.e., class or
interface names, data member or method names, etc.) that
are local to a set of related code fragments. To ensure there
is no inadvertent capture, local identifiers are mangled.
Associated with each environment instance is a unique
mangle number, an integer that is attached to an identifier
to make it unique. For example, if an environment’s man-
gle number is 005 and identifier i is to be mangled, identi-
fier i_005 is produced.

Environments are associated with classes; environ-
ment instances are associated with objects. Class foo
below defines an environment with identifiers i and j.
Each foo instance creates an environment containing
identifiers i and j. Different foo instances represent dis-
tinct environment instances. Whenever a tree constructor
is evaluated by a foo object, it does so in the context of
that object’s environment. Thus, if x and y are distinct foo
instances, and x.bar() and y.bar() return code frag-
ments, the returned fragments will be isomorphic in struc-
ture, but will have different names for i and j. 

class foo {
environment i, j; // ids to mangle
AST_Exp bar() { return exp{ i+j }exp; }

}

foo x = new foo();// assume mangle# is 000
foo y = new foo();// assume mangle# is 001

x.bar().print(); // yields “i_000+j_000”
y.bar().print(); // yields “i_001+j_001”

With the above capabilities, the variable binding
problem presented earlier is easily avoided. One defines a
class (macroExample) with an environment that con-
tains the temp identifier. A method of this class (macro-
Code) uses a tree constructor to manufacture the body of
the “macro”. The temp variable that is defined internally
to that tree is given a unique name via mangling, so inad-
vertent capture can not arise.

class macroExample {
environment temp;

AST_Stmt macroCode(AST_QualifiedName n)
{ return stm{ int temp = 2*$id(n); 

 ... }stm;
 }

}



Since identifiers in an environment need to be explic-
itly designated, the JTS version of generation scoping is
not fully automatic.2 Associating environments with
objects does, however, represent an improvement com-
pared to the explicit creation of unique identifiers (as with
Lisp’s gensym [Gra96]) and the manual substitution of
mangled names (via explicit escapes) into generated code
fragments. Identifiers are now encapsulated and can be
treated as a group. Additionally, these groups can be
arranged in complex configurations, as we will see next.

2.2.2  GS Environment Hierarchies

Environment instances can be organized hierarchi-
cally to emulate scopes in the name space of generated
programs. As expected, identifiers of parent environments
are visible in child environments and identifiers that are
declared in a child environment hide identifiers in parent
environments with the same name. Parent linkages among
environments are made at meta-program run-time using
the environment parent declaration. The example
below shows that instances of class baz make their envi-
ronments children of environments of foo objects. Note
that a tree constructor for the expression “i + k” produces
“i_000 + k_002” because identifier i is mangled by the
foo environment while k is mangled by the baz environ-
ment:

class baz {
environment k;
baz( foo z ) { environment parent z; }

 
AST_Exp biff() {return exp{ i+k }exp; }

}

baz r = new baz(x); // x has mangle # 000
// r has mangle # 002

r.biff().print(); // yields “i_000+k_002”

More generally, generation scoping allows environ-
ment instances to be arranged in directed acyclic graphs.
This permits the visibility of identifiers from multiple par-
ent environments, which is indispensable when building
GenVoca generators. Detailed examples of generation
scoping are presented in [Sma96].

2.3  Tree Traversals

Jak provides a Java package of classes for searching
and editing trees using objects of type Ast_Cursor.
Methods that can be performed on cursors are listed in
Table 2.3 In the code fragment below, a cursor c is used to
examine every node of a tree and subtrees that define
interface declarations are deleted.

Ast_Cursor c = new Ast_Cursor(); 
Ast_Node Root = // root of AST to search

for(c.First(root); c.More(); c.PlusPlus())
if (c.node instanceOf Ast_Interface) 

c.Delete(); 

2.4  Jak Extensibility

Representing programs internally as parse trees offers
a powerful form of language extensibility. This principle
has been widely explored in the Lisp community and vari-
ous syntax tree formats are commonly used in transforma-
tions systems (e.g., Microsoft’s IP [Sim95], Open C++
[Chi96]). New kinds of tree nodes can have domain-spe-

2.   The IP version of GS automatically enters identifiers into environ-
ments as tree constructors are evaluated. The JTS version  reflects a
design that was used in the P2 generator, where manual declaration of
identifiers was used.

