
1

MDELite Manual
Don Batory

batory@cs.utexas.edu
May 2017

F

1 INTRODUCTION

MDELite is an alternative to Eclipse for teaching and ex-
ploring concepts in Model Driven Engineering (MDE). Rather
than:

• Storing models and metamodels as obscure XML
documents, MDELite encodes them as readable
relational databases expressed as elementary facts;

• Using Object Constraint Language (OCL) to express
constraints, MDELite uses Java Streams;

• Writing model-to-model (M2M) transformations in the
Atlas Transformation Language (ATL), an outgrowth of
OCL, MDELite relies on Java; and

• Using yet another language/tool for model-2-text
(M2T) translations, MDELite again relies on Java.

Here is an overview of this manual:

• Installation of MDELite
• MDELite-Relational Schemas
• MDELite-Relational Databases
• MDELite Tools

Note: Even with my best effort, I know there are bugs
in MDELite. Please let me know when you find them
dsb.

2 INSTALLATION

You can download MDELite from:

www.cs.utexas.edu/users/schwartz/MDELite/index.html

The MDELite directory and executable contains:

• Docs – documentation, including this manual,
• lib – a library of jar files needed by MDELite,
• libpl – a library of predefined schemas, and
• MDELite.jar – the MDELite jar.

To install MDELite, just place MDELite.jar on your
CLASSPATH. In Windows, the incantation to do so is:

> set CLASSPATH=%CLASSPATH%;C:\xfer\dist\MDELite.jar

where C:\xfer\dist is the absolute path to the di-
rectory containing MDELite.jar. To check to see if
you did the above tasks correctly, run the program
MDL.VerifyInstall:

C>java MDL.VerifyInstall
Violet should be running now.
If not, something is wrong.
Otherwise, please close Violet,
and MDELite Ready to Use!

3 MDELite-RELATIONAL SCHEMAS

In MDE-speak, a model conforms to a metamodel. In
MDELite-speak, a metamodel is a relational schema; a
relational database is a model that conforms to its schema.
(There are constraints that are associated with a database
schema, which we cover later in Section 5.)

MDELite allows you to outline a relational schema in
a way inspired by Prolog facts. Here is a typical ‘short’
declaration in school.ooschema.pl:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[deptid]).
table(department,[id,"name","building"]).
table(student,[utid]).

subtable(person,[professor,student]).

The above means:

• The name of this schema is school. It contains
four tables: person, professor, department,
student;

• Every table has a name and a list of columns (attri-
butes). The person table has two attributes: id and
“name”; and

• Tables can be arranged in an inheritance hierarchy.
The subtable declaration says classes professor
and student are subtables of person.

There are three important conventions used in
MDELite tables:

1) The first attribute of an MDELite table is an iden-
tifier field whose Tname need not be ‘id’;

2) There are two kinds of fields in MDELite table
schemas: those with unquoted attribute names and

mailto:batory@cs.utexas.edu
mailto:batory@cs.utexas.edu
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html

2

those with quoted names. A quoted-name field me-
ans that all of its values must be quoted (single-or-
double); an unquoted-name field means that all of
its values must be unquoted;

3) An n-tuple of a table t is written as a prolog fact:
t(v1 . . .vn). Some person tuples might be:

person(p1,’Don’).
person(p2,’Barack Obama’).

Values of a tuple are listed in the order that their
column/attributes are listed in their table definition.

MDELite uses a more elaborate definition of a schema.
You can produced this schema by running:

> java MDL.OO2schema school.ooschema.pl
// school.schema.pl produced

> type school.schema.pl
dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[id,"name",deptid]).
table(department,[id,"name","building"]).
table(student,[id,"name",utid]).

subtable(person,[professor,student])

The only difference between a .ooschema file and its
.schema counterpart is that attributes of super-tables are
propagated to its sub-tables, recursively. Above, every
professor tuple and every student tuple will have
person attributes.