3.   Tree editing methods guarantee syntactic correctness; however, they
cannot guarantee semantic correctness.

Cursor Operation Meaning
First(r) position cursor on root (r) of tree
More() true if more nodes to examine in tree
PlusPlus() advance cursor to next node of tree
Sibling() skip the search of subtrees of current node
Parent() reposition to parent of current subtree
Delete() delete subtree rooted at current node
Replace(x) replace the current node with x
AddAfter(x) add tree x after the current node
AddBefore(x) add tree x before the current node
print() unparse the tree rooted at the current node

Table 2: Operations on Tree Cursors



cific semantics and transform, at reduction time, to a host
language implementation (or, more accurately, a tree that
defines this implementation). This approach is called
intention-based programming4 [Sim95]. For example, the
P2 language extended the C language with cursor and con-
tainer data types and operators. Tree nodes that repre-
sented these types and operations were intentions. At
reduction time, a P2 program was converted into a pure C
program by replacing cursor and container nodes with
trees that defined their concrete C implementations.

JTS follows this approach (see Figure 1). A domain-
specific program is converted into an AST by a lexical
analyzer (lexer) and parser. The AST is then manipulated
into another tree by a reduction program, and the resulting
tree is unparsed into a pure host-language program (cur-
rently a Java program). Note that the reduction program
itself is written in Jak, because Jak is specifically designed
for tree creation and manipulation.

2.5  Perspective

Jak is an integration of a popular programming lan-
guage (Java), with meta-programming concepts (tree con-
structors and generation scoping), and intention-based
programming. The structure of Jak provides the basis for
an inherently open precompiler. In the following sections,
we answer the following questions:
• How are lexers and parsers produced by JTS?
• How is the reduction program produced by JTS?
• How is GenVoca related to JTS?

3  Bali: A GenVoca Generator of DSL 
Precompilers

Bali is the second tool of JTS. There are two aspects
to Bali. First, it is a tool for writing precompilers for
domain-specific languages. In this respect, Bali looks sim-
ilar to other DSL-specification tools: the syntax of a DSL
or language extension is specified using an annotated,

extended BNF grammar. Second, Bali is a GenVoca gener-
ator. DSLs and their precompilers are specified as a com-
position of components; evolution of a DSL (e.g., adding
and removing features) is accomplished by adding and
removing components.

To show that Bali is a GenVoca generator, we will
examine one of its most important applications: Jak itself.
Jak is a preprocessor implemented as an extended version
of Java using Bali. The reasoning behind this design deci-
sion is simple. Jak is really not a single language, but a
family of related languages. There will be variants of Jak
with/without generation scoping, variants with/without
tree constructors, variants with/without CORBA IDL
extensions, and so on. This a classical example of the
library scalability problem [Bat93, Big94]: there are n fea-
tures and often more than n! valid combinations (because
composition order matters and feature replication is possi-
ble [Bat92]). It isn’t possible or practical to build all com-
binations by hand. Instead, the specific instances that are
needed can be generated. The JTS library presently
includes components for the Java language, tree construc-
tors, generation scoping, and domain-specific generators
(e.g., P3 [Bat98]). Compositions of these components
define a particular variant of Jak.

3.1  Bali as a DSL Compiler Tool

Bali transforms a Bali grammar into a preprocessor. A
Bali grammar is BNF with regular-expression repetitions.
For example, two Bali productions are shown below: one
defines StatementList as a sequence of one or more
Statements, while ArgumentList is defined as a
sequence of one or more Arguments separated by com-
mas. The use of repetitions simplifies grammar specifica-
tions [Wil93, Rea90a] and allows an efficient internal
representation as a list of trees.

StatementList : ( Statement )+ ;
ArgumentList : Argument ( ‘,’ Argument )*;

Bali productions are annotated by the class of objects
that is to be instantiated when the production is recog-
nized. For example, consider the Bali specification of the
Jak SelectStmt rule:

4.   Although the term is new, the idea is quite old. Lisp macros were
powerful enough to express useful extensions to the language. They have
been routinely used to encode new constructs in terms of core language
constructs. We prefer, however, to use the term “macro” exclusively for
pattern-based program transformations.
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SelectStmt 
: IF ‘(’ Expression ‘)’ Statement ::IfStm
| SWITCH ‘(’ Expression ‘)’ Block ::SwStm
;

When a parser recognizes an “if” statement (i.e., an
IF token, followed by ‘(‘, Expression, ‘)’, and State-
ment), an object of class IfStm is created. Similarly,
when the pattern defining a “switch” statement (a SWITCH
token followed by ‘(‘, Expression, ‘)’, and Block) is
recognized, an object of class SwStm is created. As a pro-
gram is parsed, the parser instantiates the classes that
annotate productions, and links these objects together to
produce the SST of that program.

For each production, Bali infers (among other things)
the constructors for tree nodes. Each parameter of a con-
structor corresponds to a token or nonterminal of a pat-
tern.5 For example, the constructor of the IfStm class has
the following signature:

IfStm( Token iftok, Token lp,
Expression exp, Token rp, Statement stm )

Methods for editing and unparsing nodes are addition-
ally generated.

Bali also deduces an inheritance hierarchy of tree
node classes. Consider Figure 2a which shows rules
Rule1 and Rule2. When an instance of Rule1 is parsed,
it may be an instance of pattern1 (an object of class C1),
or an instance of Rule2 (an object of class Rule2). Simi-
larly, an instance of Rule2 is either an instance of
pattern2 (an object of C2) or an instance of pattern3
(an object of C3). From this information, the inheritance
hierarchy of Figure 2b is constructed: classes C1 and
Rule2 are subclasses of Rule1, and C2 and C3 are sub-
classes of Rule2.

A Bali grammar specification is a streamlined docu-
ment. It is a list of the lexical patterns that define the
tokens of the grammar followed by a list of annotated pro-

ductions that define the grammar itself. A Bali grammar
for an elementary integer calculator is shown in Figure 3.
To give readers an idea of the size of other grammars, the
Jak grammar uses 160 tokens, 270 productions, defines
290 classes in 750 lines. The “meta” grammar for Bali
grammars uses 20 tokens, 20 productions, defines 37
classes in 100 lines.

Bali generates the following from a grammar specifi-
cation:
• A lexical analyzer. We are using Jlex, a version of

lex written in Java [Lof96].
• A parser. We are using JavaCup, a version of yacc

written in Java [Hud96].
• Inheritance hierarchies of tree node classes, with con-

structor, editing, and unparsing methods. 
There are obviously many methods that cannot be

generated by Bali, including type checking, reduction, and
optimization methods. Such methods are node-specific;
we hand-code these methods and encapsulate them as sub-
classes of Bali-generated classes. (The reason for this will
become clear in Section 3.2). Figure 4 shows the inherit-
ance hierarchy of a Bali-generated precompiler. AstNode
is the root of all node hierarchies; it is a hand-written class

5.   The tokens need not be saved. However, Bali-produced precompilers
presently save all white space — including comments — with tokens. In
this way, JTS-produced tools that transform domain-specific programs
will retain embedded comments. This is useful when debugging pro-
grams that have a mixture of generated and hand-written code, and is a
necessary feature if transformed programs will subsequently be main-
tained by hand [Tok95].

Figure 2: Grammar Inheritance Hierarchies

Rule1 : pattern1 :: C1
| Rule2
; 

Rule2 : pattern2 :: C2
| pattern3 :: C3
; 

Rule1

C1 Rule2

C2 C3

(b)(a)

// Lexeme definitions

"print" PRINT
"+" PLUS
"-" MINUS
"(" LPAREN
")" RPAREN
"[0-9]*" INTEGER

%% // production definitions
// start rule is Action

Action : PRINT Expr :: Print
;

Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr :: Minus
| MINUS Expr :: UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER :: Integer
;

Figure  3: A Bali Grammar for an Integer Calculator



in the JTS kernel package. Its immediate subclasses are
the hierarchy of subclasses generated from a Bali gram-
mar. The terminal classes of this hierarchy are hand-coded
and define the type checking, reduction, and optimization
methods for individual nodes. It is these terminal classes
that are instantiated during the compilation of a domain-
specific program.

3.2  Bali as a GenVoca Generator

GenVoca is a scalable model of component-based
software construction [Bat92-97b]. The central idea is that
software domains are characterized by a finite set of fun-
damental abstractions. By standardizing the programming
interfaces to these abstractions, components can encapsu-
late reusable algorithms of a domain by exporting and
importing standardized interfaces. A target system is spec-
ified by a composition of components called a type equa-
tion. Elementary compositions of components can be
visualized as a stack of layers. Figure 5a depicts a system
S where component Z sits atop Y which sits atop X. Its type
equation is S = Z[Y[X]].