4 MDELite-RELATIONAL DATABASES

A MDELite database is an instance of a .schema.pl
file. Recall the school.schema.pl of the previous section.
An instance of this database is a separate file, named
my.school.pl, where ’my’ is the name of the instance,
’school’ is the schema, and ’pl’ denotes an MDELite file.
Here is the my.school.pl database:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).

table(professor,[id,"name",deptid]).
professor(p1,’don’,d1).
professor(p2,’Robert’,d1).
professor(p3,’Lorenzo’,d2).
professor(p4,’kelly’,d3).

table(department,[id,"name","building"]).
department(d1,’computer science’,’gates dell complex’).
department(d2,’computer science’,’gates hall’).
department(d3,’computer science’,’Bahen Centre’).

table(student,[id,"name",utid])
student(s1,’zeke’,’zh333’).
student(s2,’Brenda’,’UTgreat’).
student(s3,’Thomas’,’astronaut201’).

The above means:

• The student table has 3 tuples, department has 3
tuples, and professor has 4. Table person has 0
(no) tuples. This is like Java: objects/tuples are listed
for the class/table in which they were created.

• The database schema definition is always included
in a database file (that’s the dbase() fact).

• The schema definition for each table is always inclu-
ded in a database file (that’s the table() facts).

• The tuples of the table follow immediately after its
table() fact. An absence of tuple declarations says
the table is empty.

Note: MDELite does not automatically ensure that
schema declarations of the database match that of the
corresponding .schema file. So beware. MDELite
has a tool that verifies (or reports differences) be-
tween a database schema and its database. To ve-
rify that the my.school.pl database conforms to
school.schema.pl, run the MDL.InstanceOf tool
below. In this case, conformance holds as there is silence
for output.

>java MDL.InstanceOf my.school.pl school.schema.pl

5 MDELite TOOLS

MDELite offers the following tools:

• All
• InstanceOf
• Model Conformance
• Model-to-Model Transformation
• OOSchema to Schema Translation
• Reading Databases
• Reading Schemas
• Version
• Violet
• Violet Class Parser
• Violet Class UnParser
• Yuml Class Parser
• Yuml Class UnParser

All – List the MDELite tools, like the above.

C>java MDL.All

InstanceOf – This tool verifies that a database is an instance
of its schema. We saw a use for this in an earlier section. To
invoke this test, use the code below. Silence is returned if
there are no errors.

C>java MDL.InstanceOf

Usage: MDL.InstanceOf <S>.schema.pl <Y>.<S>.pl
confirms that database <Y> is an instance of <S>

Model Conformance – MDELite relies on you writing a
Java program (typically using Java streams and MDELite-
tool support) to write and evaluate constraints and to report
errors. (The Object Constraint Language (OCL) is an awkward
stream language; Java streams are more elegant).

Here are two constraints on the school database:

• Person Name Constraint: A Person’s name must
begin with a capital letter.

• Name Uniqueness: No two Persons have the same
name.

A typical outline of schoolConform.java is sketched
below.

3

import PrologDB.*;

public class schoolConform {

public static void marquee() {
System.err.format("Usage: %s <X>.school.pl\n",

schoolConform.class.getName());
System.err.format(" <X> is name of database\n");
System.exit(1);

}

static boolean checkCharacter(Tuple t) {
String n = t.getName("name");
if (n.length() == 0)

return true;
Character c = n.charAt(0);
return Character.isLowerCase(c);

}

public static void main(String[] args) {
if (args.length != 1 ||

!args[0].endsWith(".school.pl")) {
marquee();

}

DB db = DB.readDataBase(args[0]);
Table person = db.findTableEH("person");
ErrorReport er = new ErrorReport(System.out);

// Person Name Constraint
person.stream()
.filter(t -> checkCharacter(t))
.forEach(t->er.add("Person Name not " +

"capitalized " + t.get("name")));

// Name Uniqueness Contraint
person.stream().filter(t->
person.stream()
.filter(g-> g.get("name").equals(t.get("name")))
.count()>1)

.forEach(t->er.add("Persons with duplicate" +
+ "name : " + t.get("name")));

try {
er.printReport();

} catch (Exception e) {
System.out.println(e.getMessage());

}
}

}

Perhaps the only thing strange is the use of class
ErrorReport. An ErrorReport object maintains a list of
errors that are posted to it by Stream expressions. When
a report is printed and if at least one error was found, a
RuntimeException is thrown. Incidentally, the output of
this program is:

Person Name not capitalized don
Person Name not capitalized kelly
Person Name not capitalized zeke
Errors found

For further details see MDELiteDemoPrograms.html.