GenVoca generators have been created for widely dis-
parate domains. Interestingly, most have been written in

the C language, and only two have been written in OO lan-
guages [Sin93-96, Van96]. A problem that we have faced
for years but only very recently have been able to answer
is: What is the relationship between GenVoca components
and OO classes? The key lies in the relationship of layer-
ing and inheritance.

A common phenomenon in layered systems is opera-
tion propagation [Bat97b]: operations of lower layers are
exported through the top of a system. In Figure 5a, sup-
pose operation g() of layer X is to be exported by system
S. This means that g() must be propagated through layers
Y and Z (or in general, whatever layers are stacked above
X). When an operation of S is called (such as g()), the cor-
responding operation of layer Z is invoked, which might
call methods of layer Y, which further might call methods
of X.

Now, suppose every component encapsulates a single
class. To account for operation propagation and the pro-
cessing of operations in layered systems, the subclassing
hierarchy of Figure 6b comes to mind. Operation g() of
class X is propagated to classes Y and Z by inheritance.
Invoking an operation of S (such as g()) invokes the cor-
responding operation of class Z, which might call methods

Figure 4: A Bali-Generated Class Hierarchy
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Figure 5: Layering and Subclassing Hierarchies
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of class Y, which might further call methods of X. From
this perspective, inheritance hierarchies are inverted layer
hierarchies.6 

The relationship of GenVoca components and OO
classes can now be seen. GenVoca components encapsu-
late suites of interrelated classes. Figure 6a shows a (ter-
minal) shaded layer that encapsulates three classes. Figure
6b shows a striped layer that also encapsulates three
classes; when it is stacked on top of the shaded layer, one
class becomes a subclass of the left-most shaded class,
while the others begin new inheritance hierarchies. Figure
6c shows a white layer to encapsulate four classes. When
stacked upon the striped layer, each of these classes
becomes a subclass of an existing class. Lastly, Figure 6d
shows the effect of adding a black layer, which encapsu-
lates two classes. The application (which is defined by the
resulting layer stack) instantiates the most refined classes
(i.e., the terminal classes) of these hierarchies. These
classes are circled in Figure 6d; the non-terminal classes
represent intermediate derivations of the terminal classes.
Thus, when GenVoca components are composed, a forest
of inheritance hierarchies is created. Adding a new com-
ponent (stacking a new layer) causes the forest to get pro-
gressively broader and deeper [Sma98].

The connection of these ideas to Bali and the Jak lan-
guage is straightforward. A JTS component has two parts:
The first is a Bali grammar file (which contains the lexical
tokens and grammar rules that define the syntax of the
host language or language extension). The second is a
GenVoca component: a collection of multiple hand-coded
classes that encapsulate the reduction, etc. methods for
each tree node defined in that grammar file. These classes
define the semantics of an extension. There are JTS com-
ponents for Java (Java), SST constructors and explicit
escapes (SST), generation scoping (GScope), and data

structures (P3 [Bat98]), among others.7 The Jak language
and precompiler is defined by a composition of these com-
ponents, i.e., the type equation Jak =

P3[GScope[SST[Java]]].
The syntax of a composition is defined by taking the

union of the sets of production rules in each JTS compo-
nent grammar. The semantics of a composition is defined
by composing the corresponding GenVoca components, as
described previously. Figure 7 depicts the class hierarchy
of the Jak precompiler. AstNode belongs to the JTS ker-
nel, and is the root of all inheritance hierarchies that Bali
generates. Using the composition grammar file (the union
of the grammar files for the Java, SST, GScope, and P3
components), Bali generates a hierarchy of classes that
contain tree node constructors, unparsing, and editing
methods. Each JTS component then grafts onto this hierar-
chy its hand-coded classes. These define the reduction,
optimization, and type-checking methods of tree nodes by
refining existing classes, just as in Figures 4 and 6. The
terminal classes of this hierarchy are those that are instan-
tiated by the generated preprocessor.

It is worth noting that Figure 7 is not drawn to scale.
Jak consists of over 300 classes. The average number of
classes that a language-extension component adds to an
existing hierarchy ranges from 10 to 40. In terms of the
number of classes a GenVoca component encapsulates,
Bali components are clearly the largest we’ve ever
encountered. However the simplicity and economy of
specifying Jak using type equations is enormous: to build
the Jak precompiler, all that users have to provide to Bali
is the equation Jak = P3[GScope[SST[Java]]], and
Bali does the rest. To compose all these classes by hand
(as would be required by Java) would be very slow,
extremely tedious, and error prone. This is (another) good
example why programming with reusable components
(and hence at higher-levels of abstraction) offers big pro-
ductivity gains. Additionally, the scalability advantages of
GenVoca can easily be obtained: when new extension6.   Note that the converse is not true; there are layer hierarchies that are

not inheritance hierarchies. Inheritance hierarchies arise whenever layer
hierarchies refine a single abstraction (e.g., classes X, Y, and Z are differ-
ent implementations of the same concept). When layers implement dif-
ferent abstractions, class composition relies solely on parameterization
and does not involve inheritance.

7.   Presently, Bali supports a single realm of components (J) that define
and extend the Java language. Using the standard notation for realm defi-
nitions, J = {Java, SST[J], GScope[J], P3[J],… }.

Bali layer stack inheritance hierarchies

Figure 7: The Jak Inheritance Hierarchy
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mechanisms or new base languages are specified as com-
ponents, a subset of them can be selected and Bali will
automatically compose a preprocessor for the desired lan-
guage variant. 

3.3  Perspective

The primary goal of JTS is to provide tool support for
building GenVoca generators. Initially, it was unclear to us
how language extensions could be encapsulated or com-
posed; we feared that we would invent an ad hoc technol-
ogy for defining and specifying components that was
foreign to GenVoca. (This would then put a significant
burden upon us to demonstrate the generality of this new
model and its connection with other work, let alone how to
address the odd situation of using a different component
model to implement a more general model). Thus, realiz-
ing the connection between layering and inheritance hier-
archies was a watershed event. It told us that JTS (or more
specifically the central tool of JTS — Bali) was yet
another example of GenVoca. Our focus immediately
shifted away from an ad hoc implementation of Bali to one
that would exhibit a principled and clean design.

4  Related Work

Meta-programming and syntactic transformations
have been areas of active research for several decades.
Since the volume of related work is enormous we will be
selective in our presentation and only discuss approaches
that are particularly close to JTS.

As should be evident from the previous sections, JTS
is only concerned with the front-end of what is tradition-
ally termed a transformation system (e.g., Draco [Nei89],
Refine [Rea90b]). JTS mainly deals with parsing and the
mechanics of syntactic transformation. Any sophistication
of the transformation process (e.g., algebraic rewrites) will
have to be provided by JTS client programs (e.g., the P3
generator [Bat98]).

Part of the novelty of JTS is that basic ideas of meta-
programming and precompiler-compiler tools have trans-
ported to a "modern" and syntax-rich language platform
(i.e., Java). The intricacies of our task are demonstrated,
for instance, by the large variety of AST constructors dis-
cussed in Section 2.1 (compared to a single "quoting"
operator for languages like Lisp).

Another contribution of JTS is in the way it achieves
language extensibility: it does so through the prescripts of
an architectural model (GenVoca): language extensions
are encapsulated as components and languages and their
preprocessors are assembled from these components. 

It is instructive to compare this approach to that of
Dialect [Rea90a]. Dialect is the front-end of the Refine

transformation system and is in many ways analogous to
the part of Bali described in Section 3.1. One of the big-
gest differences is in the way separate language extensions
can be composed. By analogy to object-oriented program-
ming, Dialect introduces the notion of grammar inherit-
ance: a grammar (e.g., one defining a language extension)
could "inherit" from another grammar (e.g., a base lan-
guage). The resulting grammar is defined by taking the
union of all productions contained in the two grammars —
just like in JTS. An important difference, however, is that,
unlike in Dialect, JTS grammars do not have to specify the
grammar they are inheriting from. This is implicitly speci-
fied when grammar components are composed to form an
entire language. The benefit is that a single JTS grammar
component can be used to extend multiple base languages.
Carrying the object-oriented programming analogy fur-
ther, we could say that, instead of grammar inheritance,
JTS allows grammar mixins (in the sense of OO mixin
classes [Bra90]).

An interesting technical comment on comparing JTS
with Dialect has to do with the way grammar rules are
associated with inheritance between classes of AST nodes
(see Section 3.1). Recall that JTS infers inheritance rela-
tionships from grammar rules. Conversely, Dialect
requires that inheritance relationships be explicitly speci-
fied but infers grammar rules from them. The two
approaches are semantically equivalent but we preferred
having an explicit and compact representation of all gram-
mar rules, as opposed to a mixed representation.