Model to Model (M2M) Transformation – A M2M transfor-
mation in MDELite is a Java program that implements a
database-to-database transformation. It imports MDELite
tools to read and write MDELite schemas and databases.
Typically, although not required, it takes 2 arguments: the
name of the input database file and the name of the output
database file. Beyond that, how you write your database-to-
database transformation is up to you. For further informa-
tion see MDELiteDemoPrograms.html.

OOSchema Translation – MDL.OO2schema reads an in-
put x.ooschema.pl file and converts it to a schema file
x.schema.pl. Remember an ooschema file is a Java-like
declaration of tables and their inheritance hierarchies. The
attributes of a table are only those that are specific to
that table. Flattening this schema propagates attributes of
supertables to subtables. It is not difficut, but is error-prone.
We saw an example use of MDL.OO2schema in the last
section:

> java MDL.OO2schema

Usage: MDL.OO2schema <X>.ooschema.pl
outputs file <X>.schema.pl

Reading a Database – MDL.ReadDB reads a database and
reports errors. If there are no errors, silence is returned:

> java MDL.ReadDB

Usage: MDL.ReadDB <X>.<SCHEMA>.pl
reads database <X> of type <SCHEMA> and
reports errors

Reading a Schema – MDL.ReadSC reads a schema and
reports errors. If there are no errors, silence is returned:

> java MDL.ReadSC

Usage: MDL.ReadSC <X>.<SCH>.pl
<SCH> is ’ooschema’ or ’schema’
reads schema x and reports errors

Version – returns the version number of MDELite:

> java MDL.Version
MDELite version 6.0

Violet – You can invoke Violet directly through its jar file,
but calling it from a command line is painful; MDL.Violet
is easier:

> java MDL.Violet
// spawns Violet and waits for Violet to close

VioletClassParser – MDL.ClassVioletParser maps a
Violet Class diagram file (<X>.class.violet) to a vpl
database. The vpl schema is in libpl/vpl.schema.pl
and is shown below:1

dbase(vpl,[violetMiddleLabels,violetAssociation,
violetInterface,violetClass]).

table(violetClass,[id,"name","fields","methods",x,y]).

1. I have broken lines in code listings for presentation reasons.
MDELite parsers expect one complete declaration per line.

4

table(violetInterface,[id,"name","methods",x,y]).
table(violetAssociation,[id,"role1","arrow1",type1,

"role2","arrow2",type2,"bentStyle",
"lineStyle",cid1,cid2]).

table(violetMiddleLabels,[id,cid1,cid2,"label"]).

To invoke the parser:

C>java MDL.ClassVioletParser

Usage: MDL.ClassVioletParser <in>.class.violet
<out>.vpl.pl

VioletClassUnParser – MDL.ClassVioletUnParsermaps
a vpl database to a Violet Class diagram file
(<X>.class.violet):

C>java MDL.ClassVioletUnParser

Usage: MDL.ClassVioletUnParser <X>.vpl.pl
[<X>.class.violet]

output file defaults to
<X>.class.violet if unspecified

YumlClassParser – MDL.ClassYumlParsermaps a Yuml
specification file (<X>.yuml.yuml) to a ypl database. The
ypl schema is in libpl/ypl.schema.pl:

dbase(vpl,[violetMiddleLabels,violetAssociation,
violetInterface,violetClass]).

table(violetClass,[id,"name","fields","methods",x,y]).
table(violetInterface,[id,"name","methods",x,y]).
table(violetAssociation,[id,"role1","arrow1",type1,

"role2","arrow2",type2,"bentStyle",
"lineStyle",cid1,cid2]).

table(violetMiddleLabels,[id,cid1,cid2,"label"]).

To invoke the parser:

C>java MDL.ClassYumlParser

Usage: MDL.ClassYumlParser <IN>.yuml.yuml <OUT>.vpl.pl

YumlClassUnParser – MDL.ClassYumlUnParsermaps a
ypl database to a Yuml specification file (<X>.yuml.yuml):

C>java MDL.ClassYumlUnParser

Usage: MDL.ClassYumlUnParser <X>.ypl.pl [<X>.yuml.yuml]
output file defaults to <X>.yuml.yuml
if unspecified

6 CLOSING

MDELite is a work in progress. It is possible that this
documentation may get out-of-date with code releases. If
so, please report them to me — dsb

mailto:batory@cs.utexas.edu

	Introduction
	Installation
	MDELite-Relational Schemas
	MDELite-Relational Databases
	MDELite Tools
	Closing