It is interesting to examine the relationship of JTS to
meta-object protocols (MOPs). The fundamental premise
of a MOP is that class-specific extensions are themselves
object-oriented in nature. Thus, they can be encapsulated
in another class, called a meta-class. If a certain class A
has meta-class MA, A is itself viewed as an object — an
instance of MA. Methods of MA define extensions for all
objects of A. For instance, methods of MA may define
extension code for every construction of objects of class A,
any assignment to such objects, or any method invocation
on them. 

Most MOPs are compositional: meta-classes contain
code to be executed at a specified moment. There are,
however MOPs where extensions are transformational:
meta-classes contain code that transforms the source code
of a class definition or use. The transformational MOP
closest to JTS is Open C++ ([Chi95], [Chi96]). Open C++
encapsulates transformational extensions to C++ (i.e., syn-
tax tree transforms, just like JTS) as meta-classes. Like
JTS, Open C++ is implemented as a compiler that takes
meta-class specifications as input and produces a prepro-
cessor and compiler (packaged together) for extended C++
as output. Unlike JTS, however, no arbitrary syntactic
extensions are allowed (the changes to the language syntax



are of one of a few pre-determined forms). The reason has
to do with the complicated syntax of C++ and the diffi-
culty of adding more syntax rules to it. The complexity of
arbitrary syntactic extensions in JTS is what led us to rep-
resent them as GenVoca components. Compared with
Open C++, the elements of JTS have direct counterparts:
Jak corresponds to the meta-programming part (language
for transformational extensions), while Bali is the counter-
part of the meta-object protocol. Now we can see the role
of JTS extensions as GenVoca components. Just like Open
C++ (or any MOP) represents class-specific extensions as
(meta-)classes, JTS represents arbitrary syntactic exten-
sions as GenVoca components (encapsulated suites of
classes). The main purpose of JTS has been to facilitate
adding extensions for building GenVoca components in
Java. By making the extension mechanism structure simi-
lar to that of the intended applications, the JTS design
exhibits the same kind of simplicity and self-containment
as meta-object protocols for object-oriented languages.

Microsoft’s Intentional Programming (IP) system is a
visionary project that has similar goals to JTS [Sim95]. IP
inherently supports language extensibility through syntac-
tic rewrites. It is not, however, concerned with surface lan-
guage syntax but operates directly on an abstract syntax
tree representation of a program. Additionally, IP transfor-
mations have no inherent knowledge of the semantics of
any particular programming language. The purpose of IP
is to become a powerful enough transformation system so
that entire languages can be expressed as collections of
cooperating transformations. We considered using IP but
did not do so for reasons that had to do both with its cur-
rent state (under development) and with our funding
requirement for public availability of our code. Addition-
ally, we were interested in experimenting with an extensi-
ble language system implemented around ideas from
object-oriented and component-based programming.

5  Conclusions

Future software development tools will feature the
generation and transformation of OO programs. Such tools
will automate certain aspects of software design methodol-
ogies that aim at reuse, namely automating OO design pat-
terns and generating domain-specific software from
declarative specifications. The Jakarta Tool Suite (JTS) is
designed with these applications in mind. JTS is a careful
integration of three different technologies — meta-pro-
gramming, precompiler-compiler tools, and component-
based generators. JTS is also aimed at a growing commu-
nity of software developers — those that use Java — who
will benefit most from such tools.

The novelties of JTS are its integration of technolo-
gies and that JTS is an example of the very software

design paradigm it was intended to support — GenVoca.
With appropriate language support, it is substantially eas-
ier to write generators. And with clearly written and docu-
mented examples, it should be much easier to transition
component-based generator technology from academic
environments to industry.

In this paper, we have reviewed the two tools that
comprise JTS: Jak and Bali. Jak is a JTS-produced lan-
guage that extends Java with meta-programming features
(e.g., tree constructors, generation scoping). Bali is the
generator that produced Jak through component assem-
blies. The first GenVoca generator that we have built using
JTS is P3 [Bat98], a Jak-based version of the P2 data
structures generator. P3 was developed in a fraction of the
time that was needed for P2. Moreover, the source code of
P3 is substantially more elegant, readable, and maintain-
able because JTS provides the appropriate language con-
structs for building such generators. Further work on JTS
will extend Jak to have language support for component
definitions and compositions.

JTS runs on Unix (Solaris), and Windows (95 and
NT) platforms. A beta-release became available in Febru-
ary 1998. For current information, release announcements,
and the latest technical reports, please check our web page
http://www.cs.utexas.edu/users/schwartz.
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